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We assume that the forces applied to the shaft have a variable part 
which is a moment of constant amplitude M(X) per unit length, distributed 
along the shaft, and varying with a frequency proportional to the angular 
velocity. 

From the solution corresponding to the harmonic steady state vibration, 
we deduce, by using Heaviside’s expansion, the motion due to a sudden 
application of the moment M(x). This enables us to compute the effect 
of the moment when applied with a linearly increasing frequency. 

In this analysis the damping will be neglected. In case of a viscous 
damping the linear character of the equations is not affected and the same 
method might be used. We did not carry this calculation for two reasons: 

1. The exact result will be in general complicated, and involve viscous 
friction coefficients which will not be very accurately known. Besides, 
the effect of friction might be roughly taken into account by considering 
the steady state solution. 

2. In most cases the damping is not viscous but due to the hysteresis 
or internal friction of the material. This is proved by the experimental 
fact that the energy absorbed in the vibration of elastic bodies is pro- 
portional to the frequency and not to its square. This effect might be 
taken roughly into account by energetic considerations. 

The equation of vibration of the shaft may be written, 

(1) 

where B is the angular coordinate of a cross-section, K(x) the torsional 
rigidity and I(X) the moment of inertia per unit length. 

In order to find a solution of this equation, we will first study the be- 
havior of the free oscillations given by the equation, 

g K(x) g = I(x) Z2’ 

[ 1 

ml 

This equation has an infinite number of solutions of the type 0 = 
@(x)e’Oi’ corresponding to the free harmonic oscillations of the shaft 
with the given boundary conditions. 

Each of the functions e;(x) is a characteristic function which satisfies 
the Sturm-Liouville differential equation, 
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f 
[ 

K(x) $ 0j(X) 
1 

+ wj”I~x>ei(x> = 0 

and also the given boundary conditions. These functions are related by 
the orthogonality condition, 

s a 

e,(x) e,(x) 2x = 0 W-2 # n. (3) 
0 

This analysis is valid when the inertia moments are concentrated 
instead of distributed, for we can always approximate concentrated loads 
by a continuous distribution. 

We now assume that the applied moment is harmonic of the form, 
M(x, f) = Mo(~)eiw”. The solution of equation (1) may then be written 

0(x, t) = Oo(x)e’“, 

and the equation becomes an ordinary differential equation, 

Jffo(4 + =fx K(x) !$ [ -1 
+ WV(X) I90 = 0. (4) 

For our purpose the best way of solving this equation is to expand 
00(x) in a series of orthogonal functions Q(x), 

Substituting this expression into equation (4) and taking into account 
the identity (2), we find, 

If we multiply both sides by &(x) and integrate along the shaft between 
the limits (o, a), due to the orthogonality condition (3), all the unknown 
constants A, are eliminated except A,; we finally get 

Aj = ci, s 
w: - 02 

cj= Oa s . 
I(x) ey (x>& 

0 

The required solution for the forced harmonic vibration is 
4 

($.(&., Q = ei.‘~~. 
j_lWj - w2 

We will now calculate the motion of the shaft due to a sudden applied 
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distributed moment AL?&). Consider the following well-known integral 
taken in the complex plane , 

1 

s 

+ m &or 
- -&7dw= 1 t>o 
23ri -Co 6J ( 0 t<o’ 

The path of integration is supposed to pass below the real axis. The 
applied moment may hence be represented as a sum of harmonic forces 
with a continuous set of frequencies by the expression 

MO(X) 
--s 

+ m ff d 

27ri -CO OJ w 

This integral can be expressed as a contour integral, if we note that for 
t > 0 we may add to the path of integration the infinite half circle passing 
through (-00, +ia, +a). Hence for t > 0 

MO(X) 

s 

+ m &d 
-ddw = i!!i&?#cdw. 

2R -m w 2lri W 

To each of the harmonic moments composing this expression corresponds 
a motion given by equation (5) ; the total motion due to the sudden 
moment will be the sum of all these elementary motions and expressed by 

- C@,(x) 
e2bG t) =iz l,i# 

ei” 

w(wi - w”)’ 

This integral is easily calculated by the method of residues, 

el(x, t> = fl% [l - cos w,t]. 
I 

(6) 

This expression gives the motion due to a sudden applied moment MO(x) 
as a sum of free oscillations. 

In case of concentrated loads, the formula is similar. Suppose that the 
shaft carries n discs of moments of inertia Ik. The distributed moment 
MO(X) is replaced by the moments MOK applied to those discs, and the 
distributed amplitude 19(x) by the amplitude 0, of each disc. There will 
be, in general, n periods of free oscillations. The coefficients Ci are given 
by the following expressions 

2 n/r,, eik 

cj = “=*I 

c Ik @ik ’ 
k=l 

We call eiA the amplitude of oscillation of the “k th” disc due to the 
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free oscillation of order “i.” If all the moments are suddenly applied 
at the same time the angular displacement of each disc is given by 

e,(t) = 2 Ci 
i=l cdj2 

11 - cosfA$]. 

Using a well-known method, we will now deduce from this analysis the 
motion due to a moment of the form M&)$(t), where 9(t) is an arbitrary 
function of time. It may be considered as composed of an infinite number 

of small increments M (x) 9dt 0 
dt - 

Each of these increments produces an 

oscillation given by (6) or (7) so that the total motion in case of distributed 
parameters is given by the integral 

qr, t) = s 0 
fel[x, t - T] ; #(T)dT. 

Integrating by parts and assuming #(o) = 0, 

s ‘#(T) cos w;rdr - cos o& 
s 

‘#(T) sin wirdr. 
0 

Put f&i, t) = 
s 

‘#(T) cos qrdr, 

f2h t) = 
s 

'#(T) sin wi7d7. 
0 

The expression (7) for O&t) shows that the motion due to an applied 
moment of the form M&c)+(t) is composed of a series of free oscillations 
each of which has an amplitude 

2 @Ax) dj%J<wi, t) + _f&Ji, t). 
z 

This principle leads to the solution of the announced problem. Con- 
sider a shaft rotating with a constant acceleration. In most cases the 
amplitude of variation of the torque will be constant. We call II the 

angular acceleration and put 0 = i. The variable part of the moment is, 

per unit length, 

Put 
M0(x>#(t> = MO(X) sin (bt” + cp). 
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1 1 

F(wj, t) = sin wit s cos w,r sin (p3 + (p)& - cos CO& s sin wi7 sin (/3? + (P)&. 
0 0 

The motion is then given by formula (7) in the form 

In order to calculate F we shall introduce the quantities 

where Ni is the number of revolutions performed when the critical speed 
is reached at the moment ti, and N the number of revolutions performed 
after any time t. 

By an elementary transformation we may write 

s t F(wi, t) = l/zsin(wit + p) sin(PT2 + ~~7)dr + r/z sin(wJ - (c) 
0 

s 

t t 

sin (/37” - w&7 + ‘/2 cos(w& + cp) 

s 

COS@T2 + 

0 0 
t 

WiT)dT + ‘/2 COS(Wit - Cp) 

s 

COS (/?T” - 6JiT)dT. 

0 

Introducing now the quantities (Y and f, 

CC, $0) = 2 F(wi, t) = sin oit - cp 

This expression involves the well-known Fresnel integrals. By sub- 
stitution in equation (8) we get for each normal mode an amplitude 
given by 

We are interested in the behavior of this amplitude as a function of 
time. Practically the critical speed will be reached in more than ten 
revolutions, so that, 
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a>4410 

take CY > 12. 

Write 
s 0 

Los ; y2dy = C(u), 

s 

u 

0 

sin i y2dy = S(U). 

These functions have been tabulated.’ In our assumption that (Y > 12, 
the terms written on the second line of equation (9) are small and may be 
neglected. This equation then reduces to 

!I?(& a, cp) = sin 
( 

wit - cp - E a2 
Y 

E-a= 
sin 2 y2dy - 

-a 
n E-m, 

cos 
( 

wjt - $0 - - cY2 
2 Y 

cos 2 y2dy. 
-cl 

This is the projection of a rotating vector whose rectangular components 
are 

C(‘$ - a) + C(& 

S(f - a) + S(a). 

When .$ varies, the extremity of this vector moves on a curve plotted in 
the figure. .The length of the curve taken as 0 for 4 = (Y has the value 
.$ - ~1, and is a linear function of the time. 

Consider the case where a great number of revolutions have to be per- 
formed before the critical speed is reached. This means that the value of 
a! is great. The conclusions that we will draw from this assumption shall 
be practically true if Ni > 12. 

The amplitude q at any moment is represented by a vector having its 

origin in 0’ and its end at the point of the curve corresponding to t 
d 

i = 5. 

We see that the amplitude increases at first slowly, then very rapidly 

near the point of resonance 0 ([ = cr) where the amplitude is -=. 
;z 

The 

amplitude then reaches a maximum 1.165 4.2 for 5: - LY = 1.25 and de- 
creases afterward in an oscillating way, down to 4. 

Hence the maximum amplitude of the normal mode will be 

In the case of concentrated loads, the maximum vibration amplitude 
of each disc is 

Oik = 1.165 
ii ci eik 

z P”’ 
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If the moment acting on the shaft is the sum of two moments applied 
with a phase difference cp, 

i& = Mik sin @t2 + Mik sin(pt2 + (p) 

the maximum amplitudes of the discs will be given by the same formula, 
provided that Ci is the vectorial sum (with a phase difference ‘p) of the 
two coefficients Ci and CJ corresponding respectively to the separate 
moments Mih and Mik, 

G = V@ + c;2 + 2c;c; cos (a. 

Example.--We shall apply this result to the crankshaft of a six cylinder 

two cycle engine. The crankshaft is supposed to be free at both ends, 
and may be considered as a shaft loaded with six discs of moment of 

inertia I. If M is the mean torque produced by this motor, $ will be 

the mean torque applied by the pistons to each of the discs, and at the 
same time the amplitude of variation of this torque. We assume that 
the explosions occur at the same moment in pistons equidistant from the 
center, in the following order, 

(1, 6) (2, 5) (3, 4. 

What is the effect of acceleration on the third harmonic of this shaft? 
The amplitudes of free vibration of the third harmonic are 
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831 = 1 
es2 = -2 

033 = 1 

e34 = 1 
(335 = -2 

e36 = 1 

Each piston causes a certain amplitude of vibration of the third har- 
monic, and this effect is characterized by the corresponding coefficients, 

C,, = s . 03’ 
4 eik 

= f& eOk_ 

K=1 

These coefficients have to be added vectorially, due to the fact that there 
is a phase difference in the applied moments. 

Let us first add the vectors which have no phase difference: 

C31 + Cae = j& (eel + e33) = 2 j$ 

c32 + c3s = z1 M (e32 + e33) = - 4 F+Ia 

C33 + C34 = j& (e33 + e34) = 2 EI. 

These three vectors have a phase difference $ and their vectorial 

sum is, 

M 
c3 = FI' 

The maximum critical amplitude of vibration of each disc is 

e 3k 

The difference between $31 and 032 gives the maximum torsional strain 

031 - 033 = 1.165 ; 41w3 <“. 

1 E. Jahnke and F. Emde, “Funktionentafeln,” p. 24. 
Presented at the National Applied Mechanics Meeting, New Haven, June 23-25,1932. 
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