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Vibrating Systems under Transient Im+lse.-The following theory 
gives a method of evaluating the action of very random impulses on 
vibrating systems (i.e., effect of static on radio-circuits or earthquakes on 
buildings). In the following text, we will use the language of mechanics. 

Consider a one-dimensional continuous elastic system without damping. 
The free oscillations are given by the solutions of the homogeneous integral 
equation’ 

y=(g b 

s 

PcM~F)~(5)~F. 
a 

Due to the nature of the kernel there exists an infinite number of char- 
acteristic values wi of w and of characteristic functions yi solutions of this 
equation. These functions give the shape of the free oscillations of the 
system. They are orthogonal and have an arbitrary amplitude. This 
amplitude may be fixed by the condition of normalization, 

We now suppose that certain external forces f(z) are acting on the system, 
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these forces being expressed in such a way that the product of the dis- 
placement y by f(x) represents the work done by this force. For example 
if f(x) is a moment y will be the angle of rotation around the same axis as 
the moment at that point. 

It can be easily proved that the statical deflection of the system is, 

f(x) 
where C; is the Fourier coefficient of the development of - in a series 

Pc4 

of the orthogonal functions yi, 

hence 

s 

b 

c; = f(L9Yi(Wt- 
0 

If the applied forces are variable with time and harmonic of the form 
f(x)t?’ the deflection is expressed by the expansion 

y=CCiyi 1 &I. 

wj2 1 - W2/Wi2 (2) 

The amplitude is composed of each of the terms of the stutical deformation 

(1) multiplied by a resonance factor 
1 

1 - W2/Wj2)’ 

The motion due to a sudden application of the forces is of the same 
type, and can be deduced immediately from the preceding harmonic * 

solution. 
By using Heaviside’s expansion theorem we get, 

ya = +[I - COS Wit]’ 
i 

The amfilitude due to a sudden a$@ied force f(x) is composed of a series 
of oscillations each of which has an arnj&&uJe equal to twice the corresfionding 
term of the statical deformation (1). 

We will now investigate the action of varying forces of the type f (x)$(t) ; 
these forces are supposed to start their action at the origin of time and 
to keep on during a finite time T. 

Using the Heaviside method, and the indicial admittance (3), the motion 
after the impulse has disappeared is given by, 
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This motion is the superposition of free oscillations. Their respective 
amplitudes can be physically interpreted as follows: 

Put jr(v) = ~T#(~)cos 27~7 dr 

fi(v) = J;(r)sin 2avr d7 

where v is the .frequency v = f. The component free oscillations may 

then be written, 

GYi -. 
CO;2 2TQ GXVi) + fi(Vi). 

Now, according to the Fourier integral, 

4Q) = 2 
s 

~r(v)cos 27rvtdv + 2 
0 s 

y2(v)sin2nvtdv. (4) 

This shows that the expression 

F(v) = +I&> + m 
may be considered as the “spectral intensity” curve of the impulse. 

The amplitude of each free oscillation due to the transient impulse is 

CiYi 
- . 27rviF(vi). 
0;2 

The expression 27rvF(v) is a dimensionless quantity that we will call 
“reduced spectral intensity.” We then have the following theorem: When 
a transient impulse acts upon an undamped elastic system, the jinal motion 
results from the superposition of free oscillations each of which has an ampli- 
tude equal to the corresponding term Ciyi/wi2 of the statical deformation (1) 
multiplied by the value of the reduced spectral intensity for the corresponding 
frequency. 

The advantage of this theorem is that for the calculation of the motion 
it replaces a complicated impulse by a spectral 
always an analytical function of the frequency. 

This theorem could also have been established 

distribution which is 

by starting from (2) 
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and using directly the Fourier integral. We will apply this last method 
in order to generalize the theorem to the case of an elastic system with 
viscous damping whose motion is defined by the equation, 

my + aj + b2y = A+(t). (6) 

The impulse is supposed to be given as before by the spectral distribution 
(4). Introducing a complex spectral distribution, 

P(Y) = fib) 7 $2b> 

we may write, 

where according to the Fourier integral 

(7) 

2: 

II 
FIGURE 1 

The function q(v) is holomorphic; its expansion in a power series is, 

where 

A, = (-27ri)” 
s 

o Tt”$@)&. 

Calling M the largest value of 1 #(t) 1 and I(Y) the coefficient of i in the 
variable v considered from now on in the complex plane, we have 

I cp(v> 1 < &) [e2rT(“)T - 11. 

This shows that for t > T, 1 (p(v)e2ri’“” ( has an upper limit. 
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Consider now the elastic system (6) under a harmonic impulse Ae2”i”‘, 
the corresponding motion is 

x(t) = -Je2;; [L - L]. 
v - Vl v - v2 

The quantities v1 and v2 are complex frequencies 

v1 = cri + 8, v2 = cri - p. 

The free oscillation of the system is damped and given by 

e-2zaf cos27Qt. 

I.4 

i.t 

l.0 

0.9 

a1 

o-3 

+ .t 3 4 c 6 F I 9 10 

FIGURE 2 

According to (7) and (8) the motion due to the impulse A$(t) will be, 

y(t) = -A s +- 
8?r2pm -a 

1 1 - - - 1 dv. 
v - Vl v - v2 

We have seen that 1 F(o)e”“’ 1 h as an upper limit, and by using then the 
method of contour integrals and residues, we find, 

Y(t) = -$$ [(0(vl)e2rinf - p(y2)e2rri*t]. 

At the time T when the impulse has ceased, the amplitude is, 
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(y(t) I = 

A 
The quantity 41r2m(p2 + az> is the deflection for the static deformation due 

to a force A. This lust result generalizes formula (5) to the case of damping. 
We have to consider a complex frequency ai + /3 and the analytical prolonga- 
tion cp(& + p) of the spectra2 distribution (O(Y) of $(t). 

Application to Earthquakes. 2-The study of seismogram spectral 
distributions has not yet been made; it is, however, the author’s opinion 
that this study would be of great importance for two reasons: 

0.a 

0.l 

(1) 

FIGURE 3 

The peaks of the spectral curves will reveal the presence of certain 
characteristic frequencies of the soil at given locations. 

(2) By applying the preceding theorems the maximum effect of earth- 
quakes on buildings will be easily evaluated by considering a spectral 
distribution having larger values than those deduced from known seismo- 
grams. 

The theory has been applied to evaluate the effectiveness of the so- 
called “elastic first floor” in earthquake-proof buildings. 

The building is supposed to have a simple frame, whose only possible 
deformation is shear (Fig. 1). All the stories except the first have a 
uniform mass and shear-rigidity. Call R the ratio of rigidity of the 
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first story to the rigidity of the second, n + 1 the number of stories and 
M the total mass of the n stories above the first one. Put a! = Rn. 

The building is replaced by a continuous beam of same average 
properties. 

The frequencies of the free oscillations are given by 

where to is the time necessary for a shear wave to go from the second floor 
to the top, and Xx are functions only of (Y given by XvgX = a. The values 
of X’x are plotted in figure 2 with XK = k?r + XrK. 

Suppose that j&(t) is the horizontal acceleration seismogram and that 

we have calculated the spectral intensity F(v) = dfi(v) + g(v) of #(t). 
The earthquake produces a series of co-existing free oscillations in the 
building. A total horizontal shear is produced by each of these free 
oscillations, and the maximum amplitude of each of these shears is, 

The values of Cx(a) are plotted in figure 3. 
We see that the fundamental oscillation is by far the most dangerous, 

and that the influence of the elastic first floor is only important for values 
of (Y smaller than 3. 

1 See for instance, F. H. van den Dungen, COWS de Technique &s Wmztiom, 
Brussels, 1926, and “Les Problemes Generaux de la Technique des Vibrations,” Wm. 
SC. Physiques, t. 4 (Paris, 1928); K. Hohenemser, Die Methoden mu angeniiherten 
Ldsung van Eigenwertproblemen in der Elastokinetic (Berlin, Springer, 1932). The func- 
tion r&v, E) is called the influence function. 

* This study was undertaken at the suggestion of Professor Th. von K&m&n. The 
author wishes to express his appreciation of the continual interest Professor von 
KQrm%n and Professor R. R. Martel have taken in its progress. 
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