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Theory of Vibration of Buildings During Earthquake. 
By M. Biot in Louvain (Belgien). 

Gebäudeschwingungen bei Erdbeben. 

Zusammenfassung. Die Bewegungen eines Gebäudes, das von einem Erdbeben getroffen 
wird, haben den Charakter vorübergehender Schwingungen. Die Untersuchung derartiger 
Vorgänge nach dem Heaviside-Verfahren ist den Elektro-Ingenieuren geläufig. Für den 
Fall der Erdbebenschwingungen wird indessen die Anwendung dieser Methode wegen der 
Unregelmäkigkeit der Erdbewegung zu mühsam. Auherdem braucht man nicht die Bewegung 
eines Gebäudes genau zu kennen, sondern nur die Scheitelwerte der Beanspruchung. 

Die folgende Arbeit enthält eine Theorie der Schwingungen eines Systems unter einem 
vorübergehenden Anstofi. Der erste Paragraph enthält die theoretischen Grundlagen. Der 
Hauptgedanke ist die spektrale Zerleguug des Seismogramms, d. h. es wird die Frequenz- 
verteilung des Erdstobes untersucht. Dann ist es ziemlich einfach, die Wirkung eines solchen 
Stakes auf ein Gebäude zu ermitteln. 

Im zweiten Paragraphen wird diese Methode auf die Untersuchung der Erdbeben- 
sicherheit eines Gebäudes angewendet, das einen elastischen ersten Stock hat. Eine Tabelle 
ermöglicht die Berechnung der Schwingungsperioden des Gebäudes. Als Endergebnis erhält 
man die durch die Elastizität des ersten Stockwerks hervorgerufene Verringerung der Be- 
anspruchungen. 

1. General Outlines of the Theory*). We shall tonfine ourselves to general outlines of the 
mathematical theory and we will neglect the damping. A more detailed account of the 
theory is given in the appendix. 

The analysis Starts from the fact that any Vibration of an elastic undamped System 
may always be considered as a Superposition of harmonics. Although the method is valid 
for any type of motion, shear, bending, or torsion, let us only consider for the present the 
horizontal Vibration of a building. This building, like any elastic System, .has a certain 
number of so called ,normal modes<’ of Vibration, and to each of them corresponds a certain 
frequency. When a building vibrates in a normal mode, all the displacements have the 
same Phase, i. e. they all resch the maximum at the Same moment. The ,,shape“ of the 
oscillation is that of standing waves, and the higher the frequency the higher the number of 
these waves. We will show that any motion tan be calculated when we know these 
modes of Vibration. 

Consider the ith tloor of mass ‘wci. The amplitude of oscillation of that flbor in the mode 
of Order Ic is called Ak yik. These quantities contain an arbitrary constant Ak, corresponding 
to the fact that a free oscillation has an arbitrary amplitude. 

In view of the application of the theory we have to give to these amplitudes certain 
values and determine these constants so as to satisfy the condition 

Z’wLi Ak2 yy2ik = 1 . 

The amplitudes become then 

Yik uik=Ak yik=-= 
1/2Wb$Y2ik 

The amplitudes ‘&k are then said to be ,,normalized”. We suppose that we also know the 
frequencies vk corresponding to each free oscillation. 

The next step is to calculate the st a t i c al deflection of the building under a constant 
horizontal acceleration j, that has been applied very slowly. In other words, we have to 
calculate the deformation that the building would take if the gravity had an horizontal com- 
ponent j,. In general, this deformation will be very complicated and will be a combined 
shear, torsion, and bending. The method here developed is valid for any general case, but 
we will restritt our considerations to the study of horizontal deflections. 

By applying the so called property of orthogonality of the deflections ~dik, namely, 

i 
~t’i’b~~~,&k=O h =+ k 

1) See also: M. Biot, Theory of elastic Systems vibrating under transieritt impulse with an application to earth- 
quake-proof buildings, Proc. Nat. Acad. Sc. Vol. 19, No. 2, pp. 262-268, Feb. 1933. - This work was done during the 
author’s stay.as Researoh Fellow at the California Institute of Technology. 
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it can be proved that the statical deflection 43 produced by the acceleration j, can be 
expressed as a sum of amplitudes ~ik of the normalized free oscillations by the series 

k 

where 

If, instead of a gradual application of the acceleration j,, it is suddenly applied at time 0, 
the building is going to vibrate around a new position of equilibrium which is given by the 
previously considered statical deflection. Hence, the motion of each floor is given by 

This shows that when an horizontal acceleration is suddenly applied to a building the 
maximum deflection is twice the statical one. 

From this last formula, we may deduce the 
(see Appendix I). The results are the following: 

Let an horizontal acceleration j, v (t) act upon 
Consider then the functions of the frequency v, 

T 

motion due to an arbitrary acceleration 

the building between the instants 0 and T. 

fi(v)=jy(z)COS2nvZdz 
ci 
T 

f,(v)=\y (z)sin2nvzdz 
0 ,_ I 

and F (4 = jh@i” (4 + f;’ (4 . 
After the instant T the motion of the building is composed of a series of free oscillations 
each of which gives to the different floors an amplitude2) 

ck wk 
----2~vkF(vk). 
wk' 

The function F(v) is nothing but the frequency distribution of the impulse, or its 
spectral distribution. The function 2n v F (v) is dimensionless and may be called the 
reduced spectral distribution of the impulse. 

Hence we have the following theorem: When an arbitrary horizontal accele- 
ration joy,(t) of finite duration acts upon a building, the resulting vibration 
at the end of the impulse is composed of a series of free oscillations each 

ck uk 
of which has an amplitude equal to the corresponding term -1 of the 

wk 

statical deformation due to j, and multiplied by the value 2nvkF(vk) of 
the reduced spectral distribution of (y t) for the corresponding frequency. 

If we want to know the amplitudes during the earthquake, we must naturally use a 
function 3 (v) corresponding to an impulse ending at the moment we consider. 

It will be noticed that we consider only the amplitudes of the free oscillations and 
not their phases. This is justified by the fact that we are not interested in the motion 
itself of the building, but mereiy in its maximum amplitude. This maximum is the sum of 
the amplitudes of each separate free oscillation. It will not always be reached because it 
supposes that an instant exists for which all the free oscillations have their maximum de- 
flection simultaneously. However, this maximum will many times be nearly reached in a 
short time, and in any case it is the highest possible value. 

Rem arks. I. The method may be used for any type of deformation. For instance 
in the case of torsional deformations. Call Mi the torque produced around the axis, at the 
ith floor, by a unit horizontal acceleration; then j, Mi will be the torque due to an 
acceleration j,. The normalized angles of rotation of each floor in the torsional normal 

2) See Appendix I. 
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modes being Oik and Ii being the moments of inertia of the floors, the rotation due to the 
statical deformation is 

with 

The condition of normalization of the Oil, becomes here, 

In order to get the 
before the expremions 

amplitudes of rotation due to an acceleration we must calculate as 

IT. The steady state oscillation due to an harmonic horizontal acceleration j, e2xvit is 
given for the deflection deformation by 

where w=2nv. This gives an experimental method of measuring the uik by producing 
resonance in a model. 

III. In order to show the main properties of a spectral curve F(v) we calculate its 
value for a very simple case; we will surpose that y (t) is a sine curve sin 2 sz N t of total 
length T. The corresponding function F(v) has a sharp peak in the vicinity of v = N and 
its approximate value is 

$1 sinf(rr$) T 1 (fig. 1). 

This shows that in general a spectral distribution curve will show a certain number of peaks 
if there exists certain periods in the seismogram (fig. 2). 

Fig. 1. 

I I w 

@a w 

Fig. 2. 

According to recent observationsa) there seems to exist characteristic frequencies of 
the ground at given locations. These frequencies would be given by the peaks in the 
spectral curve. 

If we possessed a great number of seismogram spectra we could. use their envelope 
as a standard spectral curve for the evaluation of the probable maximum effect on buildings. 
The spectral curves would be of interest as much to seismologists as to civil engineers. 

The direct computation of such spectra might be tedious but automatic electrical methods 
can be easily imagined such as a photographic record passing in front of a photo-electric cell 
acting upon a tuned circuit. 

2. The Effectiveness of an Elastic First Floor. As an application 
calculate the reduction of stress due to a so called elastic first floor 
building. 

of the method we will 
in an earthquake-proof 

8) Suyehiro, Tokyo. 
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jet / Let it be of rectangular shape. We assume 
that the deformation is an horizontal shear as 

0 

I& 

/5!D 

shown in fig. 3. Furthermore, the shearing 
rigidity and the mass of each story are supposed 
to be constant from the second floor to the 
top. The first floor only will have a different 
rigidity. In order to simplify the analysis we 
consider the upper part of the building, i. e. 
all the stories except the first one as a conti- 
nuous beam having shearing deformations only. 

Abb. 3. 
We use the following notations: 

coordinate measured downwards from the top as origin 
horizontal deflection of the building 
height of the upper part of the building 
mass of the upper part of the building 
number of stories of the upper part 

height of one story 

force necessary to displace two consecutive floors of a unit length relatively 
to each other 

mass density of the equivalent beam 

rigidity coefficient of the equivalent beam 
force necessary to displace the second floor of a unit length relatively to the 

ground 

propagation speed of a shear wave in the beam 

time necessary for such a wave starting from the bottom of the beam to reach 

t ’ 

the top 

-_= t 

to 

X’ 
-=Z 
h ’ 

According to the general theory we have to consider the normal modes or free oscillations 
of the equivalent beam, which are given by the equation, 

This may be written with dimensionless variables, 

By putting y = z (5) ei 2% we get, 

The general solution is 
z=AcosIf$ Bsin16. 

Consider the boundary conditions, 
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Put R= F ratio of the rigidity of the first Story to that of the others, and a = R tz, 

wt being the number of these other Stories; the boundary conditions become 

From equation (1) B=O s=AcosA5. 

From condition (2) AtgIZ=a. 

The roots Ak of this equation correspond to the free oscillation frequencies of the building. 
We choose certain values of a corresponding to certain simple values of R and n. as follows: 

The values of Ak as a function of a are given in the following table: 

a 

0 

0,556 

0,834 

It,11 

1,66 

2,50 

3,33 

570 
10,o 

Co 

0 

0,68 

0,80 

0,89 

1,03 

1,15 

1,23 

1,32 

1,44 

JlJ 
2 

L 
3z 2n 

3,31 6,31 

3,38 6,41 

3,45 6,45 

3,58 6,53 

3,73 6,65 

3,86 6,74 

4,04 6,91 

4,30 7,22 

3n 5rr - - 
2 2 

I 
T- 

- 

3n 4% 

9,48 12,60 

9,51 12,62 

9;54 12,65 

9,59 12,69 

9,67 12,76 

9,75 12,82 

9,90 12,93 

10,18 13,20 

7?% 93c - - 
2 2 

1 
5n 

15,73 

15,75 

15,77 

15,80 

15,85 

15,91 

lö,0 

16,24 

11 z 
2 

In fig. 4 are plotted the values of Ak’ where Ik = k z + &‘. The period Tk corresponding 
to Ak, is, 

It is interesting to compare the fundamental period T, to that Y0 which would occur if the 
building would be perfectly rigid from the second Gloor to the top, the only elasticity being 
due to the first Gloor. We get, 

d2 u 
Md+Gu=O 

The ratio of frequencies f’i ==$ =A” is a function of a. 
0 fi 

0 1 2,50 0,725 

0,556 0,910 3,33 0,674 

0,834 0,875 570 0,590 

1,ll 0,840 10, 0,455 

1,66 0,800 Co 0 
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The shape of the normal niodes is given by 

,LQ (x) = AI, cos II, t. 

We have to determine t,he constants Ak by the condition of normalization which reduces 
here to the integral 

h 

ul?,~Ak2coszIZk~d~=1 or M Ak2 f cos’ II, 6 d 5 = 1. 
IJ 0 

By integrating and using the equation 21, tg dk = a 

AI,= 

The statical deformation of the beam due to an horizontal 

k 

where 

ii(x)= $iwk(@, 

acceleration g is then 

Since Cc& =‘$, the statical deformation takes the form 
0 

k 

t%(x)=2gt,*a cos AI, t ’ 

~__ 

1 

Put 

These coefficients are dimensionless and functions of a only. Their values are given in the 
following table : 

a 

0 

0,556 

0,834 

1,ll 

I,66 

2,50 

3,33 

5,O 
10,o 

co 

1 
co- 

cl 

2,336 

1,734 

1,425 

1,091 

0,902 

0,802 

0,710 

0,612 

0,520 

Bi . B2 

0 0 0 

- 0,00890 0,000692 - 0,000138 

- 0,0116 0,000970 - 0,000208 

- 0,0137 0,00122 - 0,000272 

- 0,0166 0,00177 - 0,000386 

- 0,0191 0,00234 - 0,000544 

- 0,0203 0,00274 - 0,000682 

- 0,021o 0,00334 - 0,0009 12 

- 0,0212 0,00404 - 0,00126 

- 0,0192 0,00417 - 0,09151 

The statical deformation is then given by: 

By using this result we are’ able to find the amplitudes of oscillation produced by an 
acceleration g y (t) . 

TTT . .1 7 .1 
We tmua tne reduced spectrai intensity 2 7d yF(~j of the function Of time y (tj. The 

amplitude of each free oscillation of the beam is then 
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We are also interested in the total shear produced in this beam. The amplitude of 
shear produced by each mode is 

Replacing 2 z Vk by + we get 
” 

F (vk) Sk= -gikfBk&2Sill~1,~ 7. 

0 

For the fundamental oscillation the shear is maximum at the bottom (E = 1) 

For the oscillations of higher order, the maximum value is 

F ("k) 
sk=gM&&+-. 

0 

Put B, Lo2 sin 1, = C, (a) , 

The maximum shear corresponding to each free oscillation is then given by 

F b'kl s,=@!fck(CI)~. 
0 

The coefficients &(a) are dimensionless and functions of a only. Their values are 
plotted in fig, 5 and given in the following table: 

a 

0 0 

0,556 - 0,340 

0,834 - 0,397 

1,ii - 0,438 

1,66 - 0,496 

2.50 - 0,544 

3,33 - 0,572 

5,O - 0,600 

io,o - 0,629 
oi, - 0,642 

0 0 

0,0486 - 0,0139 
0,0666 - 0,0199 
0,0818 - 0,0254 

0,107 - 0,0377 

0,132 - 0,0517 

0,150 -0,0623 

0,172 - 0,0812 

0.,196 -0,105 

0,212 - 0,129 

0 

0,00622 06 

0,00942 

0,0123 

;, 

;+ 

0,0177 ;j 

0,0254 ’ 

0,0324 @ 

0,045l a,' 

0,071 O& 2 3 4 5 6 7 8 9 “a 

0,091 Fig. 5. 

We see that the fundamental oscillation is by far the most dangerous, and that, for 
given values of the ~‘~8, the influence of an elastic first floor is important 
only for values of a smaller than 3. For example, it would not be in general of great 
advantage for a seven story building to build an elastic first floor having only 50°j, of the 
rigidity of the other floors. 

Appendix I. 

Vibrating systems under transient impulse. The following theory gives a method of 
evaluating the action of very random impulses on vibrating systems (i. e. effect of statics on 
radio-circuits or earthquakes on buildings). In the followiug text, we will use the language 
of mechanics. 

Consider a one-dimensional continuous elastic system without damping. The free 
oscillations are given by the solutions of the homogeneous integral equation, 

y=w’%e(Da(ZF)?l(5)dF 

Due to the nature of the kern there exists an infinite number of characteristic, values 
oi of CL) and of characteristic functions yi solutions of this equation. These functions give 
the shape of the free oscillations of the system. They are orthogonal and have an arbitrary 
amplitude. This amplitude may be fixed by the condition of normalization, 
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We now suppose that certain external forces f(x) are acting on the system, these forces 
being expressed in such a way that the product of the displacement y by f(x) represents 
the work done by this force. For example, if f(z) is a moment y will be the angle of 
rotation around the same axis as the moment at that point. 

It can be easily proved that the statical deflection of the system is, 

y=,F$yi . . , . . . . . . . . . . . . (9, 
f(x) 

where Ci is the Fourier coefficient of the development of __ in a series of the orthogonal 

functions yi , 
e (4 

hence 

If the applied forces are variable with time and harmonic of the form f(x) eg 0 t the deflection 
is expressed by the expansion, 

(2). 

.The amplitude is composed of each of the terms of the statical deformation (1) 
multiplied by a resonance factor. 

The motion due to a sudden application of the forces is of the same type, and can be 
deduced immediately from the preceding harmonic solution, 

By using Heaviside’s expansion theorem we get, 

Ya =2 %[l -cos wit] . . . . . . . . . . . . . (3). 

The amplitude due to a sudden applied force f(x) is composed of a series 
of oscillations each of which has an amplitude equal to twice the correspond- 
ing term of the statical deformation (1). 

We will now investigate the action of varying forces of the type f(x) q~ (t) ; these forces 
are supposed to start their action at the origin of time and to keep on during a finite time T. 

Using the H eaviside method, and the indicial admittance (3), the motion after the 
impulse has disappeared is given by, 

Yb~=~(sin~~tIoiTv,(z)eoswizdz]-eoswlt~~~T1/1(~)sinu’i~drl). 
ll 0 

This motion is the superposition of free oscillations. Their respective amplitudes can be 
physically interpreted as follows : 

T 

Put f,(Y)=Sy(z)COS2nyZdz, 
0 

T 

where Y is the frequency 
w 

Y=-. 
2n 

The amplitudes of composing free oscillations may then be written, 

3 * 2 52 Vi j/f12 (q) + fi’ (Vi) . 

NOW, according to the Four i e r Integral, 

lii(i?)=2Jf,(v)cos2nvtdv+2~f,(Y)sin2zYt(EY . . . . . * (4). 
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This shows that the expression 

221 

may be considered as the ,,s p e c t r al intensity“ curve of the impulse. 

The amplitude of each free oscillation due to the transient impulse is, 

ci y; Wi3.2zY1F(v() . . . # . . . . . . . . . . . , (5). 

The* expression 2 JZ v F(Y) is a ditiensionless quantity that we will call ,,r e duced 
spectral intensity’. We then have the following theorem: When a transient impulse 
acts upon an undamped elastic system, the final motion results from the 
superposition of free oscillations each of which has an amplitude equal to 

G Yli 
the corresponding term 2 

mi 
of the statical deformation (1) multiplied by 

the value of the reduced spectral intensity for the corresponding frequency. 

The advantage of this theorem is that for the calculation of the motion it replaces a 
complicated impulse by a spectral distribution which is always an analytical function of the 
frequency. 

This theorem could also have been established by starting from (2) and using directly 
the Fourier integral. We will apply this last method in order to generalize the theorem to 
the case of an elastic system with viscous damping whose motion is defined by the equation 

unjj+1;G&+b*y=A~(t) . . . . . . . . . . . . . (6). 

The impulse is supposed to be given as before by the spectral distribution (4). Introducing 
a complex spectral distribution, 

cp (v) = f, (v) - i f* (v) 

we may write, 

?/J (t)=‘,;(v) e2niYtdv . . . . . . . . . . . . . . (7), 
--m 

where according to the F o ur i er integral 

&v)=;~(+?-2~%. 

The function q (1’) is holomorphic; its expansion in a power series is 

A,vn 
F(V) =-yip 

where 

A, = (- 2 n i)j’P w (t) d t . 

Calling M the largest value of / y (t) 1 and I(v) the coefficient of i in the variable v considered 
from now on in the complex plane, we have 

1~(Y)j<-“_[eznI(Y)2’-1]. 
2n I(v) 

This shows that for t > T, 1 cp (v) e2 ni y t 1 has an upper limiti 

Consider now the elastic system (6) under an harmonic impulse A etnivt, the correspond- 
ing motion is 

.A 
x (t) = 

A e2nivt 

[ 

i 1 
~_ 

8n2/3m ,,zvy, v_vy, 1 * * * * * * * . * . + (‘)* 

The quantities v,, and v, are complex frequencies 

vl=ai+/l, vP=ai-_. 

The free oscillation of the system is damped and given by 

e-2natcos2npt. 
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According to (7) and (8) the motion due to the impulse A y (t) will be, 

We have seen that (tp (v) e 2nivt 1 has an upper limit, and by using then the method of contour 
integrals and residues, we find 

A7Ci 
y (t) = 4s [q (v,) 2 7-t iv* t -- ~1 (v,) e2 2-6 i yp t] . 

At the time T when the impulse has ceased, the amplitude is 

A 
/Y(~)l=&qjzm 232/3]9)(ai+/l)Ie--2naT. 

A 
The cruantity 4 n2 m (B” + ax) is the deflection for the static deformation due to a force A. 

This last result generalizes formula (5) to the case of damping. We have 
to consider a complex frequency ai+/l and the analytical prolongation 
q(ai+/3) of the spectral distribution q(v) of vu(t). 

Appendix II. 

A method for computing free oscillations in case of non uniform mass and rigidity. 
Whenever we know the shape yk of the free oscillations of the building, we can calculate 
the corresponding frequencies or Cl)k by the following method: 

Consider the building as a continuous shear-beam and oscillating freely with the fre- 
quency of order Ic. When the amplitude is maximum the kinetic energy is equal to zero 
and the potential energy is 

On the other hand, the potential energy passes through zero when the strain disappears; 
at that moment the kinetic energy is maximum and has the value 

Equating those two expressions we get the value 

which is independent of any arbitrary constant multiplying yk. 
The orthogonal functions yk representing the shape of the free oscillations may be found 

by the following semi-empirical method. We note that those functions are defined by equation. 

which by a change of the independent variable 

becomes 

This is the equation of buckling under a load P of a beam of moment of inertia 

I(c) = 
P 

EW&pOJ2’ 
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If we consider an elastic strip of uniform thickness h, its moment of inertia will have the 
value I under the condition that the variable width h satisfies the equation 

b lb3 P A 
m=I=Enzpw2=,um 

where A is an arbitrary constant. We may choose for .e any arbitrary scale convenient for 
we are interested only in the shape of the functions. 

In order to realize the given boundary conditions, the strip will be repeated symmetrically 
around a point representing the top of the building (fig. 6). The deformation of the half 

Fig. 6. 

strip under various loads will give the corresponding functions yk. The first deformation 
only is stable, so that the others will have to be stabilized by a special but very simple 
device. Knowing the shape of the yk we then compute the attached frequencies by the 
method above. 

Appendix III. 

Method for calculating the acceleration spectrum from a displacement spectrum. Suppose 
that we know the displacement diagram of the ground, in the form 2, q(t) , v being a certain 
arbitrary length., and T an arbitrary length of time. The acceleration of the ground is 

j(t) = v g?” (t) = $ I$’ (t) T2 =j, y (t) 

from there, 

$‘(t)Y=y(t), j,=+. 

We can easily deduce the spectral distribution of the unknown acceleration diagram v(t) 
from the spectral distribution of the displacement diagram by the following considerations: 

Consider the spectral function G(v) of v(t) 

G (v) = 1471” (v) + g,2 (v) , 
T 

g,(v)=~p(Z)COS2nYZdt, 
0 

T 

g2(v)={cp(r) sin2nvrdz. 
0 

From the E’ou r i e r integral we get, 

y(t) = q”(2) T” = 207(2 ~vT)*g1(v)CoS2nvtdv+20~(2RvT)2g2(~)sin2~vtdv. 

This shows that the spectral distribution F(v) of the acceleration diagram y (t> is 

F(v) = (2 zv T)2 G(v) . 

This work was undertaken at the suggestion of Prof. Th. von KBrmBn. The author 
wishes to express his appreciation of the continual interest Prof. van K & rm ri n and 
Prof. R. R. Mart el have taken in its progress. 363 

(California Institute of Technology, 1932.) 
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