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A General Property of Two-Dimensional Thermal Stress 
Distribution * . By M. A. BIOT, Harvard University 
(Cambridge, U.S.A.) -f. 

W 
E consider a two-dimensional temperature dis- 

tribution in an arbitrary cylindrical body ; the 
temperature is supposed to be the same along any straight 
line parallel to the generators. We shall also assume 
that this temperature distribution has reached a state 
of equilibrium-i. e., the temperature may be different 
from point to point, but it remains constant at a given 
point and has any given arbitrary distribution along the 
boundary of the cross-section (fig. 1). 

* See also M. A. Biot, “ PropriBtB g&&ale des tensions thermiques 
en regime stat&make dans les corps cylindriques. Application $L la 
mesure photo-elastique de ces tensions,” Ann. de la Sot. SC. de 
Bruxelles, liv. B (janvier 1934). 
_ t Communicated by Prof. R. V. Southwell, M.A., F.R.S. 
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As we know, such a temperature distribution has the 
following property : the value of the temperature 8 
as a function of the coordinates x, y in a cross-sectional 
plane must satisfy the equation 

(1) 

We shall show that, owing to this condition, the stresses 
which may arise from this temperature distribution 
exhibit remarkable properties stated by the theorem 
on p. 547. The theorem may also be applied to an elastic 

Fig. 1. 

plate for which heat can enter or leave the material 
only at the boundary. We shall deduce these properties 
for the case of the cylindrical body : it is easy to see 
what they become for a plate. 

Let us consider a cylindrical elastic body of Young’s 
modulus E and Poisson’s ratio Y, the x, y plane being taken 
along a cross-section (fig. 1). We assume that there is 
a steady two-dimensional temperature distribution in 
this cylinder, the same in every cross-section (independent 
o’f z), also that the resulting deformation of the cylinder 
can only be two-dimensional (also independent of x), 
so that the cross-sections of the cylinder remain parallel 
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and identical with one another. Calling k the coefficient 
of thermal expansion, let us put c=kO. The thermal 
extension E varies from point to point : it will not give 
the actual extensions, since such values would generally 
not be compatible and would give rise to thermal stresses. 

The variables entering the problem must satisfy three 
groups of equations :- 

(1) The equilibrium condition for internal stresses 
(0, GJT 0,) : 

!?+%=o, . . . . . . 
i 

(2) 

au g =o. J 
(2) The so-called compatibility equation for the strain 

components (G eY y) : 
ey azEz azr --= a29 + ay2 axay' ---* (3) 

(3) The relation between the stress and the strain 
as a function of the thermal dilatation E : 

Ez-E(l+V)=; [~z(l-l+-V(l+Y)qy], 

‘i 

Eg-E(l+Y)=~[uY(l-V~)-y(l+y)uJ, 

i 
* (4) 

7=2Gy, 

u,=-EE+Y(u~+u~). I 
From this system we immediately see that the stresses 

a, uY T may disappear under certain conditions. If we put 

uz=uY=7=o , 
we are left with the conditions 
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which, by elimination of 6r E$, reduce to 
a,=-EE, 

kince E=@ is proportional to the temperature 8, we may 
also write the condition in the form 

crz=--Ee, 

Comparing with equation (l), we see that this last 
condition is automatically satisfied in our case because 
we assumed the temperature distribution to be steady 
(independent of the time). Hence this steady state 
of temperature distribution is a necessary condition for 
the cancellation of the stresses a,, aY, -r ; but, as we shall 
see, it is a sufficient condition only in the case of a solid 
cylinder. If the cylinder is hollow more conditions have 
to be satisfied. In order to establish this conclusion let 
us investigate the problem further. 

Consider the strain components given by equation (5) 

Ez=E(lfu)=E’, 

E~=E(~+v)=E’, . . . . . (6) 

y=o_ 1 
Due to the deformation a point of coordinates x, y 

before deformation becomes of coordinates x+-u, y+v 
after deformation ; moreover, each element undergoes 
a rotation 

_=;(;-$. 

By introducing the displacements U, v we may write 
(6) and w in the form 

. . . . . (7) 

1 . . . . 
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This leads to the relations 

at6 
$3 =-w’ 
av 

I 

. . . . . . (9) 
ax="' 
ad am -=---9 ay ax 
a,' am 

. . . . . 

---7 ax - ay i 
which show that Z= l ‘+i w is a complex function of 
z=x+yi. From these results we may calculate the value 

Fig. 2. 

of the rotaCon w and the displacements u, v. The 
difference of the rotation at point 2 and the rotation 
at point 1 (fig. 2) is given by the integral 

which, from relation (lo), may be written 
2 

W~--W~= SC +X+;;dy). . . (11) 
1 

Now since c !!< a” 
ax 3 > 

is proportional to the tempe- 

rature gradient, the above difference of rotation w2--wI 
is proportional to the amount of heat Q12 flowing, parallel 
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to the cross-section, between the points 1 and 2. We may 
write 

wa-wr=Qis. . . . . . . (12) 

It is easily verified from relations (7) and (9) that 
the displacement of point 2 relative to point 1 is given by 

u,--u,+i(w,-w,)= ($x+ $y)} 

= 
s 

12(e’+iw)(dx+i dy) =s’Z(x)dx. . (13) 

Now the condition a,=~,=~=0 for th: stresses will 
be satisfied only if the values of the rotation and the 

Fig. 3. 

displacements calculated from the above formula and 
corresponding to such a condition have a physical meaning. 

Consider first a solid cylinder, no heat source being 
present inside ; then the functions E’ and w have no 
singularities inside any closed contour drawn on the area 
of the cross-section ; therefore in this case the rotation 
and the displacements are single-valued, they have a 
physical meaning and actually exist. Hence in the case 
of a solid cylinder under the above condition of heat-flow 
the stresses a,, uY, T actually disappear. 

For a hollow cylinder, however (cross-section fig. 3), 
due to the fact that the holes may contain heat sources 
or any other kind of singularity of the function Z, we have 
to complete the previous result. If we take any closed 
contour C around a hole, the rotation w given by integral 
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(11) has to be single-valued. From considerations above 
(12) this means that the total amount of heat flowing 
out of each hole must be zero. Moreover, the dis- 
placements (13) along the same contour must also be 
single-valued, and this introduces another condition for 
the following integral taken around each hole : 

s c, (E’+iw)dz=o, 
z 

or ?I c, k’dx -wdg)=O, 
* 

s (w dX+E’ cty) =o. 
ci I . . . . . (14) 

Fig. 4. 

x 

For a hollow cylinder, if the last conditions are not 
satisfied, the values of the rotation and the displacements 
may not be single-valued ; this means physically that 
the stresses thus produced are of the “ dislocation ” 
type. Consider, for instance, a cylinder with a cross-section 
having only a single hole. Let us cut this cylinder by 
a cylindrical slit (cross-section fig. 4) so as to connect 
the inside with the outside and transform it into a simply 
connected body. If then the temperature distribution 
is stationary and two-dimensional, as already mentioned, 
the two sides of the slit will either stick together without 
any relative motion or they will separate. This separation 
‘will occur whenever the total amount of heat flowing 
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from the inside to the outside is not zero and whenever 
the conditions (14) are not satisfied. Due to the presence 
of the slit the cylinder behaves like a solid one without 
holes, and the stresses CT,, uu, T are zero. If we bring 
together the two sides of the slit we produce stresses of a 
dislocation type. 

Hence we may finally state the following theorem :- 
If a solid cylinder is heated either uniformly or not, 

but in such a way that a steady-state temperature dis- 
tribution exists the same in every cross-section, the only 
stress produced is a tension (or compression) crz, acting 
normally to the cross-section and equal to uz= --EC= -El&, 
where E is Young’s modulus for the cylinder, Ic its coeficient 
of thermal expansion, and 8 the temperature. 

We may say that in such a case the cylinder expands 
freely in the plane of its cross-section. 

The same theorem holds for a hollow cylinder provided : 
(1) The total amount of heat sowing in or out each hole 

is zero. 
(2) The following contour integrals around each hole 

are zero : * 
J (L&x - w dy) = o, 
C 

s 

(Wdx+ddy)=O. 

C 

Applications. 

(1) Circular Tube. 

A circular tube filled with a hot liquid sends out a radial 
symmetrical flow of heat. The function Z=E+~W 
corresponding with this temperature distribution can be 
written, taking the centre of the tube as origin, as 

Z =A log x. 

If ye cut a radial slit, the two edges have a relative motion 
(u, v) given by 

u+iv = 
s 

A log x dx=[Ax log zlc=2&A(x+yi), 
c 

where x, y are the coordinates of a point along the slit. 
We see that the relative displacement of the two sides 
of a radial slit is a rotation around the axis of the tube 
(fig. 5). The stresses in the circular tube are the same as 
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those produced in the slitted tube by bringing the two 
sides of the slit together again ; this coincides with the 
problem of bending of a curved beam. 

Fig. 5. 

Fig. 6. 

If the temperature distribution in the cylinder is such 
that Z can be represented by 

z,A 
z ’ 

it is easily seen that this corresponds with the case of a 
slit of which the two sides do not separate but simply 
glide over one another. The isothermal lines are ares of 
circles (fig. 6). 
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Finally, a temperature distribution which can be repre- 
sented as 

does not produce any dislocation at the slit’, hence does 
not, produce any stress LT~, aY, T. 

(2) If a hollow cylinder of arbitrary shape has no heat 
source inside fhe holes, and exhibits a two-dimensional 
steady-state temperature distribution t.he same in every 
cross-section, the st,resses u,, CT?, T may be different from 
zero ; but if we fill up the holes with a liquid of same 
thermal conductivity as that of the material of the cylinder, 
those stresses disa,ppear, owing to the fact that the 
function Z cannot have any more singularities inside the 
holes, and the contour integrals become zero. 

(3) Thermal Stresses meammd by Photo-elasticity. 

The identification of the thermal stress problem in a case 
of steady heat flow with a. dislocation problem makes 
possible the investigation of those thermal stresses 
by photo-elasticity. All we have to do is to cut a slit 
in the phot.o-elastic model and separate the sides of that 
slit in such a way that the relative displacement of 
those sides is t,he same as it would be if due to the given 
t,emperature distribution. 
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