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1. Equation of Wave Pro#agation.-We shall consider a channel of 
constant cross-section. The depth h of the water is supposed to be the 
same everywhere. 

If there is no friction, the displacement of a cross-sectional area of the 
water at time t and abscissa x satisfies the well-known wave equation 
(Fig. 1) 

b2f - = gh s2. 
at2 

(0 

The speed of propagation of the waves is c = d& The increase of alti- 

tude 7 of the water level is 

9= -h _% 
ax 

It satisfies the same differential equation 

a27 - = gh z2. 
at2 

(2) 

(3) 

If we assume that the channel exerts upon the moving water a frictional 

resistance proportional to the square of the speed - a new term enters 
dt 

the above equation, which then becomes a quadratic hyperbolic equation. 
We define a friction coefficient cf such that the friction force per unit 

Then the total friction force on a cross-sectional slab 
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of water of thickness dx and unit width is, 

where p is the specific mass of the water. The equation of motion is then 

By relation (2) which holds in this case too, 

a2t _ = gh z2 - 
at2 

Taking as variable s = ct with c = G, this equation becomes 

(4) 

This is the fundamental equation of the problem. We note that in this 
case this type of equation is essentially associated with the variable f. 
The altitude increment 11 does not satisfy a similar equation. 

2. A Solution of the Non-Linear Equation (4).-In order to solve (4) 
let us try a solution of the form 

E=f 2. 0 s 

For further simplification, we prefer to put this in the form 

S+X 
or E = cp(p) with { = -. 

S--x 

We then find 

Replacing these values in the differential equation (4) 
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(5) 

This is an ordinary differential equation for p(c). It can be written 

Putting 

this equation becomes linear in y, 

yf- ky= z(; -2+,). 

Write y = VT, with a new unknown v. The equation simplifies into 

By integration, 

where C is a constant of integration. 
Going back through the definition of the auxiliary unknowns, we finally 

get 

$J(l) = - ; = - 1 
VT 

co’(T) = - 
1 

C3- + 2 (I2 - % log l - 1) 

Remembering that 

or 
x with my = ? = ~ 

s tsh 
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d(r) = - c~+#L$2(~)log(~)-l] 
Putting 

/$=_E 
Ch 

(6) 

kh 

- log - l+Ll 
l-a! l--a 1 

This value of ~‘(1) is regular and perfectly defined between the values 
Q! = 0 and (Y = 1. It is not, however, the only solution of equation (5), 
which is also obviously satisfied by the singular solution 

V’(C) = 0. 

‘1y 
-7--e-w-- 

L- 

x 6 
h 

1 x 
I//////////////////N/////// 

FIGURE 1 

We may therefore adopt as a solution of equation (5) a discontinuous 
function which is 

CP’W = - 
kh 

21+a! 

1-ff 1 
for 0 I ~11 I1 (7) 

and cp’(<) = 0 for 01> 1 

In order to calculate the displacement g of the water, we should need, of 
course, the function cp(c) itself. As we shall see, this is not necessary to 
acquire a physical picture of the solution. 

3. Physical Ititerpretution of the Solution.-The elevation q of the water 
is given by 
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q = -h 3 = -_hp’(l) 3 
ax dx’ 

By using the value (7) of q’(r), noting that 

@ 2 -= 
dX S(1 - CY)” 

we get the relative elevation of the water between cr = 0 and (Y = 1. 

7-h k -_- 
h s (1 Cfk - a”) + -4- 

1+a! 
a! - l/2(1 - Cx”) log - 

I-ff I, (8) 
For (Y > 1 we get, according to (7), 

q 0 -_=. 
h 

This value of q represents the amplitude of a wave as shown in figure 2. 

Cfk For instance, for k = 1 and 4 = 0.5, the shape of this wave will be the 

curve ABCD. At point B it has a vertical slope. The length BC is the 
elevation of the wave front, its relative value is given by the general 
formula (8) for LY = 1. 

71-4 h ---.- 
h Cf s 

or, since s = t&E, 

17-4 h 
---*-. 
h cf t&$ 

It is inversely proportional to time and to the friction coefficient q. 

The front of the wave corresponds always to a! = 1 or --?.- = 1, which 
W% , 

means that this wave front moves with the speed 

c=*. 

At the origin cr = 0 or x = 0, the relative elevation of the wave is 

rl _=k!=kh. 
h s td$ 

(9) 

Note too that the area of the wave curve is independent of time. The 
1 

length varies like s = t ds and the altitude is proportional to 1 = ---=. 
S t dgh 
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For instance, the shape of the wave ABCD (corresponding to k = 1 and 

Cfk - = 0.5) at various instants is illustrated by figure 3. 1 
4 

FIGURE 2 

VU&WS Shapes of Waves- Shape Factor $ 
> 

.-In figure 2 are plotted 

the curves i for a value k = 1 and different values of ‘$ . 

Cfk High values of 4 correspond to either high amplitudes or high friction 

coeflicients. The effect is to damp out the wave front. This wave front 
still propagates with the same speed c = dgh but its amplitude is small 
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compared to that of the average elevation of the wave. The energy of 
the wave does not propagate as fast as the wave front but only with a 

fraction of the wave speed. For instance in case ‘$F = 40, point E of 

altitude 0.38 
h 

- propagates with a 
tfi 

For low values of the friction or of 

speed c’ = 0.4 d& 

c,k . 
the amplitude, the coefficient --4- is 

small. In that case, as shown by figure 2, most of the energy is kept in 
the wave front. 

FIGURE 3 

We thus get distinctly two types of waves. Waves with a steep front 

for values of ‘$ < 1 and damped waves with a low front for $ > 1. 

This coefficient ‘$, which may be called the “shape factor” determines 

the shape of the wave. It is noteworthy to point out the fact that this 
shape factor is the product of the friction by a factor k on which depends 
the volume or the average elevation of the wave. The physical meaning 
of this is clear when we remember that we have here a quadratic friction 
law : the higher the amplitude of the wave, the higher the speeds and hence 
the total friction. It is therefore in complete accordance with our natural 
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intuition that in cases of quadratic friction the theory shows an increase 
of damping effect when the elevation of the wave increases. This is a 
new feature in the theory of wave propagation; it is introduced by the 
non-linear character of our wave equarion. 

The Determination of k (Volume Factor).-The coefficient cf is supposed 
to be given by the physical conditions of the channel. The value of k 
will then depend entirely on the average elevation of the wave. 

An infinite number of waves other than the ones here investigated 
may exist in a channel, depending on the initial elevations and speeds. 
It is, however, probable that if we start with a local swelling initially at 
rest it will propagate and deform as the wave of same average height 
investigated above. The origin of time to be chosen depends on the height 
of. the wave front as shown by equation (9). The average height or 
volume determines the coefficient k to be used for the corresponding 
theoretical curve. The type of initial condition here mentioned may be 
roughly identified with conditions arising from a sudden input of water 
at a given point of a river or a channel and propagating as a flood wave. 

4. Conclusion.-An exact solution of the equation of propagation of 
waves with quadratic damping has been found. It shows that high 
amplitude waves are more quickly damped and how this damping effect 
depends on both the volume of the wave and the friction coefficient of the 
channel. The solution may be interpreted physically as representing 
certain types of flood waves. 
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