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The pressure distribution due to a concentrated load on material (case (d)). Both pressure distributions in the two 
a semi-infinite elastic body is given by the well-known and three-dimensional problems are calculated for each 
Boussinesq solution for either the two-dimensional or case, Fig. 5 and Fig. 6. Several authors have already in- 
three-dimensional case. We here investigate the effect on vestigated case (b) and case (c) in two dimensions (2), 
such a pressure distribution, taken at the depth A, of the (3). Their results are in perfect accordance with ours. 
presence at that depth of a slippery rigid bed (case (b)); The author is indebted to Dr. A. Casagrande for suggesting 
of a perfectly rough rigid bed (case (c)); and of a perfectly this investigation as a contribution to the field of soil 
flexible but inextensible thin layer embedded in the mechanics. 

GENERAL SOLUTION OF THE EQUATIONS OF Cartesian components +Z +2/ 4Z satisfies the 
ELASTICITY Laplace equation 

I N the following paper, solutions of the equa- V$=O, V%$,=Q, v%#J,=o. 
tions of elasticity are needed which give both 

the stresses and the displacements. Therefore it A very general solution of the equations of 

will be easier to start from the equations relating elasticity (1) can then be expressed as 

the displacements U, V, w. 
u = - (alax)(~o+x~,+Y~,+z~,) +4c1- v)&, 

1 a@ 1 a@’ 
v2u+---..- -_= 0, Vv-j- -...-.--.--_o, 

v= - (alaY) (+o+x&+Y&+@z) -t4(1- YMII, (2) 

1-2v ax 1-2v ay 
(1) 

W= - (a/az)(~o+x~,+y~,+z~,)+4(1 - hbz; 

1 a@ 
pw+------- -= 0 

or in vectorial notation 

1-2v a2 u= -grad (40+r.+)+4(1-v)+. 

where V2=g+$+z, @=z+E+z, The expression for 0 becomes in terms of the 
arbitrary functions above 

v is the Poisson ratio of the material. O=div u= -div grad +o--div grad r.+ 

It was established by Neuber’ that a general 
solution of these equations may be found as 

+4(1-v) div +. 

follows. 
We call @O a scalar function of x, y, 2 satisfying 

Since div grad +. =t2$0 = 0 

the Laplace equation V2&=0. and div grad r.9 =V2(~&fy&,+~~Z) = 2 div +, 
We call ip a vector, such that each of its we f.nd 

0=2(1--2~) div Q. (3) 

1 Neuber, “Ein neuer Ansatz ziir LSsung raumlicher 
Probleme der Elastizitltstheorie,” Zeits. f. angew. Math. 

The vertical stress component us and the 

und Mechanik 14, 4 (1934). horizontal shear rZZ~yZ are the only stress com- 
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ponents we shall need in the following theory. 
They are given by 

uz dw vo 752 dw du 
-=- ~ 
2G &+l-2~’ 

-_=-+--, 
G dx az 

(4) 
ryz a~ av 

~=G+~' 

where G is the shear modulus of the material 
and v the Poisson ratio. 

It is important to note that the factor (1-2~) 
disappears in the value of gz when using the value 
of 0 given by (3), 

~,/2G=aw/as+2v div +. (41) 

This shows that the value of the term vO/(l - 2~) 
when v = +,O = 0, tends toward the limit 2v div @. 

THE TWO-DIMENSIONAL PROBLEM 

Let us consider first the two-dimensional 
problem where the load is concentrated on a 
line and has the value P per unit length (Fig. 1). 
We shall assume that the ground is elastic, of 
elasticity modulus E, and shall restrict ourselves 
to the case where the Poisson ratio is v=$, 
which means that the material of the ground is 
supposed to be incompressible. Four cases will 
be investigated. 

(a) The ground is infinitely extended and deep. The 
pressure distribution at the depth h is given by the well- 
known Boussinesq solution. 

(b) The ground is infinitely extended but of finite depth 
h. It is resting on a rock base, perfectly rigid; no friction 
forces are supposed to act between the rock and the upper 
ground. They can slip with respect to each other without 
the slightest resistance (Fig. 2). This case has been calcu- 
lated by various authors.2 Their result, derived by a dif- 
ferent method, is found in proper accordance with ours. 

(c) The same case as in (b) but where perfect adhesion is 
supposed to exist between the upper ground layer and the 
rock surface. No slippage whatever is allowed to occur; the 
two materials are assumed to stick together perfectly. 
This case was investigated by Marguerre3 for v=O. Com- 
parison with his paper shows that there is no practical 
difference between the cases v=O and Y= $. The pressure 
distribution is calculated at the rock surface (depth h). 

(d) There is a horizontal infinite inextensible but per- 
fectly flexible layer at the depth k. The pressure distribu- 
tion on that layer due to P is calculated. This case corre- 
sponds to the problem of a clay substratum containing a 
thin horizontal sand layer. 

------ 

I P 

t 
1 

In cases (a) and (b) the pressure distribution 
is found to be independent of the elasticity 
constants of the ground, while it depends on the 
Poisson ratio v for cases (d) and (c). Hence the re- 
sult for cases (a) and (b) is not affected by the 
restrictive assumption that v = +. 

Case (a) 

We take the z axis directed positive downward, 
the x axis being at the surface of the ground, and 
we assume that all the xz planes are identical. 
It is possible to find solutions of the elasticity 
equations for which all the variables are cosine 
or sine functions of x by the assumption: 

l#Jo= (At++Be-y cos xx, 
(5) 

c$*= (CeXZ+DecXa) cos Xx, ’ c$~=c#I~=O, 

where A, B, C, D, X, are arbitrary constants. 
By substituting this into Eqs. (2), (4) and 

(4J, we obtain; 

cz a2+o a%, 
-= -~-z~+2(l-v)~, 
2G 

(6) 
ah 

+z~-wv)4z I . 
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Since we assume incompressibility, v = 3, 

a,/2G = - aqo/as- 2hpz/a22+a+,/a2, 

r2z/G= -2(a/a~)[a&/a~+~a&/a~]. 
(7) 

At infinite depth we must have u.= rZZ=O and 
this is only possible if A = C= 0. We then have 

r.JG = 2X sin Xx[ - BXe-Xz- zDXe+“]. 

By introducing the condition that the surface 
carries only a normal load and no shear, 7ZZ 
must be zero for z = 0, hence B = 0. The expression 
for uZ then reduces to 

a,/2G= yDXe-Xz (1+2X) cos Xx. 

This last relation shows that if the surface z= 0 
is loaded with a normal pressure distribution, 
-uZo=qo cos Xx, the pressure at the depth 
z=h is 

--a,=q=po e-+(l+hX) cos Xx. (8) 

Now an arbitrary surface loading PO(X) may 
be represented by means of the Fourier integral 
as a superposition of sine loadings of various 
wave-lengths. 

PO(X) = (1,4Jm~$+m~&o(l) cos VX-E). 
0 --co 

The pressure distribution q(x) at the depth h is 
derived from relation (8) and the above Fourier 
integral. 

m 00 
n(x)=? dX 

ss 
W0(t>e-Yl+W cos X(x-8, 

To -co 

which can be written 

n(z,=iJT jr po(t)dt dXe-“h(l+hX) cosX(x-e). 

If the surface loading PO(X) is concentrated 
within a small region (-E, +E) such that the 
total load is 

p= ‘iP(U~& 
J -E 

The pressure distribution at a depth h due to 
that load is 

P 
1 

I 

h - 

------t-- --- 
l h 
I I 

P 
FIG. 3. 

q(x) = (P/r)Jme-“‘(l+Xh) cos Xx&l, 
0 

(9) 

q(x) = (P/7rh)Jme-a(l+a) cos a(x/h)da.. 
0 

As will be seen, this yields the well-known 
Boussinesq solution. 

Case (b) 

The soft ground is supposed to rest on a rigid 
rock base, no friction occurring at the surface of 
contact (Fig. 2). This case is identical with the 
symmetrical loading illustrated by Fig. 3. In 
order to proceed as in case (a) and use the 
Fourier integral, we first have to consider a 
sinusoidal loading which is symmetrical with 
respect to the plane at depth h. 

We take the x axis at the rock surface, the 
surface of the ground being at z= h and its 
symmetrical image at z = -h, (Fig. 3). A sym: 
metrical solution of the equations of elasticity is 
found by putting 

4,, = cash Xz cos Xx, cpZ= A sinh Xz cos Xx. 

The application of formula (7) gives the value 
of the horizontal shear. 

TJG = 2X sin Xx[X sinh Xz+AzX cash Xz). 

Since no shear is acting at the boundaries z = f h, 

we have the condition 

sinh Xh+hA cash Xh=O 

or A = - sinh Xh/h cash hX. 

With this value of A the value of ur is given by 

Eq. (7). 

z sinh Xh sinh Xz sinh Xh cash xz 
- - cash Xz 

cash Xh Xh cash Xh 1 x x2 cos xx. 
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This last relation shows that if a pressure 
40 cos Xx is acting at z= -h, the pressure q on 
the plane of symmetry z= 0, which represents 
the rock surface, is 

2(sinh X/z+?& cash Xh) 
4= 

sinh 2Xh+2Xh 
-40 cos xx. 

Proceeding as in case (a) by the use of the 
Fourier integral, we find the pressure distribution 
at z=O due to a concentrated load P at the 
surface z= -h 

*=z 
I 

m OL cash ol+sinh a: X 

cos CY-da. 

sinh 2ar+ 2a h 
(10) 

’ 0 

This checks with the formula found by Melan. 
It gives the pressure p at the rock surface when 
no friction occurs as a function of the horizontal 
distance x from the vertical line of application of 
the load P. 

Case (c) 

This case considers the same material, soft* 
ground lying on rigid rock, but here the upper 
soft material is supposed to stick perfectly to the 
rock surface. 

We take the x axis at the rock surface and the 
z axis directed positive downward, as in case (b), 
0%. 21, and start from a solution which is 
sinusoidal along x 

&= (AeXZ+Be-XZ) cos Xx, 

$. = ( CeXZ+DecXZ) cos Xx, 

q&=&=0. 

(11) 

We have three boundary conditions 

u=Oatz=O, ze,=Oatz=O, Ts.=Oatz= -h. (12) 

We remember that we assume the soft material 
to be incompressible (V = 3). With this value of 
the Poisson ratio, we get from formulae (2) 
and (7) 

u = X sin XxCAeXz+Be-XzfzCeXtfzDe-XZ1, 

w= -cos Xx[(Ae”z--Be-Xz)X 

+ Cex*(Xz- 1) - DemXz(kz+ l)], 

7t_/G = 2~ sin Xx[ (AeXZ- Bt+*)X 

a,/2G=X cos Xx[CexZ(l --AZ) 

-De-Xz(l+Xz)--X(Ae~z+Be-~Z). (13) 

The three boundary conditions determine three 
of the constants A B C D in terms of the fourth 
one. Calculating the coefficients B C D in terms 
of A, we find that the value of uZ at the rock 
surface (z=O) is 

a,/2G= 2AX2 cos Xx(cosh Xh 

+hX sinh Xh)/Xh cash Xh 

and at the surface of the ground (z = -h) it is 

a,/2G= 2AX2 cos Xx(cosh2 Xh+ (hX)2)/Xh cash Xh. 

This shows that if a pressure q. cos Xx acts at 
the surface of the ground, a pressure 

p = (cash Xh+Xh sinh X)/(cosh2 Xh+(Xh)2) 

is acting at the surface of the rock. 
Using the Fourier integral as in the previous 

cases, we find the pressure distribution p at 
the surface of the rock due to a concentrated 
load P acting at the surface of the ground. 

This formula coincides with Marguerre’s result 
for the case v=%.~’ 

Case (d) 

The soft ground is here supposed to be 
infinitely deep and to contain at the depth h an 
inextensible but perfectly flexible thin layer to 
which the soft ground sticks perfectly so that 
only vertical motion at that depth is permissible. 

We take the x axis at depth h on the in- 
extensible layer and the z axis positive downward, 
and a sinusoidal solution in x as in case (c). The 
only difference with the preceding case is the 
boundary condition (12). The vertical displace- 
ment w at z=O is not zero, but is related to the 
normal stress on that layer. To find this relation, 

2 L. N. G. Filon, Phil. Trans. Roy. Sot. London, 1903; 
3 Marguerre, “Druckverteilung durch eine elastische 

E. Melan, Beton und Eisen 18 (1919). 
Schicht auf starrer rauher Unterlage,” Ing. Archiv 2 
(1931). 
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let us consider a sinusoidal solution applying to 
the infinitely deep material located below that 
layer. This is a case analogous to case (a). 
Since the material is infinitely deep, we must 
have A = C= 0 and the horizontal displacement 
u deduced from formula (2) with v=$ is found 
to be 

u = X sin Xx[Be-XZ+zDe-Xz]. 

The condition that the horizontal displacement 
be zero on the inextensible layer (z=O) is 
B=O. 

The vertical displacement at z = 0 is 

w= De-+(1 +Xz) cos Xx 

and the normal stress 

a,/2C = - DXe-Xz( 1 +Xz) cos Xx. 

The relation between w and ua at the surface of 
the inextensible layer is 

a,,‘2G= --xw. 

The boundary conditions for the upper soft 
ground are then 

(a) u=O at z=O, 

(b) a,/2G= --w, z=O, 

(c) i-22 - -0, z= -h. 

As in case (c) we may write the relation (13) and 
introduce these boundary conditions to find the 
value of B C D in terms of A. 

The value of the normal stress (TV at the rock 
surface z=O is found to be 

cz cash Xh +Xh sinh Xh 
- = 2x2A . cos xx 
2G hXehX 

and the value of uZ at the ground surface is 

$= y[hk(hh cash hX - hX sinh hX - cash hX) 

+cosh hX+hX sinh hX]. 

From this we conclude that a pressure dis- 
tribution p. cos Xx at the ground surface trans- 
mits a pressure on the inextensible layer 

e-hX 

4=- 
l+hX[hX/(l+h.XtanhhX)-11’ 

FIG. 4. 

By using the Fourier integral as in the previous 
cases, we find the pressure distribution p trans- 
mitted to the inextensible layer when the surface 
carries a concentrated load P 

s m e-" X 
cos a-da. 

ah o l-a[l-a/(l+a!tanhor)] h 

THE THREE-DIMENSIONAL PROBLEM 

The same cases (a) (b) (c) (d) are investigated 
if the load P is not concentrated on an infinite 
straight line but concentrated on a point, (Fig. 4). 
The stress distribution must then be axial- 
symmetrical around the load. Solutions of the 
problem may be found by using axial-sym- 
metrical potential functions with cylindrical 
coordinates r, z. 

90 = (AeXz+Be-XZ)Jo(b+), 

dz= (CeXz+De-Xz)Jo(~r), 

&=O, &=O. 

We have a vertical displacement w and a radial 
displacement u. Eqs. (2) and (3) become 

u = - (~l~~)C~o+z#%l, 

w= - (~/~~)C~0+%5,1+4(1- v)dz. 

If we call T the horizontal shear acting in the 
radial direction, we have equations entirely 
similar to Eqs. (4), (41). 

a,/2G=aw/dz+v0/(1-2v), 

r/G = dw/dr+ du/dz. 

As before, we shall assume that v=+. These 
equations show that the problem of determining 
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the constants A B CD is the same as in the two- 
dimensional case. For instance, if in the two- p(r) = (P/2ahP)Sm,e-~(l+u)lo(crr,b)da. 

dimensional case to a load distribution at the 
0 

surface qo cos Xx corresponded a pressure at The same method may be used for all other 
depth h cases (b), (c), (d). We find: 

p = g(Xh)po cos xx Case (b) 

we may conclude that in the corresponding 
three-dimensional case to a load distribution 
qoJo(Xr) at the surface corresponds a pressure at 

a cash a+sinh CY 

depth h Case (c) 

q=g(Xh)qoJo(Xr) 03 

and we do not have to repeat the above calcula- 
P(r)=&J Q 

cash a+a! sinh Ly r 
Jo a- da. 

0 cosh2 a! + CY~ 0 h 

tions to find the function g(Xh). Case (d) 

Case (a) P * e-a 

The case of a concentrated load P acting on p(r) =- 
s 

an infinitely deep ground is found from the dis- 
2nh2 o cy1 -_(y[l --a/(l+c-w tanh a)] 

r 
tribution qoJo(Xr). At a depth h the vertical XJo 

0 
CY- da. 

pressure p transmitted is found by using the h 

solution of the two-dimensional problem g(hX) 

=e-xh(l+hX) NUMERICAL EVALUATION OF THE INFINITE 

INTEGRALS 
p=e-hx(l+hX)q,,Jo(Xr). 

The problem reduces to the evaluation of 
An arbitrary load q(r) could be represented by either 
using the identity 

m m 
q(r)= dX 

f s 
Jo(b) Jo(Wcz(p)bdp. 

(P/nh)Smg(a) cos (ax/h)da 
0 

l o 0 for the two-dimensional problem, or 

This shows that the corresponding pressure dis- 
tribution at depth h is (P/2,h2fig(a) Jo(ar/‘h)da 

0 

p(r) = s:-Yl +Xh) Jo(~lihd~~m/a(Xp)4(p)pdp. in the three-dimensional problem. The function 
0 0 g(a) has the form 

If the load is concentrated at the origin on a g(ar) = (1 +cx.)e-” case (a), 

circle of radius E . 
a cash ar+sinh ar 

P=27r 
s 

e da) = 2 

q(p)&. 
sinh 2a+2a 

case (b), 

0 cash cr+a sinh a! 

The corresponding pressure distribution at depth 
g(a) = 

cosh2 ar+cr2 
case (c), 

h is 
e-a 

P(r) = (P/2r)~mk+~(l +Xh) Jo(Xr)dX 
g(a) =- 

1 -a[1 -cx/(l+a tanh a)] 
case (d). 

or We start from the two identities 
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5szg 1’ 
--__--- 

i 

a _--- 

5 
FIG. 5. Pressure distribution p/(PP/rk) in the two-dimensional problem. 

Case (a) - B?ussinesq $stributionz Maximum value of pressure p =ZP/zh. 
Ge,’ I$ - - - Shppery,r!gld bed. M~xunum value of pressure 9 = 1.441.2P/rh. 

- Rough rwd bed. Maxunum value of pressure @ = 1.291 .2P/&. 
Case (d) -.-.- Inextensible flexible layer. Maximum value of pressure p =0.935 -2Plrh. 

-_ 

__- ---_ 

- 

I 

,$ 

_I D 

6 
FIG. 6. Pressure distribution p/(3P/2#) in the three-dimensional problem. 

Case (a) - Boussinesq distribution. Maximum value of pressure 9 =3P/2ahK 
Case (b) - - - Slippery rigid bed. Maximum value of pressure P = 1.7 11 .3P/2ah? 
Case (c) - Rough rigid bed. Maximum value of p~&sure p = 1.557 .3P/2rh2. 
Case (d) -.-.- Inextensible flexible layer. Maximum value of pressure p =0.942.3P/2?rhz. 
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5 

m 
e-rrz cos bxdx = a/ (a2+ b2),, 

0 

s 

co 
e-aZJo(bx)dx= (a2+b2)-4. 

0 

we get 

p(x) = (Plah)Jrn(l+c+?-. cos (ax/h)&, 
0 

p(x) = (2P/ah)(l+X2/h2)-2. 

Taking the derivatives with respect to a, we get For the three-dimensional problem 

s m 

xne-ax cos bxdx= (- 
0 

P(r) = (P/27&2) J a(1 +ar)e-“JO(ar/h)dcu, 
0 

s co 

0 

X”e-azJo(bX)&-= (_ Qng( (2:b21+). f+9 = (3P/2?rh2)[1+(r/h)21-5’2. 

These are both the well-known Boussinesq 
This shows that the integrals would be evaluated solutions. 
readily if the functions g(a) where all expressed The two-dimensional distribution 
as a sum of terms of the type ane-ka, where n is 
an integer. #(x)/(2P/ah)‘= (1+&?/J&2)--2 

Case (a) is represented by curve (a) in Fig. 5 and the 
In case (a) there is no difficulty in expressing three-dimensional distribution $(r)/(3P/2ah2) by 

these integrals. For the two-dimensional problem curve (a) in Fig. 6. 

Case (b) 

The function g(a) may be represented with an error smaller than 1 percent by 

( 
9 
‘pcosh cllfsinh a)/(sinh 2a+2a)=2(1+cu)e-a-(l+2a)e-2a-5.1a3e-401. 

The pressure distribution for the two-dimensional case is 

2P 2 0.5 
P(x) = 

---L 
- 0.059 

1 - 6(~/4h)~+ (~/4h)~ 

7Jz (1+Xz/h2)2-(1+(X/2h)2]2 . Cl + W4hY14 1 
The dimensionless quantity p(x)/(2P/rrh) is plotted in Fig. 5 by curve (b). 

For the three-dimensional case we have 

3P 

-4 
2 0.25 

9(r) = 2nh2 [l+(r/h)2]5,2-Cl+(r/2h)215~2 - 0.039 1-3(r/4/2)2+j(r/4h)4 1 * cl+ (r/4h)2]9’2 

The ratio $(r)/(3P/2rh2) is represented in Fig. 6 by curve (b). 

Case (c) 

The function g(ar) may be represented with an error smaller than 1 percent by 

(cash cu+a! sinh a)/(cosh2 ~Y+oL~) = (2~u cash c~+sinh a)/(sinh 2ar+2cr) - 2.80a4e-3a-56a4e-8.6u. 

The pressure distribution in the two-dimensional case is 

_. 0591 -6(~c/4h)~+(x/4Jz)‘_~ 1381 - lW~/3h)~+5(x/3h)” 

* * Cl + (X/4h)214 Cl + (X/3h)215 

1- lo(x/s.sh)2+5(+3.8h)4 
- 0.012- 

- . [l +(X/&W):]5 1 
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The ratio #(x)/(2P/sh) is represented in Fig. 5 by curve (c). The pressure distribution in the three- 
dimensional case is 

p(r) = 
2 0.25 _. 03gl -3(r/4h)2+$(r/4h)4 

[l+(r/h)q5’2- [l+(r/2h)“l”‘” * [ 1 + (r/4h)2]9’Q 

_. 15 1-5(x/3h)2+(15/8)(x/3h)4 1 * [1+ (X/3h)2]“‘Q 

The ratio p(r)/(3P/2ah2) is represented in Fig. 6, by curve (c). 

Case (d) 

The function g(a) may be represented with an error less than 1 percent as follows: 

e-a/(l-cr[l--a/(l+a tanh a)]) =(l+ar)e-0l--1.77a~e-~~. 

The pressure distribution in the two-dimensional problem is 

p(x) zz2p 
1 

- 0.065 
1-6(x/3!~)~+(~/3h)~ 

* 7rh [ (1 +X2/h”)Q Cl + w3h)314 1 
The ratio p(x)/(2P/ah) is represented in Fig. 5 by curve (d). 

The pressure distribution in the three-dimensional problem is 

3P 

[ 

1 
P(r) =- 

_. 0581 -3(r/3h)2+$(r/3h)4 

2&z? (l+r2/hQ)6’2 * cl+ (r/3h)Q]9’2 1 * 
’ The ratio #(r)/(3P/2ah2) is represented in Fig. 6 by curve (d). 
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