BIOT, M.

A FOURIER-INTEGRAL SOLUTION OF THE PROBLEM OF THE BENDING UNDER A CONCENTRATED LOAD OF AN INFINITELY LONG BEAM RESTING ON AN ELASTIC CONTINUCM

1. In the elementary trentment of this problem the value of the maximum bending moment due to a concentrated load P is given by

$$
\begin{equation*}
M_{\text {uax }}=0.25 P\left(\frac{4 E_{6} I}{k}\right)^{t} \tag{1}
\end{equation*}
$$

where $\quad E_{b}$ is the Young modulus of the beam, I, the inertia moment of its cross-section, k, the so-called modulus of the foundation.
2. The problem however can be solved exactly for a beam resting on a semiinfinite wall of same width $2 b$ as the beam. We start from the fact that a sinusoiklal loading $q(x)=q_{0}$ cos λx on the top of this wall gives a deflection

$$
v=\frac{q_{0}}{E b \lambda} \cos \lambda x
$$

where E is the Young modulus of the foundation. From there it can be easily shown that a load per unit length $p(x)=p_{0} \cos \lambda x$ on the beam gives a bending moment

$$
M(x)=\frac{p_{0} \lambda}{\lambda^{3}+\frac{E b}{E_{b} I}} \cos \lambda x
$$

By using the Fourier-Integral we get an expression for the bending moment due to any distribution of load $p(x)$ per unit length,

$$
M(x)=\int_{-\infty}^{+\infty} p(\xi) d \xi \int_{0}^{\infty} \frac{d \lambda}{\pi} \frac{\lambda}{\lambda^{3}+\frac{E b}{E_{b} I}} \cos \lambda(x-\xi)
$$

In case of a concentrated load $P=\int_{-\infty}^{+\infty} p(\xi) d \xi$ at the point $x=0$ the maximum bending moment (at point $x=0$) is given by

Solving this integral

$$
M_{\max }=\frac{P}{\pi} \int_{0}^{\infty} \frac{\lambda d \lambda}{\lambda^{3}+\frac{E b}{E_{p} I}}
$$

$$
M_{\max }=0.385\left[\frac{E_{b}}{E} \frac{I}{b^{4}}\right]^{\frac{1}{5}} P b
$$

It is noted that this formula differs quite fundamentally from the formula (1) given by the elementary theory.
3. The same problem has been solved for a beam resting on a three-dimensional foundation, starting from the result that a normal loading per unit area on the surface of the foundation $q=q_{0} \cos \lambda x \cos k y$ gives a deflection

$$
w=\frac{2\left(1-\mu^{2}\right)}{E \sqrt{\lambda^{2}+\kappa^{2}}} q_{0} \cos \lambda x \cos \kappa y .
$$

(μ Poisson ratio of the foundation.)
From this can be calculated the mean value of the deflection due to a loading $Q_{0} \cos \lambda x$ per unit length and uniformly distributed along a direction parallel to y between the lines $y= \pm b$. We then proceed as in the previous case of a two-dimen-
sional foundation. The final integrations have to be carried out graphically. It is found that the maximum bending moment due to the concentrated load is given with a good approximation by

$$
M_{\max }=0.335\left[\left(1-\mu^{2}\right) \frac{E_{b}}{E} \frac{I}{b^{4}}\right]^{0.277} P l
$$

$2 b$ is the width of the beam.

