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Distributed Gravity and Temperature Load- 

ing in Two-Dimensional Elasticity Replaced 

by Boundary Pressures and Dislocations 
BY M. A. BIOT,’ CAMBRIDGE, MASS. 

This paper deals with two-dimensional stresses due to an 
important class of body forces. Gravity stresses and tem- 
perature stresses are produced by body forces of the type 
investigated. 

In the case of gravity stresses it is proved that these 
stresses may be calculated by forgetting about the action 
of gravity on the body and applying instead only external 
normal loads that are identical with a hydrostatic pres- 
sure. 

This opens the possibility of applying photoelastic tests 
to the measurement of gravity stresses; a model loaded by 
these external pressures would show an isochromatic 
fringe pattern identical with the one that would appear in 
a model submitted to an intense gravity field. In Fig. 5 

GENERAL THEORY 

T 
HE EQUATIONS of equilibrium of a rectangular element 
in two-dimensional elasticity with body forces are 
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If the body forces are derived from a function I’ such that 
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the equations of equilibrium become 

is shown the type of external loading to be applied to find 
the gravity stresses in a dam. 

In the case of two-dimensional temperature stress in 
cylindrical bodies where the temperature distribution is 
stationary, it is shown that a distinction is to be made be- 
tween solid and hollow cylinders. For a solid cylinder the 
only thermal stress component appearing is an axial stress 
acting perpendicularly to cross-sectional planes. In ether 
words, the solid cylinder expands freely along the cross- 
sectional planes. For a hollow cylinder a general stress 
condition may arise which is identical with the stresses 
produced by cutting a longitudinal slit of a certain small 
width in the cylinder wall and sticking together the two 
sides of the slit (dislocation). 

They are satisfied by introducing a “stress function” 9 
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By using Hooke’s law for either plane stress or plane strain 
distribution and the compatibility equation of the strain com- 
ponents, we find an equation of the type2 

g+2& +$=c($+$) . . . . . . [51 

In case the function V satisfies the Laplace equation (potential 
function) 

zx (0, - V) + $y = 0 1 . . . . . . . . . . . . 131 
$+;$=0 . . . . . . . . . . . . . . . . . . (61 

; (CT, - V) + 2 = 0 J 
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Equation 151 reduces to 

$+2g2 +z4=o . . . . . . . . . . . . . [71 

In this case the stress function 4 satisfies the same equation as 
if there were no body forces. How will the boundary conditions 
be expressed? 

Let I, m be the cosines of the normal direction to the boundary 
with the z and y directions and x, Y the components of the 
force applied per unit length at the boundary. We have 

8 = 10, + mr,, 

I = rnuV + lazy 

2 Equation [5] is derived in “Theory of Elasticity,” by S. Timo- 
shenko, McGraw-Hill, 1934, pp. 25-26. 
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or from Equations (41 

Hence the problem of finding the stresses produced by the body 
force loading X, Y just considered and the boundary loading 

FIG. 1 

X Y reduces to the solution of Equation [7] with the boundary 
conditions [S]. This is equivalent to finding a stress distri- 
bution 

I . . . . . . . . . . . . . . . . KJI 

produced in the same body free from body forces but submitted 
to boundary forces x - IV and 7 - mV. This boundary load 
is the actual load (Ik, P) plus a normal hydrostatic pressure 
equal to V. 

Apparently, according to Equations [4], the actual stress in 
the body is the difference of the stresses a’,, u’~, T’,,, and the hy- 
drostatic-pressure distribution represented by the potential V. 

However, a very important distinction is to be made; the 
statement is true only for body forces such that no singularity of the 
potential V occurs within Ihe body or in any holes if 2he latter is 
hollow. 

This distinction arises from the fact that the displacements 
and rotations of the medium, corresponding to the hydrostatic- 
stress condition p = V might not be single-valued, i.e., they 
might not take the same value when we come back to the same 
point after following a closed path around a singularity of the 
function V. In order to get single-valued displacements and 
rotations, we must superpose to the hydrostatic-stress condition 
a so-called “dislocation”-stress distribution. The meaning of a 
dislocation is illustrated by the following example. Take a 
hollow circular cylinder and cut it open by a longitudinal slit 
of small width (Fig. 8). We shall produce stresses in this 
cylinder by sticking together the two sides of the slit. This 
type of deformation is called a dislocation. The stress condition 
thus generated is not derived from the application of external 
forces. In our case, for instance, if the body is of hollow shape, 

let us cut it open so as to connect the inside with the outside. 
If we now assume that a stress equal to a hydrostatic pressure 
p = V is distributed in the body, the two edges of the cut may 
or may not stick together (Fig. 1). If they do separate, we 
produce dislocation stresses by sticking them together again. 
As we shall see, the amount of dislocation is determined by two 
displacements u, V, of one face of the slit with respect to the 
other and by relative rotation. It can be easily calculated from 
the value of the potential V. 

Let us call t the two-dimensional linear extension of the body 
produced by the hydrostatic-stress distribution p = V. We 
have 

E = --lep = --kv.. . . . . . . . . . . . . . . . . . . [lo] 

The corresponding displacements of the material satisfy the 
equations: 
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where w is the rotation. 
We deduce : 
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From these equations we see that e and w are conjugate harmonic 
functions so that 

Z(z) = B + iw 

is an analytic function of z = z + yi. The increase of rotation 
on a closed circuit is 

WI-wt = $+dx+$.ly . . . . . . . . . . [131 

It is a quantity proportional to the flux of the body force through 
this closed path. 

The displacement is given by 

u + iv = f Zdz . . . . . . . . . . . . . . . . . . . [I41 

so that the increase in displacement on a closed circuit is given 
by the contour integral 

$ Zdz 

This proves that the two edges of the slit show a relative dis- 
pIacement only when the function Z or, what amounts to the 
same thing, the potential V has a singularity inside the contour. 
Yet if the singularity is such that the flux of body force produced 
by it is zero and if $ Zdz = 0 no dislocation stress has to be 
introduced. 
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DISTRIBUTED GRAVITY LOADING 

One of the most important cases of potential field body force 
is the case of the gravity field acting upon a body of uniform 
density. 

BODY RESTING UNDER ITS OWN WEIGHT 

Let us consider a two-dimensional elastic body B (Fig. 2) 
resting under its own weight on a plane surface 8. Taking the 
vertical y axis as positive and calling 6 the specific weight of the 
material, the body force is expressed as X = 0, and Y = -6, 
and the corresponding potential is V = 6y. This potential 
presents no singularity whatever, hence no dislocation stress 
will have to be considered. 

The stress condition o’~, Jy, r’2y of the above theory is produced 
by considering a hydrostatic boundary loading due to a pressure 

FIG. 2 

FIQ. 3 

p = V = 6y. This loading may be applied by turning the body 
upside down, free from gravity, into a liquid of specific mass d 
which is under the action of gravity (Fig. 3). The hydrostatic 
pressure p = 6y pushes it upward against the surface S with 
the same force as would its own weight in Fig. 2 and the contact 
pressures will be approximately realized. Due to this hydro- 
static boundary loading a stress distribution u’=, utg, T’~,, is 
produced in the body B. Since no dislocation stresses have 
to be introduced, the value of the actual stress Q~, oy, 7zy due to 

distributed gravity loading in Fig. 2 is the difference of the 
stress u’=, dy , T’~~, and a pressure p = yS. Hence 

c= = CIz + y6 

cl! = U’Y + Yb 

TZY = 7’1y 

GRAVITY STRESS IN A DAM 

Another example as shown in Fig. 4 is given by the case of a 
dam which is stressed under its own weight, the specific mass 
of which is 6. 

FIQ. 4 

FIG. 5 

The stress distribution u’=, sly, T’~~ is produced in a dam having 
no gravity and immersed upside down in a liquid of specific 
mass 6 which is under the action of gravity, Fig. 5. This liquid 
exerts upon the dam hydrostatic boundary pressure as indicated 
in this figure. The actual stress (TV, flu.) 7,y in the dam resting 
under its own weight as in Fig. 4, is given by the difference of 
the stresses u’=, utu, T’_, and a pressure distribution p = 6y 
Therefore 
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PHOTOELA~T~C MEASUREMENT OF GRAVITY STRESSES 

The present theory shows that gravity stresses may be mea- 
sured by photoelasticity by applying the proper boundary load- 
ing. The fringe pattern and the value of the maximum shear 
will be the same as if a magnified gravity were acting on the model. 

BODY WITH HOLES 

An interesting property is introduced by considering a body, 
with a hole, under the action of gravity. This equivalence 
of hydrostatic boundary loading applies provided we fdl the 

FIQ. 6 

hole with the weighing liquid and establish a connection between 
the liquid inside of the hole and the liquid outside such that both 
are in hydrostatic equilibrium (Fig. 6). 

A theorem developed by J. H. Michell* shows that for a hollow 
two-dimensional body the stresses depend on the elasticity con- 
stants if the forces applied to the hole have a resultant different 
from zero. In this case the forces applied to the boundary of 
the hole have a resultant equal to the weight of the fluid inside. 
From this we conclude the following theorem: 
In a solid two-dimensional homogeneous body the stresses due 

to gravity do not deptmd on the e.!osticitY wnsta7ats oj the material; 
they do, however, in general for a body with holes. 

It is important to keep this in mind when investigating gravity 
stresses by photoelasticity or with gelatine models. 

TWO-DIMENSIONAL TEMPERATURE STRESSES RESULT- 
ING FROM STEADY HEAT FLOW 

We consider a two-dimensional temperature distribution in 
an arbitrary cylindrical body; the temperature is supposed to 
be the same along any straight line parallel with the boundary. 
We also assume that the temperature has reached a state of 
equilibrium, i.e., the temperature may be different from point 
to point but remains constant at a given point and has any given 
arbitrary distribution along the boundary of the cross-section S 
(Fig. 7). As we know, in such a case the temperature 0 in a 
cross-sectional plane (2, y) must satisfy the potential equation, 

g f 5 = 0. . . . . . . . . . . . . . . . . . .I151 
_- _y 

3 “Theory of Elasticity,” by S. Timoshenko, McGraw-Hill, 1934, 
pp. 113-117. 

Let 
e = h$. . . . . . . . . , . . . . . . . . . . . . . [16] 

where k is the coefficient of linear thermal expansion in three 
dimensions. It is known that this problem of two-dimensional 
strain is the same as that of the deformation of the same body 
under the body forces 

X = _ 2G(1 + v) & dV -=-- 
l-22v bz 1 ax t ,._l 

y = _ 2GU + ~1 & 
av [ . . . . . . . IllI 

-=-- 

I-22v dy oY J 

and a normal boundary tension 

2’31 + v) B = v . 

l-22v 
. . . . . . . . . . . . . . . . . [18] 

where G is the modulus of elasticity by shear, and P is the Poisson 
ratio. 

Since we have a steady-state heat problem, we have, according 
to Equations [15], [16], and [IS] 

We are thus exactly in the general case considered by the previous 
theory. The theory is easily applied to this case; we shall state 
only the conclusions4 

FIQ. 7 

We have to distinguish between the case where the cylinder 
is (1) solid or (2) hollow. 

(1) If a solid cylinder is heated, either uniformly or not, but 
in such a way that a steady-state temperature distribution exists 
the same in every cross-section, the only stress produced is a 
tension or compression C= acting normally to the cross-section 
and equal to O, = -EE = -Ek$, where E is the Young modulus 
of the cylinder, k its coefficient of thermal expansion, and 8 the 

4 It is expected that the complete analysis of this case by an inde- 
pendent method will be published later in the Philosophical Magazine: 
“A General Property of Two-Dimensional Thermal Stress Distri- 
bution,” by M. A. Biot. See also, “PropriBtB generaIe des tensions 
thermiques en regime stationnaire dans les corps cylindriques,” 
by M. A. Biot, Annales de la Socihte Scientifique de Bruxelles, vol. 
54, series B, 1934. 
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temperature. We may say that the cylinder expands freely in 
the plane of its cross-section. This value uz = -EE of the 
longitudinal stress is due to the assumption that longitudinal 
extension is prevented. 

(2) If the cylinder is hollow, we make a longitudinal slit 
so as to connect the interior with the outside. When heated 
the two edges will in general separate. The cylinder becomes 
then a simply connected body without holes and we fall back 
on the previous case. In this slitted cylinder the temperature 
distribution will only produce axial stresses v*. But if we stick 
the sides of the slit together again, dislocation stresses Jz, Jy, 7’Ty 
will appear. Hence k a hollow cylinder stationary temperature 

Fro. 8 FIG. 9 

distribution will generally give rise both to an axial stress Q, and 
a dislocation stress system o’=, Jy, T’*#. They are the thermal 
stresses. In order that there should be no relative motion of 
the edges of the slitted cylinders, hence no stress except a,; the 
temperature distribution must satisfy three conditions, one of 
them being that the total flow of heat out of the hole is zero. 

These conditions are automatically satisfied if the temperature 
distribution has no singularity inside the hole (no source or 
sink or source-sink doublet). 

PHOTOELASTIC TEERMA~TRESS A~JALYSIS 

Thermal stresses may be measured by photoelasticity. A 
transient thermal-stress condition is equivalent to a boundary 
load and a dislocation. As previously shown, a steady-state 
thermal-stress condition is equivalent to a dislocation only and 
appears only in a hollow body. We shall have to calculate the 
amount of dislocation or relative motion of the two edges of a 
slit connecting the inside with the outside, make a model having 
that gap, and stick the two edges of this gap together. 

HOLLOW CYLINDER WITH No HEAT SOIJIXCE INSIDE 

In steady-state temperature distribution stresses other than 
oI may exist if the cylinder is heated from the outside. Those 
stresses disappear, however, if we fill the cylinder with a liquid 
having the same thermal conductivity as the cylinder because 
then all the singularities of the temperature distribution inside 
the hole disappear. 

CIRCULAR CYLINDER 

For a radial heat flow we get concentric circular isothermal 
lines. A radial slit opens like that indicated in Fig. 8; no stress 
appears in the slitted cylinder. The thermal stresses in the non- 
slitted cylinder are those produced when bringing together the 
two edges of the slit. This amounts to the bending of a ring. 
For a doublet heat singularity (source and sink at, the center) 
the isothermal lines are circles (Fig. 9). A radial slit as in the 
figure does not open up; the edges slide along each other. 

Any heat-source singularity of an order higher than a doublet 
does not produce any heat stress in the cylinder. 
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