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Bending of an Infinite Beam on an 

Elastic Foundation 
BY M. A. BIOT,’ CAMBRIDGE, MASS. 

The elementary theory of the bending of a beam on an 
elastic foundation is based on the assumption that the 
beam is resting on a continuously distributed set of 
springs,* the stiffness of which is defined by a “modulus 
of the foundation” k. Very seldom, however, does it 
happen that the foundation is actually constituted this 
way. 

Generally, the foundation is an elastic continuum 

characterized by two elastic constants, a modulus of 
elasticity E, and a Poisson ratio V. The problem of the 

bending of a beam resting on such a foundation has been 
approached already by various authors.3 

The author attempts to give in this paper a more exact 
solution of one aspect of this problem, i.e., the case of an 
infinite beam under a concentrated load. A notable 
difference exists between the results obtained from the 
assumptions of a two-dimensional foundation and of a 
three-dimensional foundation. 

Bending-moment and deflection curves for the two- 

dimensional case are shown in Figs. 4 and 5. A value 
of the modulus k is given for both cases by which the 
elementary theory can be used and leads to results which 
are fairly acceptable. These values depend on the stiff- 
ness of the beam and on the elasticity of the foundation.’ 

APPROXIMATE THEORY 

I N THE approximate theory it is assumed that the effect of 
the foundation is the same as that of a great number of small 
springs and therefore that the reaction of the foundation is 

proportional to the local deflection. A deflection w of the beam 
gives rise to a reaction of the foundation upon the beam of value 
Q per unit length 

p = 7cw . . . . . . . . . . . . . . . . . . . . . . . [l] 

The coefficient k which has the dimension of a modulus of elas- 
ticity is called the “modulus of the foundation.” 

1 Instructor in Applied Mechanics, Graduate School of Engineering, 
Harvard University. 

* Die Lehre van der Elastizitilt und Festigkeit, by E. Winkler, 
Prag, 1867, p. 182. 

“Die Berechnung des Eisenbahn Oberbaues,” by H. Zimmer- 
mann, Berlin, 1888. 

“Strenath of Materials,” by S. Timoshenko, D. Van Nostrand 
Company, New York, N. Y., 1934, vol. 2, pp. 401-407. 

a Uber den Baiken auf Nachgiebiger Unterlage,” by K. Wieghardt, 
Zeitschrift fiir Angewandte Maihematik und Mechanik, vol. 2, no. 3, 
June, 1922, pp. 165-184. 

“Zur Theorie elastische gelagerter Konstruktionen.” by W. 
Prager, Zeitschrift filr Angewandte Mathematik und Mechanik, vol. 7, 
no. 5, October, 1927, pp. 354-360. 

4 For a short abstract of this paper see “A Fourier-integral solu- 
tion of the problem of the bending under a concentrated load of an 
infinitely long beam resting on an elastic continuum,” by M. A. Biot, 
Proceedings Fourth International Congress Applied Mechanics, 
1934 

Discussion of this paper should be addressed to the Secretary, 
A.S.M.E., 29 West 39th Street, New York, N. Y., and will be ac- 
cepted until May 10, 1937, for publication at a later date. Dis- 
cussion received after this date will be returned. 

NOTE : Stsatements and opinions advanced in papers are to be 
understood as invididual expressions of their authors, and not those 
of the Society. 
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The differential equation of the deflection of a beam of stiff- 
ness Ed resting on such a foundation and under the action of a 
distributed load p(z) is 

Ed &z + kw = p(z). . . . . . . . . . . . . . . . PI 

It can be proved that if a concentrated load P acts upon an in- 
finitely long beam resting on such a foundation, the bending mo- 
ment M produced at a distance z from the load P, when 
x 2 0, is 

_z 
M = 0.353Ple W2 co8 G2 -sin c2 . . . . . . . [3] 

is a “fundamental length” 

E, = Young’s modulus of the beam 
Z = moment of inertia of the cross section of the beam 
k = modulus of the foundation as given by Equation [ 1 ] 

We may also write 

. . . . . . . . . . . . . . . . . . . t41 

with 

r -- 
Q@) = 0.353e d2 ( s 1 

cos z - sin z > . . . . . . . . . 151 

The maximum value of the bending moment occurs right under 

the load, that is, when z = 0. Therefore 

M max = 0.353Pl.. . . . . . . . . . . . . . . . . (61 

or 

when z 2 0, the deflection curve is given by 

Pl3 x 

w = o’645 Ed e 
-172 co9 

We may also write 

PlS x 
W=Ed9 i 

0 
. . . . . . . . . . . . . . . . . . . Bl 

with 

$(r) = 0.645s-A 
( 

cos +2 + sin +2 
> 

. . . . . . .[lO] 

A serious objection can be made to the simplifying assump 
tions on which this elementary theory is based, because it is 
obvious that the reaction Q of the foundation on the beam does 
not depend upon the local deflection w alone but is also a func- 
tion of all the other deflections of the foundation surface occur- 
ring at that moment. 
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The elementary theory assumes the possibility of negative 
pressures between the foundation and the beam. These nega- 
tive pressures are generally small and the same assumption will 
be made in the following paragraphs. Moreover, it may be 
added that in practical cases the dead weight of the beam intro- 
duces a uniform positive pressure which may be of sufficient 
magnitude to prevent the actual occurrence of negative pressures 
on the foundation. 

BENDING OF AN INFINITE BEAM ON A TWO-DIMENSIONAL 
FOUNDATION 

Assume that the beam is resting on top of a wall infinitely 
high and long. The width of the wall has the value 2b and the 
beam is supposed to be in contact with the wall along the full 
width as shown in Fig. 1. This wall may be considered aa a 
two-dimensional foundation. A concentrated load P acts on 
the beam. 

FIG. 1 

SineWave Loading. We shall first disregard the presence 
of the beam and study the effect of a sinusoidal load of value Q 
per unit length acting directly on top of the wall as shown in 
Fig. 2~. Under this condition the vaiue of the load is 

Q = Qo cos xx 

To find the corresponding deflection w of the top of the wall 
is a two-dimensional elasticity problem. Taking the Y-axis 
directed downward and the X-axis along the ridge of the wall, 
the stress components czz, I+ and 7 in the foundation, due to 
the load Q, are given by the stress function F satisfying the 
equation 

$+2 a4F w+a$=o 
we have 

b2F 
u= = dye 

bOF 
Qu = dzg 

i 

. . . . . 

b2F I 
7 =-axby -I 

The boundary conditions are 

0, = fsu = 7 = 0 for y = m 

QO 
Qu = - - cos xx, 

2b 
r=Ofory=O . 

The corresponding stress function is 

. . . . . . ..[ll] 

F = 2$z cos Xre+ (1 + xy)... . . . . . . . . . [12] 

The coordinates x, y of a point before deformation, become 

x + u and y + u after deformation and the functions u, u are 
related to the stresses by the law of elasticity 

au Qs ybv 
-=-_- 

bX E E 
I 
I . . . . . . . . . . . . . [13] 

where E is the modulus of elasticity and Y the Poisson ratio of 
the wall. 

By integrating the second Equation [13] and using Equations 
[ll] and [12], the vertical deflection w of the ridge of the wall 
can be found aa follows 

s “au 
fJJ=- 

0 T$ dy 
_.. 1 r aoF 1.. 

vrbF]" 
w= --EJO G”“+gLdyJo 

QO 
w = EbXCOsXx............................ [I41 

d 

4Y 

FIG. 2 

We conclude that a sine-wave loading 

Q = Qo COB xx 

per unit length at the ridge produces a sine-wave deflection given 
by Equation [14]. For this type of loading, porportionality 
between load and deflection of the foundation actually holds, 
and we may write 

Q = EbAw 
Q = kw 1 

. . . . . . . . . . . . . . . . . . . P51 

where k = EbX. The proportionality factor k may be con- 
sidered as the modulus of the foundation for a sine-wave loading. 
We see that fur a fixed value of the maximum load Qa its mag- 
nitude is inversely proportional to the wave length of the load. 
This is obviously in gross contradiction to the hypothesis of the 
elementary theory which assumes that k is independent of the 
wave length. 

Now consider a beam under the action of two sine-wave load- 
ings as shown in Fig. 2. In Fig. 2a, the load acting on top of 
the beam is 

p = po CO8 xx 

and in Fig. 2c the reaction acting upward is 

Q= Qocosxx 
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The deflection w shown in Fig. 2b of the beam, according to 
the beam theory, is given by the equation 

Ed $ = p-Q . . . . . . . . . . . . . . . . . [IS] 

where Eb is the modulus of elasticity of the beam and I its 
moment of inertia. 

The reaction Q is now supposed to be due to a sine-wave 
deflection w of the foundation as shown in Fig. 2d, the same as 
that of the beam, so that this reaction and deflection are related 
by Equation [15]. 

From Equations [15] and [16] after eliminating the reaction 
Q, we conclude that the load p = PO cos ti on the beam resting 
on the wall produces a deflection of the beam w = wo cos Xz 
as shown in Fig. 3. This deflection is given by the relation 

po CO8 xx 
w = .,[I +~h’ ~~~.~~~~~~.~~~~~ t171 

The bending moment in the beam due to the load p = p, cos XX 
is 

M=-?+-_ CO8 xx.. . . . . . . . . . . . . . [lS] 
X8 + Eb 

Ed 

FIQ. 3 

Concentrated Load P and Bending Moments. By means of 
Equation [18] we may calculate the bending moment due to 
any loading using the superposition principle and the Fourier 
integral. 

An arbitrary loading p(x) may be represented as the super- 
position of an infinite number of sine loads by the equation 

. fm r+ m 
PM = i Jo dhJ__ p(l) 00s X (x - r)d.t.. .[19] 

Each elementary sine loading of Equation 1191 

(l/?r)dhd&(l) cos A($ - S) 

gives a bending moment (see Equation [18]) 

dM(x) = i dkdc 
XPW 

T 
---jjjJ CO8 X(x - r) 

Aa + Ed 

and the total bending moment due to the load p(x) will be the 
superposition of all these elementary bending moments 

In particular, the bending moment due to a concentrated load 

s 

+r 
P= _c p(r)di- 

acting at the origin x = 0 and localized on a small width 2~ is 
given by 

M(x) = !f 
s 

m x cos xx 
_ 

r 0 Eb dX 
A’ + Ed 

As in the elementary theory, we may define a “fundamental 
length” aa 

Ed I” 

a= Eb [ 1 . . . . . . . . . . . . . . . . . . PO1 

The bending moment can be expressed as 

M(x) = Pa 1_ s da . . . . . . . . [21] 
p 0 a8 + 1 

FIN. 4 BENDINQ-MOMENT CURVES 
(The solid CIEVB was drawn by the exact theory for two-dimensional founds- 
tions. The dashed CUWB was drawn by the elementary theory with a value 
of the modulus k adjusted SO that the mrtximum bending moment has the 

correct value.) 

The integral in Equation [21] has been evaluated partly graphi- 
cally and partly by the method of residues for various values of 
(x/a). 

The bending-moment curve calculated from Equation [21] 
can be denoted by 

M(x) = Pa*(x/a) . . . . . . . . . . . . . . . . . . . . [22] 

The function @(x/a) is represented by the full line in Fig. 4 
For very large values of (x/a) the function @(x/a) is asymptotic 

1 

to (x/a)e 
___ and does not oecillate. 

The maximum bending moment occurs at the point of loading 
(z = 0). Ita value is 

s m 

M --Pa1 
a 

- 
CIJ + 1 

da . . . . . . . . . [23] 
vr 0 

This integral can be evaluated exactly and gives a check on the 
graphical method. We find 

M 
-= 

- A_ Pa = 0.385 Pa. . . . . . . . . . .[24] 
- 343 

and replacing a by its explicit value given in Equation [20] 

Mmax 
Ed ‘Ia 

= 0.385 Pb Eb 
[ 1 . . . . . . . . . . . . [25] 

Equations [24] and [25] may be compared wit.h Equations [6] 
and [7] of the elementary theory. 

Equation [25] differs fundamentally from Equation [7] of the 
elementary theory. The maximum bending moment is found to 
be actually proportional to the one-third power of the beam 
stiffness Ed instead of the one-fourth power. 

It is interesting to know what value of the foundation modulus 
k must be chosen in order to obtain the same maximum bending 
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moment by the approximate theory as by the exact one. If for 
instance, Equations [6] and [24] are compared, it is seen that 
in order to obtain the same maximum bending moment by both 
equations, a value of the fundamental length 2 of the approxi- 
mate theory must be chosen such that 

0.363 Pl = 0.385 Pa.. . . . . . . . . . . . . . . [26] 

or 2 = 1.09a when a is the fundamental length of the exact 
theory. This also amounts to choosing a modulus L given by 

[ 1 Eb’ =“..E 

k = OS710 Ed 
. . . . . . . . . . . . . . . [27] 

or 

k = 0.7lO[b/a]E 

FIQ. 5 DEFLECTION CURVES CORRESPONDING TO THH~ BENDINQ 
MOMENT CURVES OF FIQ. 4 

(In this figure the sha es of the curves are compared and not absolute values 
since the deflection cr educed from the exact theory is everywhere infinite.) 

The value of the modulus k turns out to be proportional to a 
dimensionless ratio 

b Eb” “8 

[ 1 
_= - 
a Ed 

which is the ratio of the half-width b of the wall to the funda- 
mental length a. 

It is quite natural to expect that the elementary theory is 
approximately verified by choosing 2 or k such that the maxi- 
mum bending moment coincides with the correct value given by 
Equation [24]. This is justified by the fact that, with the proper 
value for k as given by Equation [15], the elementary theory is 
correct in case of a sine-wave deflection, and that the elementary 
theory yields a deflection curve which is roughly of sinusoidal 
shape. Moreover, it can be verified that if the maximum bend- 
ing moments are made to coincide by proper choice of k or 2, 
the bending-moment diagrams are practically the same. By 
using Equation [4] of the approximate theory, with a value 
2 = 1.09a given by Equation [26 1, we have 

M = 1.09Pa&/1.09u) 

The curve of M/Pa = 1.09cp(x/l.O9a) as a function of x/a and 
compared with the exact one @(z/a) is represented by the dashed 
line in Fig. 4. 

DefGcttion. The deflection curve is found by double integra- 
tion of the bending-moment curve. The absolute value of the 
deflection is infinite everywhere, as can be shown. This is 
derived from the fact that the bending-moment curve goes to 
zero as the expression (1/x2) when x approaches infinity. How- 
ever, we may 6nd the shape of the deflection in the vicinity of the 
load by double integration of the relation 

Ed ‘2 = M(x) 

or 
Z 5 

Paa a 

“=EB 0 ,J ss 

a 
+(b)dr*. . . . . . . . . . . ..[28] 

Since O(r) is asymptotic to (l/r3 for large values of r, the 
ordinates of the deflection curve become iniinite at infinite dia- 
tance and are asymptotic to log (x/a). The shape of the 
deflection curve is represented by the full line in Fig. 5. The 

ordinates are dimensionless deflections w 
I 

Paa 
- as a function of 
Ed 

x/a. 
We may calculate here also an approximate deflection curve 

by using Equations [9] and [lo] of the elementary theory but 
with a value of I = l.O9a, Equation [26], such that the value 
of the maximum bending moment will coincide with the exact 
one. This means that the approximate deflection curve and the 
exact one will have the same curvature under the load P. The 

dimensionless deflection w 
I 

Paa 
- thus given by the approximate 
Ed 

theory is represented by the dashed line in Fig. 5. 

BENDING OF AN INFINITE BEAM ON A THREE-DIMENSIONAL 
FOUNDATION 

Consider the bending of an in6nitely long beam under a con- 
centrated load P. The beam is supposed to rest on a three- 

+z 
FIQ. 6 

L 
FIG. 7 

dimensional semi-inilnite elastic continuum. The area of con- 
tact between the beam and the surface of the foundation is a 
strip of width 2b as shown in Fig. 6. 

The Z-axis is taken downward, as shown in Fig. 7, and is 
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positive, and the X- and Y-planes coincide with the surface of 
the foundation. 

Double SineWave Loading on Foundation. Similarly to the 
case of a two-dimensional foundation, let us first study the de- 
flection due to a double sine-wave loading, where 

q = qo COB xx COB Ky 

The displacement components u, v, and w, of a point inside the 
foundation satisfy the equations of elasticity 

1 be 
A%+-- 

1-22p ax 
==O 

1 
AC + ----be/J 

1 -22v by 

1 be 
A”w + ---_O 

1 - 2V dz 

where 

and Y is the Poisson ratio of the foundation. A solution of these 
equations has to be found which (1) is doubly sinusoidal in x 
and y; (2) produces no shear at the surface z = 0; and (3) goes 
to zero and produces zero stresses at z = ~0. 

It may be verified that a solution satisfying these conditions is 

A 

II 

1-2v 
u=-- z- 

1/(X2 + K”) 1 e- d@’ + K*) sin Xz co8 KY 
K 

A 

[ 

1 - 2v 
v=-- v- x z/w + 4 1 e- 4(x* + d ms b sin zy 

24(X* + K*) + 2(1 - V) 1 e-8dJ(x* + 4 CO8 xz COB q/ 
where A is an arbitrary constant. 

The vertical deflection of the surface of the foundation wo 
(w at 2 = 0) is 

2A 
wo = - (1 - r) CO8 xx CO8 KY 

AK 
and the corresponding normal load is 

AE .\/A¶ + K’ 
-- 

P=-%-_++ xK COB ?XZ CO8 KY 

This yields, between q and WO, the relation 

1 E 
q=- 21-_*WOVw+K*) . . . . . . . . . . . . . [29] 

where E is the modulus of elasticity of the foundation. 
Simple Sine-Wave Loading. Referring to Fig. 7, let us now 

find the deflection produced by a loading located in a strip of 
width 2b between the lines y = *b. This load is supposed to 
be constant in the Y-direction and have a sine distribution along 
the X-direction. It can be represented as 

q&y) = qo(y) CO8 ti . . . . . . . . . . . . . . . . [30] 

where qo(y) is a function of y such that it is equal to zero when 
y < -b, y > b, and equal to q. when -b < y < b aa indicated 
in Fig. 8. 

The deflection Wl(z,y) of the foundation surface corresponding 
to the load ql(z, y) may be expressed in exactly the same way 

where W,(y) represents the deflection of the foundation along a 
cross section parallel to the Y-axis. 

The problem is to derive the value of We(y) from the knowledge 

Fro. 8 

1 f-+-b 

of qo(y). This can be 
done by the use of the 
Fourier integral and 
Equation [29], as 
shown in the Appen- 
dix. In fact, what is 
finally calculated is the 
ratio of average loads 
and deflections. The 
average load is taken as 

Qm = $j j_b ql(y) dy 

and the average deflection 

1 

s 

+b 
W 

B”g=~ -b 
Wo(zl) & 

It is shown that the ratio (QBVg/WByg) varies only about 10 
per cent when the distribution of pressure qo(y) changes from a 
uniform one to one giving constant WO along the width 2b. 

This ratio can be expressed as 

Q *w 
~ = &a*(@). . . . . . . . . . . . . . [32] 
W a”g 

where, a8 shown in the Appendix, * is a numerieally calculated 
function of fi = bk, and C is a coefficient varying from 1 for uni- 
form pressure distribution to 1.13 for uniform defleetion Wo. 

Sine-Wave Loading on the Beam. The preceding result may 
be applied to the bending of a beam in a manner similar to that 
for the two-dimensional foundation. 

Assume that a load 

p = po co9 xx 

acts on top of a beam and that on the bottom a reaction of 
average value is acting across the width, or 

Q = Q.v. cos xz 

The corresponding sine-wave deflection W of the beam, according 
to the beam theory, is given by the equation 

Ed%: = p-Q . . . . . . . . . . . . . . . . 

where E, is the modulus of elasticity of the beam and I is the 
moment of inertia of the beam. 

On the other hand, if the force (Q = QsVo cos Xz) acting under 
the beam is due to a sine-wave deflection of the foundation of 
average value across the width 

w = WW. COB xx 

from Equation [32] we may write 

Q=Wz c(l _ y*) a*(p). . . . . . . . . . . . . . 

Assuming that the deflection W in Equation [33] is the same as 
in Equation [34], we may eliminate Q between the two relations. 
This leads to the conclusion that a load (p = po 00s Xz) on the 
beam resting on the foundation produces a deflection 

w= po COB xx 

EdA’ + 
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The corresponding bending moment is 

M=EJg 

M= 
xpo co9 xx 

1 
X8 + _ 

Eb 

C(1 - VZ) E, 7 *(@) 

Concentrated Load P and Bending Moments. By using the 
last given Equation and the Fourier integral given in Equation 
[19] we may derive, as in the case of the two-dimensional founda- 
tion, the bending-moment curve due to a concentrated load P. 

By identifying Equations [6] and [36] we find 

I = 0.94c(c/b)‘.=l. . . . . . . . . . . . . . . . . [38] 

and from Equations [7] and [37] 

This bending moment is or 

M(z) = E 
s 

m x cos Ax dX 

* 0 AS + 
1 Eb 

. - - wd 
C(1 - V”) E, I 

As before, we may introduce here a fundamental length 

Ed ‘I8 
c = C(1 - Y”) Eb 1 . . . . . . . . . . . . . . [35] 

and then 

M(z) = PC 1 
s = 0 

The maximum bending moment occurs right under the load 
(x = 0). Its value is 

This integral has been evaluated partly graphically and partly 
analytically for six values of b/c, ranging from 0.01 to 1. If 
the results are plotted on logarithmic paper, it is found that the 
integral can be represented with an approximation of the order 
of 2 .to 3 per cent, as 

1 

= -s 

lw ada 
= 0.332 2 

0.851 

0 0 b 

so that finally the maximum bending moment due to a concen- 
trated load P may be expressed by 

M u = 0.332 PC c 
0 

0.891 

b 
. . . . . . . . . . . . . [36] 

or, replacing c by its explicit value as given by Equation [35] 

1 
0.117 

M mx = 0.332Pb C(1 - ~2) g . . . . . . . . [371 

Comparing Equation [36] with Equation [25] obtained in the 
case of the two-dimensional foundation, we see that they differ 
quite fundamentally by the presence of the factor (c/b)0.831. 
A great similarity, however, exists between Equation [37] and 
Equation [7] of the elementary theory. In Equation 1371 the 
maximum bending moment is found to be proportional to the 
0.277 power of the beam stiffness Ed, while in the approximate 
theory it is proportional to the 0.25 power of the same quantity. 

Hence, the elementary theory approximates more closely the 

exact theory for the three-dimensional foundation than it does 
for the two-dimensional case. We may carry over from the 
two-dimensional theory the conclusion that if we were to use a 
value of k or I giving a correct value for the maximum bending 
moment, good approximate values are to be found by applying 
the approximate theory. 

E 
p.. . . . ..[39] 
C(1 - VS) 

0.33 E 
~ 
C(1 - V2) 

Equations [38] and [39] for the fundamental length I and the 
modulus k of a three-dimensional foundation show also funda- 
mental differences from Equations 1271 and [28 ] of the two-di- 
mensional theory. 

Dejkctione. In this case the deflection is found to be finite. 
The exact deflection can be derived from the bending moment 
and expressed as 

w(x) = PC”: s Edr o ( 1 b 
a4 + Ly’ - Ly 

\c / 
From Equation [43] of the Appendix, it can be seen that as a 
approaches 0, the integrand is asymptotic to a logarithm, and 

This shows that the integral is finite in spite of the infinite value 
of the integrand for (Y = 0. 

It is natural to assume that the deflection wave computed by 
Equation [8] of the elementary theory with a value of k or I 
given by Equation [38] or Equation [39] is a good approxima- 
tion to the actual value. 

Appendix ’ 

The function 20(y) is a discontinuous function which can be 
represented as a sum of sine functions by means of 

*o(V)=; o 
s 

- dK 
; [sin ~(y + b) - sin K(Z/ - b)] 

Applying Equation 1151 to each of the sine waves under the 
integral sign, we find 

290 1 - Y2 
W,(Y) = - - 

m & sin ~(y + b) - 
a E Jc .\/w + f4 

Putting 2qob = Qo, Xb = r”3, 
becomes 

l$ro@ = !& l-_ m 
n. E 

s m dK sin ~(y - b) - - 
0 K VW + K”) 1 

and Kb = CY, the last given equation 

clcr 
sin 

( > 
;+1 LL 

- 
a d/(Ly2 + 82) 

m dcusin 
Y 

s ( ‘I 6-l a - - 
(Y d(af + a’, 

..[401 
0 
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We have to evaluate the integral where *(p) is the function here tabulated. 

B T’(8) 
0.1 4.80 
0.6 1.90 

: 1.42 1.13 
8 1.04 
m 1 

For fi < 0.1 the function q’(p) is given by the asymptotic ex- 
pression 

s Co oh sin y(~ 
- z . . . . . . . . . . . . . .[41] 

0 ; &? + 62) = 

We note that its derivative with respect to y is a known function 

where Ko(u) is the zero-order Bessel function of the third kind 
(Hankel function)6*6 sometimes also denoted by (?r/2)iH&)@). 

By integration with respect to y 

12 s rB 

B 0 
Ko(u)du 

We put 

s 

r 
K&)du = (p(f). . . . . . . . . . . . . . . . [42] o 

This integral has been calculated graphically and analytically 
in the vicinity of point r = 0 by using the asymptotic formula 

Ko(u)u++o = 0.1159 -log 26 

We iind the following values 

r 
0 

::: 
0.6 

(PK) 
0 
0.3417 
0.6467 
0.9237 

1 

3” 

t 
OD 

For values of b 
mately equal to 

1.237 
1.468 
1.628 
1.644 
1.550 
r/2 

smaller than 0.1, the function q(c) is approxi- 

p(r) = s11.119 -log s1 

We have introduced a constant Qo; it is such that the load Qi 
per unit length along the z direction is 

Qi = Qo cos Xr 

This load is supposed to be uniformly distributed along the 
Y-direction in the width 2b. 

According to the derivation of Equations [401, [41], and [42 ] 
this load produces a deflection Wi(x,y) = IV&) cos kc, such 
that in the Y-direction 

wo(y) = 0 !$ f 
‘R {9[(a+1>~]-9[(~-_1)~1} . . . . . . . . [431 

We may deduce from this the average deflection W., along 
the width 2b where 

s 

-l-b 
Wo(!i)& 

-b 

This can be evaluated graphically and it is found that 

Q” E w-3 -e- 

W v7g I - 9 

6 “Treatise on the Theory Bessel Functions,” by G. N. Watson, 
Cambridge University Press, London, 1924, p. 77. 

6 See Watson, Bessel Functions, p. 77. Also “Functionentafeln 
mit formeln und kurven,” by E. Jahnke and E. Emde, ’ 
Leipzig, 1933, p. 286. 

reubner, * 

sf(P) = $ [ logi -i- 0.923 1 
-1 . . . . . . . . . . . [441 

I 
Fm. 9 

FIG. 10 

The effect of changing the distribution of the loading in the 
Y-direction go(y) has also been investigated in case 6 = 1. 
Calling QaVg the average loading in the Y-direction, we have 

Q ’ s +b 

l nt = z dy) dy - b 

If the loading is constant, qo = (Q&26) in the Y-direction 
between y = -b and y = +b; as in Fig. 8, the corresponding 
deflection is given by curve a, Fig. 10. 

Let us apply a loading made of the superposition of the pre- 
vious rectangular loading and two rectangular loadings at the 
edge of width (b/4) and intensity (q&S) as shown in Fig. 9. 
We get a deflection shown by curve b in Fig. 10. This deflection 
is found simply by applying Equation [431 to each rectangular 
loading and superposing the deflections. We have increased 
the average loading by the relative amount i/*1 or 3.1 per 
cent and the average deflection by 17 per cent. The shape of 
curve B in Fig. 10 shows nearly constant deflection. We see 
that between the case where q. is a constant and the case 
where the deflection We(y) is a constant, the ratio (Q,/W.,,) 

can become (1.17/1.03) = 1.13 times as great, showing a relative 
variation of 13 per cent. 

This shows that the ratio (Qavg/Wavg) can differ from 
(Qo/Wavs) by as much as 13 per cent when B = 1. To calcu- 
late a better approximation for the average deflection when the 
load distribution q(y) is not rectangular, is very complicated 
and beyond practical interest. We shall write 

Q SW Qo 
-=_= 

W SVP CWS”, 
C(l”_ V”) 8*(p). . . . . . . . . [451 

where C is a coefficient having values between 1 and 1.13. Rigor- 
ously, C is a function of 8. The interval of variation of 13 per 
cent holds only in case p = 1. The margin of variation of C 
is generally much smaller and goes to zero for 6 = 0 or fl = 0~. 
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