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THEORY OF ELASTICITY WITH LARGE DISPLACEMENTS AND ROTATIONS 

INTRODUCTION. In the case of two-dimension- 
al strain the original coordinates x, y of a 
point attached to the elastic body become $ 
= x + u, 7 = y + v after deformation. 

In the classical theory of Elasticity the 
"strain components" 
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are considered to be all small quantities of 
the first order so that their squares and prod- 
ucts are negligible terms of the second order. 

The restriction of the classical theory to 
small strains justifies in most cases the use 
of a linear stress strain relation known as 
HOOKE's law and leads therefore to equations of 
great practical value by their simplicity and 
generality. However, there is no necessity to 
assume that also the rotation UJ is small since 
it may become large with respect to the strain 
while the latter is still a small quantity. 

The question thus naturally arises: What 
terms must we add to the classical equations 
of Elasticity when the possibility of large ro- 
tations and small strains is taken into ac- 
count? The present paper is an attempt to an- 
swer this question. 

We shall be led to equations applicable to 
such phenomena as the bending of a stiff string 
with fixed ends or the bending of a thin 
clamped plate for which the non-linear effects 
are not negligible and the classical theory of 
Elasticity breaks down. 

We note also that the rotation and the 
strain are not independent. They are related 
by the identities 

(2) 

rotation. 
As a matter of precaution we have estab- 

lished equations in which appear all the second 
order terms of geometrical origin whether they 
contain the rotation or not. We are therefore 
in a position to deduce as a direct consequence 
the linear equations of Elasticity for a mate- 
rial under initial stress and solve at the same 
time the problem of Elastic stability which has 
already been the object of many investigations 
by R. V. SOUTHWELl?, C. B. BIEZENO H . 
TREFFT@ etc. 

HENCd2! 
The form of our stability equa- 

tions are new; they show the separate effects 
of shear and stress gradient. 

In order to simplify the writing the theory 
shall be developed for the case of two-dimen- 
sional strain. The three-dimensional theory 
does not involve any new methods or ideas and 
the equations for this case shall be stated 
with a short comment at the end of this paper. 

STRESS AND STRAIN. A first step is to de- 
fine clearly what is meant by stress, strain 
and rotation. We consider an homogeneous de- 
formation such that a square 3 drawn on the 
material is transformed into a rectangle R, 
while the sides keep fixed orientations I, II 

Fig.la 

(Fig. la). 

Therefore the assumption that the rotation is 
large with respect to the strain implies that 
the dimension of the material is small in a di- 

6 = (I + e,,)x + e12y 

9” er2x + (I + 62) y rection perpendicular to the gradient of the 

Geometrical interpretation of the co- 
efficients of the homogeneous transfor- 
mation (3) with symmetrical coeffic- 
ients. A certain square 3 is trans- 
formed into a rectangle R without rot.+ 

tion of the sides. 

Such a deformation is represented 
by the linear transformation with symmetric 
coefficients 

(3) 
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The coefficients e,,, era, e,, define a pure 
deformation; they are the strain components. 
The stress components referred to same direc- 
tions are o;,, uar, b,s , they depend only on 
the above strain components. For instance if 
we assume HOOKE1s law we have 

0;; = A@,, + e,,) + 2Ge,, 

o;&= h (et, + ed + 2 G ea2 

cr,, = 2Ge,, 

(4) 

If, after the preceding deformation, we ro- 
tate the material through an angle 6 (Fig.lb) 

Fig.lb Geometrical interpretation of the co- 
efficients of the homogeneous transfor- 
mation (5) with non symmetric coeffic- 
ients. A certain square 3 is transformed 
into a rectangle R with a rotation Q 
of the sides. 

the result of these two operations is repre- 
sented by the relations 

5 =(l+fhJx + kk,-4y 
7 = (exy+w)x +(I + eYy)y (5) 

This is the most general linear transforma- 
tion. The problem that we have to solve gener- 
ally in the theory of Elasticity is to find the 
angle of rotation 6 and the coefficients e,, 

e e,, of the pure deformation in terms of 
thz2coefficients exr, e,,,, cry ,w . 

We find for the rotation 8, 

tan8 = 
I + + f exr+e& 

(6) 

In first approximation 8% w 
The approximate expressions for the strain 

components, including the first and second or- 
der terms, are 

I e,, =e,+ e,,w + 2w2 

ez2= eyy - exyw + +' (7) 

err=+ + T ’ (eyy - e&w 

Identical expressions for the strain will 
be found if we follow the classical method of 
considering the length element after deforma- 

tion 

ds’ = gtrdx’ + zg,&dy + g24y2 

91, = I + 2 [e,, +fe,$ + ~(exy+w)L] (8) 
gz2= I + 2 kyy +be& + $(exy - u)'] 

g,2= exy +~e,,(ex,--~)+~ eyy(ex,+~) 

It can be seen that if we neglect the squares 
and products of e,,, eYY and eX,, we find for 
the strain the same expressions (7). 

If we assume the strain to be small but the 
rotation to be large with respect to the strain, 
we may neglect the terms eXYw and l/2( erv - 

exx)w with respect to wp and write 

e,, = e, + +w2 
etE= eyy + +w2 (9) 

elz = exY 
The above analysis is valid for a non-homogene- 
ous deformation provided we use the values (1) 
for the coefficients. 

We shall now consider the stress condition. 
In a non-homogeneous deformation, an infinites- 
imal region around a point x, y is transported 
to the point 4 = x + u r/=y+v. In this 
new position it has undergone a.rotation w and 
a pure homogeneous deformation. Since the 
stress condition ignores the rotation it is 
natural to refer the stress components 0;) 

42 a;, at the point x + u y + v after de- 
formation to rectangular directions 1, 2, de- , 
rived from the directions x, y by a rotation w 
(fig. 3). The stress components referred to 

Y 

Fig.2 Stress conditions at point&y after de- 
formation with the components LT;,, o;,., 

Ox, referred to the original directions 
x,y and the components a;,, flzr, o;, re- 
ferred to the rotated directions i,2. 

the directions x, y are given with first and 
second order terms by 

(10) 
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This Is deduced from the well-known transforma- 
tion relations for the stress tensor when we 
change the orientation of the axis. 

Our procedure amounts to referring the 
stress-strain condition at a certain point to a 
set of axes originally parallel to the direc- 
tions x and y and rotated with the material at 
that point. 

This is associated with the fact that we 
have performed first the pure deformation (3) 
and then the rotation. Truly enough we could 
have performed first the rotation and then the 

pure deformation and calculated the symmetric 
coefficients of the latter; they would be dif- 
ferent from (7). However they would represent 
the same pure deformation as (3) but referred 
this time to the original axes instead of the 
rotated ones. 

We prefer the first method because it leads 
to the equilibrium equations (19) (instead of 
18) In which the second order terms have an in- 
tuitive physical meaning. 

THE EQUILIBRIUM CONDITIONS. A second step 
in this analysis will be the development of the 
equilibrium equations in terms of the stress 
components cr;, Q a;, and the original co- 
ordinates x, y. 2 a matter of precaution we 
shall take into account all the terms of the 
second order whether they contain the rotation 
or not. 

After deformation the material is in equi- 
librium and therefore the stress components 

Gf a;, GY 
must satisfy the well-known 

conditions 

where x (k,7 1 and y(&,7) are the components 
of the body force per unit mass at point 8,~ 

and/++!,?) th e specific mass of the material 
after deformation. 

Now we wish to express these conditions by 
means of the initial coordinates x, y instead 
of the coordinates f,q after deformation. 
This is a purely mathematical transformation 
which is carried through as follows. We have 
for instance 

In order to find the partial derivatives ax/a2 

a Y/?t etc. we write 

d& = (I+ %I dx + $$$dy 

dq- = sdx + (j++fy (13) 

Solving these equations with respect to dx, dy 

in terms of dJ , d7 we find 

dx = b(I +$$d& -#dy 
+;(I +$$)dv 

(14) 

is the Jacobian of the transformation of the 
variables x, y into &, y/ . We deduce 

2% 

-aT = ++g, I au --- 
D aY 

z I av 
q- = 6(1+$$) 

(16) 

3 = -25 ax 

We also note that the specific mass p(x,y) 
at point x, y before the deformation is 

p(x>y)= D/&V) (17) 

By means of relations (12) (16) and (17) we 
are now in a position to transform the equilib- 
rium conditions in terms of the original coor- 
dinates x, y. We find 

dg, 34 SC 
ax +Tjf+=yyax + e,, 8 

-(e,,- w,* - (e,,+w)$= + fJX(& q) = 0 

These equations contain no approximation. Let 
us now introduce the components of stress a;, 

0 G L2 with respect to rotated axes. By 
substituting relations (10) in the above equa- 
tions and keeping only the terms of the first 
and second order, we find 
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+ ebb 
ao;, 

ax +e +L 
Jcx aY 

-eAy(% + $+)-O(19) 

These are the equilibrium equations with all 
the second order terms. 

The physical interpretation of these equa- 
tions is quite obvious. On the first line we 
have the classical terms. Among the second or- 
der terms those written on the third line are 
quite remarkable as they show that the gradient 
of the rotation or "curvature" has only an ef- 
fect through the existence of shear. The ef- 
fect of the curvature of an element of the ma- 
terial appears for two reasons, first through 
what we might call the "string effect" because 
of the analogy with the stress condition in a 
string under tension, and second through the 
difference of area of opposite sides of the el- 
ement (Fig.3.). 

pig.3 The second order terms due to curvature 
in the equilibrium condition for the 
horizontal direction. 

On the fourth line are terms depending on 
the stress gradient and the deformation. They 
represent some kind of "buoyancy" effect due to 
the deformation of an element in the stress 
field. In many applications the buoyancy terms 
will be negligible. 

The boundary conditions are found to be 

c a;,(l+Q - a;, exY - o;, ~1 dy 

- [ a;,(l+exl)-o;,exy-~22w dx =dF, 1 

[ ( G2 1 +ew) - &exy + o;, w dy I (20) 

- [%(I + e&-q$xy+q~ w]dx = dFy 

where dF__, dFY are the components of the force 
applied to an element of arc dx, dy . If we 
neglect the strain with respect to the rotation 
the boundary conditions become 

@II -.q2w) dy - (q;, - a;,w)dx = dI=x 

(o;, + o;,w> dy - (a;2 + q+) dx = dFY (21) 

MATERIAL UNDER IMITIAL STRESS. Consider a 
material for which the initial state character- 
ized by the coordinates x and y is already a 

M. A. BIQT 

stressed state. The stress components referred 
to the directions x and y are denoted by S,, 

Szt SIP l Since this initial stress system is 
in equilibrium we have the conditions 

?J+ +px=o 
(22) 

.* +pY-0 
where X,y are the components of the body force 
per unit mass, and p is the specific mass in 
the condition of initial stress. 

We now introduce a small deformation of the 
material so that the coordinates x, y of a 
point in the material become x + u and y + v, u 
and v being small increments. The stress com- 
ponents referred to axes originally parallel 
with the x, y directions and undergoing at eve- 
ry point the same rotation W as the material, 
become S,, + a;, 
(fig. 4). 

9 Sz, + o;, f SIZ + 0;s 
The small stress increments 6, 

x 
Fig.4 The stress condition after deformation 

in a material initially under the 

stress S,,,&~, 5,a. 

a;2 a;i! are functions only of the strain and 
this functional relation may generally be taken 
as linear. Also if the initial shear is not 
too high the stress-strain relation will be 
generally isotropic. We also adopt for the 
strain tensor the linear expressions 

6, = exx e L2 = evy elz = exy 
The total stress must satisfy the equilib- 

rium conditions (19). In these equations we 
substitute S,, + a;, for 4, ,SLe+% for 
q2 and S,, + a;; for a;, . Keeping only 

those terms which are linear with respect to 
the increments of stress and coordinates, and 
taking into account the initial equilibrium 
conditions (22), we find 

+g + *+/xi++ ax tpvay + wpY 

- 2 s,&- +(S,,-L) 5; 
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The boundary conditions are similarly deduced 
from (20) and (21). 

The terms written on the second line of 
equations (23) are those arising from the ef- 
fect of the curvature and the existence of 
shear in the initial stress. On the third line 
we have the buoyancy terms due to the deforma.- 
tion of an element in the initial stress field. 

We will now consider two types of phenomena 
for which one of these groups of terms alone 
has a dominant influence. 

Elastic atabilitx. In the case of buckling 
the buoyancy effect is generally negligible 
with respect to the effect of shear and curva- 
ture. If there is no body force the equilib- 
rium equations are 

aa;; +Bi 
ax ay - 2 s&- +(so -Sz.)$ = 0 

ao;, i a6 
(24) 

ax ay + (s,,-s,,)+g +zs,+ = 0 

We note that the additional terms responsible 
for elastic instability depend only on the max- 
imum initial shear and disappear if the latter 
is zero. 

The classical terms are of the order of the 
product GE of the shear modulus by the strain 
E while the additional terms are of the order 
of the product WT of the rotation by the shear 
T = 4 49,; 

1. 
+ (St, - Szr) In the case of 

buckling the additional te&a are of the same 
order as the classical terms and the rotation 
will be large with respect to the strain in the 
ratio 

Lo G -z- 
E 7- 

(25) 

We have applied equations (24) to the case 
of a plate of thickness t under a uniform com- 
pression P buckling in cylindrical waves. The 
problem is one of two-dimensional strain in the 
x, y plane of the cross section as illustrated 
by Fig.5. 

Using RoOKE'a law (4) the buckling equa- 
tions are 

GV'U + (G+X)+ aw 
“x=0 

a; GVzV+(G+A)~-u~=o 

These equations are satisfied by the solution 

u = -sinax[Asinhay + Ck(l--)sinhaky] 

v- cm ax[A coshay + C(I -k$3) cash qky] 

with kL _ G -3 
G’S P’ 

This solution represents a sinusoidal deforma- 
tion of the plate and corresponds to the phe- 
nomenon of buckling under the compression c . 
!?he constants A and C must be determined by the 

Fig.5 Cross section of a plate of thickness t 
buckling under a compression fl with a 
wave:-length a aa’ 

boundary condition that the stress is zero at 
the surface y = 2 t/2 of the plate. We can on- 
ly satisfy this boundary condition if 

(jJ = POISSON ratio) 
This equation gives the critical comprea- 

aive load 4 necessary to produce a deformation 
of wave length 2 r/a in a plate of thickness t. 

Expanding both aides of the equation with 
respect to U/2G and at, and keeping the higher 
order terms we find 

fl_q* 

which is the EULER load. 
Elastic Waves in a material under hydro- 

static pressure due to gravity. For a state of 
hydrostatic pressure, S,, = Sz,,S,, = 0, the 
curvature terms disappear from the equilibrium 
equations. The buoyancy terms, however, may 
play a role if the pressure is not uniform. We 
consider the case where the pressure is r$e to 
aravitv. 

e = exxfeyY It is easy to write the equilibrium equations 
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in this case and add the terms representing the 
inertia force. Assuming an isotropic HOOKE's 
law we find 

GV'u +(G+A)$$ - 

GVZv +(G +/I)% +p&+& 
Introducing the dilatation e and the rotation 
w these equations become 

(26 +h)V’e - 2p9+& = p-i$ 

GVzcu + zpys = +j$ 

They show that the effect of gravity intro- 
duces a coupling between the transversal and 
longitudinal waves. The physical reason for 
this coupling is illustrated in Fig.6. The 

P 

Fi2.L. Illustration of the second order effect 
of buoyancy producing coupling between 
transvr,rsal and longitudinal elastic 
W%" r. 

coupling terms are generally negligible,, except 
in the case of large wave lengths. The effect 
will be important for instance in the case of 
tidal waves of a 1000 Kmlength in the earth's 
crust. 

EQUATIONS FOR THREE-DIMENSIONS. In three 
dimensions there are at every point three di- 
rections at right angles which undergo a solid 
rotation. This is what we call the rotation of 
the material. If the coordinates x y z become 
x + u, y + v, z + w, after deformation the com- 
ponents of the rotation to a first order ap- 
proximation may be represented by 

WX 

The equilibrium conditions are found as in 
the two-dimensional theory. Including all the 

first and second order terms we find for in- 
stance in case of no body force one of the 
three equations to be 

If we look for the physical interpretation 
of the terms in this equation we recognize most 
of them to have the same meaning as in the two- 
dimensional case. However the term 

introduces something peculiar to the three-di- 
mensional case; the influence of the twist of 
an element. 

The strain components e,, e,,..---etc. are 
found by using the expression ds2 for the 
square of the length element after deformation. 
Writing the classical expression for the finite 
strain tensor and neglecting as in the two-di- 
mensional case all second order terms except 
the products and squares of the rotation compo- 
nents, we find 

e,, = e,, + $(&+ yf-) e,, = e,, - ; wywx 

e2, = eyy + f(wx2+wJ e, = ey2-$wzwy 

es = ezz + +4J$ + wx’) es1 = ezx -; W,W, 

where 
e xx =$+ etc. 

exy = $ s + 3 ( > etc. 

1. 

2. 
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