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Non-linear Theory of Elasbicity and the Linearized Case 
for a Body under Initial Stress. 

By Prof. M. A. BIOT. 

Introduction. 

IT is well known that the classical Theory of Elasticity is restricted to 
small deformations and rotations and that this is the underlying reason 
for its linear character. Attempts have been made (l) to establish a theory 
for finite deformations starting from the general mathematical viewpoint 
of tensor theory. 

It, was thought that a non-linear theory including terms of the first 
and second order only would yield the essential features due to large 
deformations which are not explained by a linear theory. Such features 
are exhi,bi&d, for’i&tance,. id the flexure of a thin shell. 

Our method does not require an explicit formulation of the stress- 
strain relation, which is a physical problem. The essential idea which 
led us to our equatjons was to refer the stress condition to a local system 
of axis rotating with the material at that point, and to investigate equi- 
librium condit’ions for these stress 6oWponents. These equations wi&l 
contain explicitly only those second-order terms which are of kinematic 
origin. This development is made in section 2, while section 1 deals 
with a more accurate definition of stress and strain. This first section 
introduces a new definition of the strain components, which are here 
linearly related to the actual change of distance between two neighbouring 
points in the material. 

These strain components are very important in establishing a correct 
expression for the potential energy and deriving the equilibrium equations 
by the variational method. This derivation is made in section 3, and the 
same equations are found as in the previous method. However, con- 
sideration of the strain energy leads to a new interesting viewpoint, as it 
introduces naturally two forms of representation of the stress-one in 
which the stresses are referred to the actual areas after deformation, 
and these are the stresses adopted in the previous section 2, the other 
in which the stresses are referred to the areas before deformation. 
Relations are found between these two types of stress components. and 
equations of equilibrium derived for both. 
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In section 4 we carry our attention to a linear theory of elasticity 
for bodies under high initial stress. This covers a wide range of problems, 
from elastic stability and buckling to the propagation of elastic waves 
inside the earth and the meaning of the elastic coefficients for a body 
under high initial stress. The special problem of elastic stability has 
been the object of many previous.researches. R. V. Southwell (2) considers 
a uniform initial stress, and chooses axes along the principal directions ; 
E. Trefftz t3) uses the variational method, but he chooses an expression 
for the potential energy which is correct only if the rotation is large with 
respect to the strain ; C. B. Biezeno and H. Hencky 14) have developed 
a general theory. 

The reader will be aware that methods similar to those in the previous 
sections may be used to establish the linear theory of elasticity of a body 
under high initial stress. In fact the equations can be derived from the 
previous theory by linearizing with respect to small increments of stress 
and the small components of strain and rotation. Those of our equations 
using the stress components referred to the initial areas are found to 
coincide with those derived by C., B. Biezeno and H. Henckyt4) by an 
entirely different method. 

The last section (5) deals with the special case when we wish to introduce 
from the start the assumption that the rotation is large with respect 
to the strain. Special precautions have to be taken in introducing this 
assumption, because the strain and the rotation are not independent 
and satisfy the identities (2.6) Equations are derived which are a 
generalization of the result obtained by the author (5) in a previous paper. 

1. Strain and Stress. 

The original coordinates x, y, x of a point attached to the material 
become 

c=x+u, 

rl=y+‘u, 

<=2-/-w 

after the deformat,ion. The infinitesimal region surrounding this point 
undergoes a homogeneous deformation defined by the linear trans- 
formation of dx dy, dz into d.$, dv, d<, 

d,f=(l+ $f, dx+$dy+gdz, j 

dq=;dx+ (If ;;)dy+ ;;dz, ‘, . . . 

&{= !!!&+ aw i 
ax -,ydy+(l+ g) dz, j 

(1.1) 
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d4=U+e,) dX+k, -4 dy + @,+ WV) fk 

d7]=(e,+w,) dx+(l+e,) dy+(e,,--o,) dz, . 

$I=@,-+ dx+(e,++A dy+(l+e,) & 

8V 1 au a~ 

euu= 3’ 
e==i(g+g), -(- 

WV=2 aZ-all: )2 . 

aw 
em=%, 

1 
ew=$~~+$), -z=i(g-$)- 

The length element after the deformation is 

dS2=(l+2gzzl) dx2+(1+2gW) dy2+(l+2g,) d.z2 

+4g,, dy dx+4g, dx dxf4gw dx dy, . . 

with g,=e~+9e~+~(e~+w,)2+~(e,-w,)2, \ 

g,=e,+~e~+~(e,,+w,)2+9(e,-w,)2, 

g,=e,+~e~~+8(e,+w,)2+8(e~~-~~)2, 

s,,=e,,+~(e,-OZ)(e,+W,)+~eyy(eyz-WZ)+Sezz(eye+W~), 

s,=e,+Se,(e,+w,)+~(e,,-w,)(e~+~~)+~e~(e~-~~)y 

g,=e,+8e,(e~-u3)+ae,(e~+~~)+g(e,-w,)(e~~+~~). , 

. (1.2) 

. (1.3) 

. (1.4) 

(1.5) 

The transformation (1.2) contains the nine independent coefficiknts (1.3), 
while the change of length d@ depends only on the six coefficients g. 
There are therefore three degrees of freedom, leaving unchanged the 
length element ds2 and corresponding to the rigid body rotation con- 
tained in the general linear transformation (1.2). 

One of the first questions arising in the theory of elasticity is to dis- 
tinguish what part in the general transformation (1.2) is to be considered 
as a pure strain and what part as a pure rotation. It. is well known that 
when the quantities (1.3) are all small of the first order, and when we 
neglect quantities of higher order the pure deformation is represented 
by the coefficients e and the rotation by the vector w2 c+, wz. However, 
this is only a first approximation. In the following we are concerned 
with finding the finite pure deformation contained in the transformation 
(1.2) and developing an expression for the strain components containing 
both first and second order terms. We consider therefore the following 
linear transformation : 

df,=U+4 dX+Ea dy+Ea dz, 

&T,=Ea dX+(1+E2J dy+EsS dz, . . . . . (1.6) 

d&=Ez1 dx+Ezs dy+(l+EzJ dx, 
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VTith symmetric coefficients. Such a transformation leaves unchanged 
the orientation of three rectangular directions which are the principal 
directions of strain 03) ; in other words, the transformation (1.6) is equi- 
valent to elongations along three fixed rectangular directions. It is 
therefore quite natural to call such a transformation a “ pure deformation.” 
We may choose as finite strain components of the deformation the sym- 
metric coefficients 

Eli, 929 6319 

El29 E22, e23, 

;' 

. . . . . (1.7) 

E31, E23~ 633. 

The length of an element after the transformation (1.6) is 

do2=(1+2yli) ~~2+(1+2Y22)~~2+(1+2Y33) hi2 

+$'23 &&+4y31 dzdx+4y,, oh-Q/, ., . . (1.8) 

with Yll=E11+~(E:1+E:a+~,), 
\ 

Y22=E2z+M2+42+E2 ) 23 9 

Y33=E33+~(~~3+E~1SE~a), \ 
. (1.9) 

Y23=E23+~(E12E31+E22E23+E33E23), ' ' ' 

Y31=E31+~(EllE31+E23E12+E33E31), 

Y12=E12+~kllE12+E22E12+E31E23)* , 

Now the pure deformation (1.6) can be made to represent exactly the 
same state of strain as that produced by the transformation (1.2)) provided 
the length elements ds2 and do2 after deformation are identical. This 
condition is expressed analytically by the six equations 

%m=Yll~ &=Y23, 

gyy=Y22, gm=y31, . . . . . . (1.10) 

gzz =y33, ~xg=Yl2~ 1 

These equations determine the six strain components (l-7) as functions 
of the nine quantities (1.3). 

The transformations (1.2) and (1.6) thus related represent the same 
state of strain, and can only differ by a rigid body rotation. The rigid 
body rotation that we must add to the transformation (1.6) in order to 
obtain the transformation (1.2) will be called the “ local rotation ” of the 
material. 

The strain components (1.7) have the advantage that they are linearly 
related to the actual changes of length in the material, while the classical 
components (1.5) are linearly related to the change of the square of the 

212 
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length. On the other hand, they have the disadvantage that they cannot 
be expressed rationally by means of the nine quantities (1.3). However, 

this disadvantage vanishes in one important case-that is, when we assume 
the nine quantities (1.3) to be small of the first order and when we consider 
only the first- and second-order terms in the expression of the strain tensor 
(1.7) as a function of the nine quantities (1.3). In this case the result 

is obtained immediately as follows. 
We notice from equations (1.10) that e, and e,, differ only by a second- 

order quantity, the same for e._, and er2, etc., so that we may write with 
an error of the third order : 

e&+e&+e& = &+&+& 

e$+e&+eiz = ~&+~~2+& 

e%+e&+eiz = $3+&+4$, ‘I . . (1.11) 

e~ez~+e,eVz+e,,eV, = •~~~~~+~22~23+~33~23, 

e,,e,,+e,,e,+e,e, = •11~31+~23~12+~33~31~ 

e~e~+ewe~+e~e~~=E11E12+E22E12+E31E23~ 
i 

Introducing the approximate identities (1.11) into equations (1.10) we 
find the following expressions for the strain tensor with an error of the 
third order : 

~tl=e,+e,w,-e,,o,+:(o,2+Wf), 

~22=e,,+e,,w,-e,w,+9(w~+wt), 

E33=ezz+ezzwy-eyzwz+~(W~+W~), 

I 

l 23=e,,+g,S(e,-e,)+Bo,e,-~o,e,-~w,w,, ’ 
. (1.12) 

cQ1 =e,+Qw,(e,,-e,,) +&u,ey~-~coZew-~~Z~z, 

e12 =e,+Swz(e,,-e,,)+~w,e,,-9,~e~~-_3w,w,. 

At this point it is important to stress the physical significance of these 
components of strain E. If we look at the homogeneous transformation 
(1.2) of a small region in the vicinity of a point P attached to the material 
we now see that it can be obtained as follows :- 

(1) We rotate this region as a rigid body. This rotation is defined in 
first approximation by the vector w, wV wz. 

(2) A system of rectangular coordinates with point P as origin and 
parallel with the x y z directions is rigidly rotated by the same amount 
as the material, and becomes thereby a system which we call (1, 2, 3). 
With respect to this system 1, 2, 3 we perform the pure deformation 
(1.6) with the coefficients (1.12). 

Therefore, we may also look at the strain components as representing 

the pure deformation referred to a rectangular frame (1, 2, 3) originally 
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parallel with the x y z directions and undergoing the same rotation as 
the material. The strain field is thus referred to a field of rectangular 
axes whose orientation varies from point to point according to the local 
rotation of the material. It is important to bear this in mind when we 
are dealing with the stress, since to correlate stress and strain we must 
refer them to the same set of axes. 

The stress components at a point 5, 7, 5 after deformation referred 
to the x, y, z directions are denoted by 

gxxJ OWJ %XJ 

galJ =w I CT@ . . . . . . (1.13) 

ozzJ Q *zz* I 
The stress components relative to the rotated axis (1, 2, 3) are denoted 

bY 

*11, 012, 031, 

012, a22, I U23, . . . . . . (1.14) 

031, u23, 033. / 

In view of further application it is interesting to know the relation 
between the components (1.13) and (1.14) of the stress. 

We have introduced the assumption that the quantities (1.3) are of the 
first order ; we now add the assumption that the stress components (1.13) 
or (1.14) are also of the first order. Since we are interested in a theory 
of the second order we will drop all terms of higher order than the 
second in the relation between the stress components (1.13) and (1.14). 

In order to do this we may neglect second-order quantities in the 
expressions for the direction cosines of the axis x, y, x with respect to 
1, 2, 3. The transformation formula for the coordinate x, y, x when we 
rotate the axis into 1, 2, 3 with coordinates x1, x2, x3 are 

x=xlcos (x1 l)fx, cos (x1 2)+x, cos (x13), 

y=X, Cos (yl 1)+X, Cos (y12)+X, Cos (y13), 

2=x1 cos (zl 1)+x, cos (x1 2)+x, cos(z, 3). 

Now if the rotation of x, y, z into 1, 2, 3 is represented by the vector 
w2 wV wz we have in first approximation 

x=x,-~px,S~px,, 

y=qq+x2--$3, 

z= --WyX1+oxx2+x3. 
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Therefore the direction cosines are in first approximation 

cos (x1 l)=l, cos (x1 2) =-CL& cos (x1 3) =wy, 

cos (yr 1) =mz> cos (yr 2) =l, cos (yr 3)=---w,, . (1.15) 

cos (21 1) = -wer, cos (x1 2) =6Jz, cos (zr 3)=1. 
I 

We may use these values of the direction cosines in the transformation 
formulas of the stress components 

05 =Oll CO82 (Xl l)+azz co9 (X1 2)+a3, cos2 (x1 3) 

+2a2,cos (x1 2)cos (x1 3)+2u,,cos (x1 3) cos (x1 1)+2u,, cos (x,1) cos (x12) 

. . . . etc. . . . 

Neglecting terms of a higher order than the second, we have 

0%x =a,,+ 2o,,w,- 2+$Jz, 

uIl?l =(322+2q202-2u23w5, 

~zz=~22+2~23~~--~31~y, 
. . . (1.16) 

u2/z - -~23+("22-~33)~,-~12~y+~130,, 

uzx =~.31+(~23-~11)~y-~23~2+~~1~z, 

ux?l =~12+(~.11-u22)Wz-u31Wm+u22~~' 
I 

2. Equilibrium Equations. 

A point P of the material originally of coordinates x, y, x acquires the 
coordinates f, 9, 5 after deformation. An original closed volume V 
bounded by the surface S becomes after deformation a volume V’ bounded 
by the surface S’. The x component Fz of the total force acting on the 
boundary S’ after deformation may be expressed by means of a double 
integral extended to the same material boundary S before deformation. 
This is done by using the transformation formula of surface integrals. 
We have 

= JJ II um dh 1) --dydz+d~dzdx+a&dx, dy] * 4y, d 
IJJ [ aI>63 __ dy dt-; d#dz dx; $$;dx, dy] sow 4y, 4 2, x > 

+ ss, urn [F$dy dx+ E;dz dx+;#dx, dy] . (2.1) 
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db, 5) 
In this expression - , 

d(y> 4 
etc. are the partial Jacobians of the trans- 

formation of x, y, x into f, 7, 5. We have, for instance, 

a7, a7 

d(v, II) a~’ ‘&’ 
m= a5 a5 

3-j iii- 

These Jacobians are the cofactors of the determinant of the differential 
transformation (1.2). 

Since we are interested in a second-order theory, and since these 
Jacobians appear multiplied by the stress in expression (2.1), we need 
only keep the linear terms in their values. We find 

Introducing these values in (2.1), it becomes 

with 

[a,,(e,+e,)-a~(e~-o,)-a,(e,+o,)l~ 
+[-a,(e,,+OZ)+a~(e,,+e,)-a,(e,,-u,)lB 

+[-a,,(e,-w,)-a,(e,,+u,)+a,)e,,+e,)ly. 
This expression f, is the x component of the force per unit original area, 
acting at the boundary after deformation, and u, /3, y are the direction 
cosines of the outside normal to the original boundary S before deforwmtion. 

Introducing the component of stress (1.14) with respect to the locally 
rotated axes 1, 2,3 through equations (1.16), and dropping terms of order 
higher than the second, 

fs=a,la+a&+a3,y 
+-_(-w++w+J~ 
f(-~22~Z+~32~yP 
+(-az34+~33qh 
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_t [ull(e,,+e,,)-u,ze~-~~~e~~~ 

j [-alle~+a12(e,+e,)-a3,e,,lP 

+ [--o&X -u12e,,+u31(e,+e,)l~. . . . . (2.3) 

We have two other similar expressions for fv and f,. 
Consider now the body force. We assume that the force per unit 

mass at a point x, y, x is determined by the components X(x y x) Y (x y x), 
Z(x y z). If p is the specific mass before deformation an element of mass 
pdxdy dz keeps the same mass after deformation, but moves to the 
point .$, ye, 5. Therefore the x component of the total body force after 
deformation is 

JJJ X(t, 7, &.J dx dy a%. . . . . . . (2.4) 
V 

The condition of equilibrium of the volume V after deformation in the x 
direction is 

JJ,L ds+JJJv X(14‘, 7, OP dx dy dr=o. 

By Green’s theorem we change the surface integral into a volume integral 
extended to V ; we then have 

JJJ [A,+pX(S, 7, 5)ldx dy &=O. 
v 

This must be true whatever the volume V, and the equilibrium equations 
are therefore 

a [ulle,+u,,e,,l=O. . , . . . . . . . (2.5) -- 
a2 

There are two other similar equations expressing the equilibrium 
in the y and x directions. The boundary conditions are determined by 
expressions (2.3) for the forces f, fy f, acting per unit original area of the 
boundary. 
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It is possible to give equations (2.5) another remarkable form by 
taking into account the fact deducible from the equations (2.5) them- 
selves that 

are quantities of the second order and that we have the identities 

_&I 
ax = -& [e,,+4~ 

ae, a ) 
-=,[e,-w,], “m”’ 

(2.6) 

ax 

35 
a9 = ii [evz+wzl, 

ae, 
-ay = ; [ez,-WZ]. 

! 
The equilibrium equations (2.5) then take the form 

. . . . etc. . . . . . . . . . . . . . . . . (2.7) 
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We may also expand the functions X, Y, Z with respect to u, 
write 

ax 
x(x+% y+v, z+w)=X(x yx)+ ~u+~v+~;“’ 
. . . . etc. . . . . . . . . . . . . . . . 

v, w and 

. (2.8) 

Considering X Y Z and u v w as quantities of the first order, the above 
expansion includes the first- and second-order terms. 

The terms written on the first line of equation (2.7) are the classical 
terms of the linear theory and additional terms due to the rotation of the 
material with respect to the body force. The terms on the second and 
t*he third line have their origin in relative change of direction and area 
of opposite faces of an element of material due to its curvature ; we call 
them the cwrvature terms. On the fourth line is what we call the torsion 
term, because it arises from the torsion of an element. On the last two 
lines are terms depending on the stress gradient and the strain ; they will 
be called the buoyancy terms, because they arise from some kind of buoyancy 
due to the deformation of an element in its own stress field. The curva- 
ture and torsion terms vanish in case of a hydrostatic stress condition, 
while the buoyancy terms vanish when the stress field is homogeneous. 

3. The Strain-energy. 

The concept of strain-energy and the application of the principle of 
virtual work throws a new light on the present theory. The first step 
is to establish a correct expression for the strain-energy. We need only 
consider a state of homogeneous pure strain defined by the transformation 

5=(1+E11)X+E12Y+EQ12, 

r=~rzx+(l+E22)Y+E232, * * . . (3.1) 

5=E31X+Ea3X+(l+E33)Z. 
:’ 

The homogeneous stress field associated with this deformation is denoted 
by the constant components 

011, 012, =319 

Ul2Y 0229 cT23, . . . . . . 

i 

(3.2) 

0319 =23~ 033. 

Consider now a cube of unit volume before deformation, its edges being 
along x, y, x. After deformation it becomes a parallelopiped. On the 
side originally perpendicular to the z axis acts now a force of component 

, , 
711, 7127 7137 
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and on the two other sides will act forces of components 
, , 

7219 7229 Tim 

, I , 

7319 T32> 733. 

These forces may be found from the value (2.3) of j’,, fv, f, derived above 
and giving the actual forces at the boundary of a volume. We must 
introduce l I1 for e,, era for erm, etc., and put u2=w~=uz=0. We find 

Cl =%U +E)-UllEll-U12E12-U3~~3~, 
, 

T*2’a12(! +E)-UJiE12--U12E22-U31E23, 

etc., 

, 
or TCLv=(Tlry(lfE)- &E”~’ . . . . . (3.3) 

with E=Ellt%-t%. 

This T;~Y is a non-symmetric tensor. 
When small increments of strain SE~~ are given to the deformed cube, 

work is performed by the forces acting on the faces of the parallelipiped. 
This work, expressing the increment of the strain-energy 6W of a unit 
original volume, is equal to 

SW= FT;,&,,. . . . . . . . (3.4) 

A more convenient form of SW may be found by writing 

8w=&[?T;Y8Euv+ ~<&p]. 

Since SET” = SE”~, we have 

SW = 14 c;,,+ 7+“,,, 

or SW = 5 TP”SELLY, . . . . . . . (3.5) 

with TpV=+[7;“+T;,l, 
1 . . (34 

TVv=(l++‘,- + &&“+Oav&J. \ 

The tensor 7 clv iS the symmetric part of 7;“. Explicitly, we have 

TI~=(~+E)UII-U~~%~-U~~EI~-U~I~~I~ 

T22=(1+E)U22-U12E12-U22EE2-‘523% 

T33=(1+E)Us3-(3. E 31 31-U23623-(533633, 

T23=(1+E)u23-~(E22+E33)u23-3(u22+u33)E23-~(u12E31+u331E12), 

T31=(1+E)u31-~(E33+E~1)u3l--~(u33+u.ll)E31-~(u12E23+u23~~2), 

712=(1+E)U12 -~(~ll+~22)“12-~(u11+u22)~~2-~(u31~23+u23E31)* (34 
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The symmetric tensor us,, is obviously another representation of the 
stress. It can easily be seen from the expression of SW that ~-s,, is the 
symmetric part of the tensor whose components are the actual forces 
acting after deformation on the faces of a parallelopiped which originally 
was a cube of unit dimension parallel with the coordinate axes. Par 
instance, in the particular case when the coordinate axes are principal 
directions for both. the stress and the strain we have 

~11=(1+%2+%)% 

~‘L?z=(1+%3+%)~2% 

~33=(1+~ll+%)% 

In these expressions 711, for instance, is the stress multiplied by the area 
(l+~s~+~aJ after deformation of the corresponding force of an original 
unit cube. The tensor 7 ~” might be also called the stress per unit initial 
area before deformation of the material, while the tensor o,,” would be the 
stress per unit actual area after deformation. 

The existence of a potential energy imposes that 6W be an exact 
differential with respect to the strain component. It therefore imposes 
also certain additional conditions on the stress-strain relations. By these 
relations u,,” or TM are expressed as functions of the strain component Ed”. 
Then the stress-strain relations must satisfy the fifteen conditions, 

or 

_fT, _ aTik 
---, . . . . . . . . ask aE, (3.7) 

g+ 
i 

. . (3.8) 

It is possible to derive the equations of equilibrium (2.7) found above 
by expressing that the sum of the virtual external and internal work 
vanishes for all possible variations au, &u, 6w of the coordinates. 

The variation of the total strain energy in an original volume V is 

sW=-SWi= JJJ ” Zi,8~,vdxdydx, . . . . (3.9) 
D 

in which we use expressions (1.12) for the strain components +, if 
f, fv f, denotes the components of the force per unit original area acting 
at the boundary. The virtual work of the external forces is 

SW = JJ8 (fxsu+fvsv+fz wds+JJJ~[w, 7, osu 
+Y(t> rl, SPv+W, r), L’Pwlp dxdydz. - (3.10) 
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In the volume integral (3.9) the variations Se,,” introduce such quan- 
tities as 

Se,=Sgx=&Su, 

It is therefore possible to bring out the factors Su, Sv, SW by partial 
integration. We find an expression of the form 

SW,=- lj, (P$ Su+pu Sv+p,)dS + j-[j (A, SufA, Sv+A, Sw)dx dy dz. 
2) 

. . . (3.11) 

For equilibrium the total virtual work must vanish, hence 

awi+awe=JJJ W$+XpW+ (A,+YPW+(A,+Z~P~~ dx dy dz 
1) 

+ JJ8 [(f,-~~)su+(f,-_p,)sv+(f,--%)sw~d~=o. (3.12) 

This must be identically zero for arbitrary values of Su, Sv, SW, therefore 
we have the conditions 

and two other equations as above : 

A,+Yp =O, 

A,+Zp =O. 

These are equilibrium equations expressed by means of the stress TV” 

referred to the original areas before deformation. 
We also derive the boundary conditions 

fi=P~=T11t(+T12P+T31Y+(T31Wy-T120,)CI+(T23Wy-T220,)P 

f(T33Wy-T230Z)r+[3(T22-T11)e~-~T12(eyy-e~~) 

++(%%- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+8(T,ae,, -T&,,)]y, . . . . . . . . . . (3.14) 
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and two other similar equations, 

. &l=&l, 

.fZ ‘IPZ. 

We may now introduce the stresses oVV per unit area after deformation 
by substituting in the above equation the values (3.6) for 7clV and dropping 
all terms of higher order than the second. Equations (3.13) then become 

etc., . . . . . . . . . . . . . . . . . (3.15) 

and the boundary conditions (3.14) become 

fz=~I1~+~~~19+~.31y-t(~31~y-~12~z)~+(~23~y-~22~z)~ 

+(~~33~y-o,,w,)y+a,,(e,,+e,,)a+a,,(e,,+~,,)P+u3I(ezz+ezz)Y 

-(ulze~+a,,e,)~-(u,,e,,+o,,e,,)p- (~Ilezz+~Iaeyz)~~ 

etc. . . . . . . . . . . . . . . . . . . (3.16) 

These equilibrium equations and boundary conditions are identical with 
those (2.7) and (2.3) found above by a different method. 

4. Materiul under Initial Stress. 

The previous methods may be readily applied to establish a linear 
theory of elasticity for small deformations in a material under initial 
stress. The initial state with coordinates x y .z is here associated with 
initial stresses 

S x$9 S WI’ 
S W’ S W’ (4.1) 
S .W S W 
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These initial stresses, being in equilibrium, satisfy the following equations : 

. (4.2) 

If now the material undergoes small deformations, so that the initial 
coordinates x y x become c =X$-U, 7 =Y+v, 5 =x+w, the stresses undergo 

slight changes. Referring the stress to axes 1, 2, 3 rotating locally with 

the material through an amount defined by w,, wy, W, the stresses become 

I 

fLfS119 SW+%> SzxfSB1, 

%v = %j/+%P7 s,+a,,, S,,f%,, . - - (4.3) 

%+%I, Syzf% s*+s,,. i 
Now we are interested here in a linear theory with respect to u, v, w, the 
strain, the rotation, and the stress increments, which quantities are all 
assumed to be small of the first order. 

We adopt, therefore, for the components of the strain E the first-order 

approximation 

I 

e XX) %J, e zz) 
E= eW, %W e 

i 

YZ’ *- * - * - - (4.4) 

e zi9 eyt, % 

Because the local reference axes 1,2, 3 rotate with the material the stress 
increments 

I 

Sll, 812) 8319 

s= S12, *229 823, . . s . . . . (4.5) 

331, 523Y 3339 
i 

depend only on the strain E. These stress-strain relations may be taken 
linear in first-order approximation. However, some remark will have 
to be made later regarding the coefficients, as the properties of the latter 
are not the same as in the case of no initial stress. 

The additional stress may be due to a change in boundary forces 
df,, df,, Aj’, or in the volume forces AX, AY, AZ, or both. These 
increments are also considered as first-order quantities. We may pro- 
ceed exactly along the same lines as in the previous non-linear theory, 
in which the stress components (l-14) will be replaced by expression (4.3), 
and then drop in the formulas all the terms which are not linear with 
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respect to the first-order quantities. For instance, the stress component 
referred to initial directions x y z is given by expressions (1.16), in which 
we substitute the stress components (4.3) and drop all second-order terms. 
We find 

1 . ., (4.6) 

/ 
Similarly the same substitution of the components (4.3) instead of CT 

(1.14) in equations (2.7), and taking into account the initial equilibrium 
conditions (4.2), yields the following equilibrium conditions 

etc. . . . . . . . . . . . . . . . . . (4.7) 
The boundary conditions for the increment of boundary force Af are 

~~,=~~~~+~~~P+~~~Y+[S~~~~-S~~~,)~+CS~~~~-S~~~)P 

+s,~,-s,,~,)r+szx[e~~+e~~l~+S~~(e,,+e~~)~+S~~e~+e~)y 

-(S,e,,+S,e,,)cr.-(S,,e,,+S,e,,)P-(S,e,+S,e,,)~. . (4.8) 

We recognize here in equation (4.7) terms of the same physical nature 
as in equation (2.7) of the non-linear theory. The curvature has no 
effect when the initial stress is hydrostatic. When the initial stress 
field is homogeneous the buoyancy terms disappear, and we are left with 
those of the first line and the curvature terms. It can be seen that the 
curvature terms are those playing the fundamental rBle in buckling 
phenomena. 

We may also refer the stresses to the original areas, i. e., use the stress 



and the Linearized Case for a Body under Initial Stress. 485 

tensor rpv instead of fsUV. The stress components before the deformation 
are the same as above (4.1). After deformation the stress 7PV is 

1 

%z+t,1> s,+t,,, S,+t,,~ 
7 Llv= szy+t1a, &+t,,Y syz+t23, 

I 

* * * * (4.9) 

S,S%l, f$lzSh %z+tw 

However, the stress increments t,,., are not the same as the increments 
sclV used before. In fact from relayion (3.6) above we derive 

T,=~,-tS~,e-g~(S~~e~+S~e~~), 
e=e,,+e,,+e,. 

Explicitly 

tll=S1l+eS,,-SS,,e,,-S~e,,-SS,e,, 

t,,=s,,+eS,-SS,e,-SS,e,,-SS,,e,,, 

ts, =sa3+eS,-SS,,e,,-SS,,e,,-SS,e,, 

t23=523+eSyz-~(eyy+ezz)Syz-~(Syy-tSzz)eyE-g(Syze), 

~3:31=Sal+eS,-_4(e,,+e,,)s,-~(s,+S~~)e~-~(S~e~~+S,,e,), 

12=s13+eS, -S(e,+e,,)S,-g(S,,+S,,)e~-~(S,e,,+S,,e,). 

The equilibrium equations with these components are 

. (4.10) 

-S,e,,l+ i ~[S,,e,--Swevz]=O. . . . (4.11) 

we also have the boundary condition for the increment f of the boundary 
force 

A~~=tll~+t13P+t31r+(Szz~y-S~WZ)~+s,w,-s,,W,)P 

+~~,~,-~syzwz~y+~~~~y~-~,~~,-~s(~,,--e,);S,, 

+ QV&e, -S,e,,)lP+[fr(SW-S,,)e,-_(e,--e,,)S, 
+ iH%& -SwevAlrt 
etc. . . . . . . . . . . . . . . . . (4.12) 
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These equations are readily verified to be equivalent to those found by 
C. B. Biezeno and H. Hencky t4), but derived by an entirely different 
method. 

The same result may be derived from the strain-energy viewpoint. 
The strain-energy corresponding to a linear theory must contain both 
the linear and the quadratic terms ; therefore we must use here the 
second-order approximation (1.12) for the strain E,,“. We substitute the 
component (4.9) for 7s” in the potential energy variation (3.5). We find 

6W= h,s,,+ ESIIYSEIIY. . . . . . . (4.13) 

The notation Srr, S,, . . . . etc. is used for S,, SW . . . . etc. 
We have assumed that the stress increments are linear functions of 

the strains 

t, = &c,p . . . . . . . . (4.14) 

The sum is extended to all six combinations of k and Y. The assumption 
that there exists a strain-energy implies that 6W is an exact differential 
in a~,,“, hence that 

%@ _ %k _-- 

8% a%” 
or CK=CE. . . . . . (4.15) 

This implies fifteen relations between the coefficients of the stress- 
strain relation expressed by the fact that the matrix of the coefficients 
of the stress-strain relation is symmetric. However, it is important 
to notice that this only holds when we use the t, stress components, 
i. e., the stresses per unit original area before deformation. 

If we use the actual stresses ssV referred to the area after deformation 
we may write the linear stress-strain relations in the form 

kr 

s,,~=ZB~;~~Q~. . . . . . . . . (4.16) 

The stress s is related to the stress t by relations (4.10), in which we may 
indifferently write E instead of e. Using these relations the conditions 

(4.15) above become 

We can see that in general the coefficients B do not constitute a sym- 
metric matrix. For instance, in two dimensions the stress-strain relations 
(4.14) for the stress t, referred to the original area is 

tll=C::,,,+$~E22+C:~E,,, 

t22=C22Ell+c~~EZg+C~~E12, 

tl,=C:~EI1+C~~E22+C~~E22, 
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c;; = css 
11, 

cg=p 
11, 

cg=c;;. 
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The stress sw referred to the actual areas after deformation is related 
to ,t, by relation (4.10). They are in two dimensions 

tll=Sll+SllE22-S12E12, 

t22=~22+S22~ll-S12~12~ 

The stress-strain relations for the stress s are 

~,,=B::E,,+B~~E~~+B~~E~~, 
~22=B~~~ll+B~~~22+B~~~12, 
s,,=B:~~,,+B~~~~~+B:~E~~. 

The coefficients B must satisfy the relations (4.17), which beoome in 
this case 

B::+S,1=B:;+S,,, 
B’s-S =B;;+LS 2 123 

B&S;=B:;+tS,,. 

The coefficients in this case will in general not be symmetric except 
when the initial stress is a hydrostatic pressure 

s,, =s2s, s,, =o. 

Let us now go back to the expression (4.13) for the variation of potential 

energy 6W. The quantity 6w’= ,&&l” is the differential of an homo- 
geneous quadratic form w’ in eKViv’ We have 

aW’ -_t 
ae, 

M’ 

According to Euler’s theorem for homogeneous forms 

Hence the expressions for the strain-energy in a body under initial stress 
NV 

w =&ztNvEpvv+ vispv~,. . . . . . . (4.18) 

The value of the strain E,,~ must be that given by formulas (1.12) above. 
However, in the quadratic expressions ZltNv~UV we may substitute epV for 
Ed,,, as this does not affect the second-order terms, and write 

W =* .ENve,+ Ei3pvc,. . . . . . . (4.19) 
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By using the principle of virtual work with this value of the potential 
energy we derive equations (4.11) 

We may also introduce the stress components referred to the actual 
areas. Using relations (4.10) 

w=g &&,feS, - ,&%,e,+S,e,,)l+ ~fQlly. 
Applying the principle of virtual work with this value of the potential 
energy we derive equation (4.7). 

5. The Special Case of Large Rotations and Small &-aim 

This case is of special interest because small strains justify the applica- 
tion of Hooke’s Law as a stress-strain relation. However, from identities 
(2.6) we know that the strain and the rotation cannot be independent. 
Therefore the statement that rotations are large with respect to the 
strains implies the fulfilment of certain extra conditions, as, for instance, 
that the thickness of the body is small with respect to the other dimensions. 

When introducing this assumption it is most convenient to use the 
variational method, and introduce it in the expression for the variation 
of the strain-energy 

SW = &SC&“. . . . . . . . . (5.1) 

We calculate SE,,” from expressions (1.12). For instance, 

Sdll=S622+(Eay+W,)S0,+(Wy-er~)SWy+WzS~joy-WySe~. . (5.2) 

If we neglect ew and e, against wz and uy respectively, we may write 

SE ll=SEZ~+WZ(SUZ+SE~)+Uy(SOy-SBEZZ). 

It is important to notice that this approximation may not be intro- 
duced right away in the expression of cil, but only in Sell. In other 
words, the principal part of the variatino 2kllv is not the variation of the 
principal part qf ellv. This remark holds if .we start from the expression 
W of the potential energy ; the principal part of the variation SW is not the 
variation of the principal part of IV. 

Expressing that the variation of the total internal (3.9) and external 
(3.10) work vanishes, using expressions such as (5.2) for i& we find the 
equations of equilibrium 

etc., . . . . . . . . . . . . . . . . (5.4) 
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with the boundary conditions 
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f(x)=Tn~+T128+TalY+(T31Wu-T1~W,)GC 

+(T230y-T2203)+rB(T33Wy-T230,)Y. 

Similar equations are found for the linearized theory of a body under 
high initial stress. Such equations for the two-dimensional case have been 
derived already in 1934 by the author(5). 

We have written the above equations with the stress components T,,” 

roferred to the initial areas. We may substitute in these equations the 

vahres (3.6) of Tuv in terms of uw. 
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