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The author’s theory of elasticity of the second order is being applied to calculate the increase 
of torsional stiffness of a prismatical bar when an axial tension is initially imposed upon it. 
It is found that the classical shear stress distribution is not affected by the axial stress. However, 
an increase of torsional stiffness is produced due to the fact that the boundary condition over 
the cross section contains not only the shearing stress but also the product of the axial stress 
by the rotations. This increase of torsional stiffness turns out to be proportional to the polar 
moment of inertia of the cross section with respect to its center of gravity. 

B EFORE treating the special problem of tor- We now assume that the material undergoes a 
sion of a bar under an initial axial stress we small deformation. The deformation is associated 

shall first summarize the results of the general with displacements of components UOW, rotations 
theory of elasticity for the small deformations of of components, 
a body under initial stress.r 

We denote by w* = 3 (&U/dy - av/az) , 

s11 s12 s13 wy = 4 (au/a2 - aw/ax>, (3) 
S 21 s22 s23 (1) 
s 31 s32 s33, 

w t: = 4 (&/dx - du/ay) 

the initial state of stress in an elastic body. These and strain components 

components of stress are symmetric S,,= S,, and 
they must satisfy the equilibrium conditions 

ell= au/ax, er2=e21= $(av/ax+au/ay), 

asll/ax+as12/ay+as13/a~=o, 
e22= avlay, e23=e32=$(aw/ay+aV/a~), (4) 

as21/ax+as22/ay+as23+a~=0, (2) 
e33= aw/a2, e31=e13=+(au/az+aw/ax). 

as31/aX+as32/a~+as33/a~=o. 
Because of the small deformation the initial 

* Publication assisted by the Ernest Kempton Adams 
27, 468 (1939). Also: “Theory of elasticity with large dis- 
placements and rotations,” Proc. Fifth International 

Fund for Phvsical Research of Columbia University. 
1 M. A. Biot, “Non-Linear theory of elasticity and the 

Congress for Applied Mechanics (Cambridge, U. S. A. 

linearized case for a body under initial stress,” Phil. Mag. 
1938). “Theorie de l’elasticiti? du second ordre,” Ann. Sot. 
Sci. de Bruxelles (1939). 
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stresses are modified. We denote the stress incre- 
ments by: 

s11 s12 s13 

s21 s22 s23 (5) 

s31 s32 s33. 

These symmetric stress components sPY=srll are 
referred to axes which rotate locally with the 
material so that they are only functions of the 
strain. They must satisfy equilibrium conditions 
which will be different from the classical equa- 
tions for a material initially in a free unstressed 
condition. 

Equations expressing these conditions rigor- 
ously have been derived in the general theory. 
For example, one of these equations expressing 
equilibrium conditions in the x-direction reads 

. 

+s12z- (S11-S33)dw”_2S13dw” 
dz 3X 

-&,~+s23 

d&2 a.913 
+-- ay (e33+ed +y(ell+e22) 

-(!$+$)e12_(~+$)e23 

-(:+Cz)e31=0. (6) 

We have two other similar equations. The 
boundary conditions can be expressed by means 
of the increment of force per unit area at the 
boundary. For example, the x-component of this 
boundary force increment is 

Af,=sll~+sl2~+sl3~+[~13~y-&2~z]~ 

+[~23wy-~22wz]~+[~33wy-~23wz]~ 

+~~lCe22+e331~+~~2Ce33+e,,lp 

+S3lCell+e22lr - (&2el2+&3el3>a 

- (Sl3e23+Slle21)0 - (Slle3l+Sl2e32)r. (7) 

In these relations cr/3r are the directional co- 
sines of the normal direction to the boundary 
before deformation. 

In the particular problem that we have here 
in mind, the torsion of a prismatical part sub- 
mitted to an axial tension, the above equations 
are very much simplified. Taking the z axis 
along the axis of the bar, the initial stresses are 
(Fig. 1) 

0 0 0 
0 0 0 (8) 
0 0 s33, 

where S33= S is a constant representing the 
initial axial tension. The equilibrium equations 
become 

dsn as12 as13 
ax+ay+a,+s~=o, 

as21 as22 as23 
axfay+-p;=o. (9) 

~+~+!!$+s(%$~) CO 

and the boundary conditions 

Afz=sll~+slZ~+s13-i+~~2/~, 

Afz,=szla+szzP+s23Y-Sw, (10) 

AfZ=s31a+s32P+s33r+S(ell+ezz)r 
-Se13cr-Se23P. 

No approximations have been introduced in 
the above equations except the basic one that, 
the displacements are small. We shall now con- 

z- 
FIG. 1. 
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sider the relation between the strain and the 
stress increments spy. Here of course we have to 
introduce some approximations and simplifying 
assumptions as we do not know what these 
relations are for a material under an initial stress. 
However we will assume that these relations are 
the same as for the material in its natural un- 
stressed state and if we assume this state to be 
isotropic, we may write 

Ee11=s11-&2+s33), 

~ezz=szz-Y(S11+S33), 

Ee33=s33-+22+h), 

2Gel2=s12, 

2Ge23=s23, 

2Ge3r=s3r.. 

(11) 

That this is an approximation is obvious first for 
a theoretical reason. It was shown by the author’ 
that the stress-strain law (11) is in contradiction 
with the existence of a potential energy and that 
the error is of the order S/E. Moreover a material 
which in its natural state is isotropic cannot re- 
main such when it is stretched so that an isotropic 
stress-strain relation is also an approximation. 
Again here the error must be of the order S/E. 

Keeping these remarks in mind we may solve 
the problem of torsion by means of Eqs. (9)) (11) 
and the boundary conditions (10). We are going 
to show that the classical stress distribution of 
Saint Venant for the torsion of a prismatical bar 
is also a solution of our problem for the distribu- 
tion of stress increments s,,. The difference with 
the classical solution will appear only on the 
boundary of the cross section in the form of an 
increase in torsional stiffness. We put as in Saint 
Venant’s solution 

s11=s22=s23=s12=0 
u=-~B~z 
v=exz 
zu=w(x, y). 

(12) 

We also assume that ~23 and ssr are only functions 
of x and y. 

We deduce ell = e22 =e33 = e12 = 0, hence the first 
four relations (11) are satisfied and the two last 
ones become 

G(aw/ay+ex) =S33 

G(-By+aw/ax)=~~~. 
(13) 

The two first equilibrium Eqs. (9) are also satis- 
fied because 

w,=ret(aw/ay-e8x), u,=+(-ey-aw/ax) (14 

do not depend on z. The third Eq. (9) becomes 

~+~-S(~+$)=o. (15) 

Now from Eq. (13) we deduce 

G( ;+E)=z+E. (16) 

Hence combining (1.5) and (16) 

as31/ax+as32/ay=o. (17) 

As we know Eqs. (13) and (17) are the classical 
equations of Saint Venant’s problem of torsion 
of prismatical bars. This can be immediately 
verified by introducing a stress function # such 
that Sag= a+/ay and s32= - (a+/ax). Then Eq. 
(17) is satisfied and the elimination of w between 
Eqs. (13) yields the well-known equation, 

a2+/aX2+a2*/ay2= - 2G0. (18) 

However, we still have to satisfy the boundary 
conditions (10). At the surface of the prismatical 
bar r=O. Expressing that this surface is free of 
forces we find the two first relations (10) to be 
identically satisfied and the last one becomes 

0=s31~+s32p-Se13a!-Se2$?. 

Now because 

2Ger3 =s13 2Ge23 =s23, 

this condition may be written 

s3la+s32P=o. 

(19) 

This is the same boundary condition as in Saint 
Venant’s problem, namely that the shear stress 
on the cross section be tangent to the contour of 
the section. Eq. (18) with the boundary condi- 
tions (19) determines completely the shear stress 
s31s32 and its distribution over the cross section is 
therefore the same as in the classical solution of 
Saint Venant. 

We will now calculate the total torque over 
the cross sections. For this purpose we must use 
expression (10) for Afi and Afi, with y=l, 
cY=p=o. 

We find 

Afz=sr3+Swy, AfU=s23-SW=. (20) 
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From Eqs. (13) and (14) 

w~=&/G-Ox, wy= -&/G-ey, (21) 

hence the force along x and y acting on the cross 
section are 

Af,=srs(l -S/2G) -Soy, 

AfY=sz3(1 -S/2G)+Sex. 

The torque is 

(22) 

T= (1 -S/2G) 
ss 

( --s13Y +h3x)dxdy 

+.% 
ss 

(x2+y2)dxdy, (23) 

where the double integral is extended to the area 
of the cross section. The term 

Tsv= 
ss 

(-h3y+~23X)d+ (24) 

represents the torque calculated by the Saint 
Venant theory in the assumption that the bar is 
initially in its natural unstressed state. In the 
second term appears the polar moment of inertia 

lo= 
ss 

(X2+y2)JXdy 

of the cross section with respect to the origin of 
the coordinates. It depends on the choice of this 
origin. However the position of this origin is not 
arbitrary because the forces acting on the cross 
section are only a pure torque if 

S/Af&dy = SSA&&cdy = 0. (25) 

Now we know that the Saint Venant shear dis- 
tribution is a pure torque and therefore if we 
introduce expression (2.2) in the condition (25) 
the latter becomes 

ssydzdy = ssxdxdy = 0. (26) 

Hence the origin must be at the center of 
gravity of the cross section and 

IQ= 
ss 

(x2+y2)My 

is the polar moment of inertia of the cross section 
with respect to its center of gravity. 

863 

The expression for the torque may be written 
finally 

T=(~-SS/~G)T~~+I&L (27) 

This simple expression has been obtained with 
the only assumption that the stress-strain rela- 

FIG. 2. 

====v 
tion is the same as the classical Hooke’s law for 
an isotropic medium. As we remarked above this 
is an approximation which involves an error of 
the order S/2G. Therefore the term S/2G in the 
factor (1 - S/2G) is not significant as it represents 
a quantity of the order of what we neglected 
from the start. We write, therefore 

T= Tsv+IcSB. (28) 

We will now discuss the application of this 
formula to various cases. 

Consider first a circular section. In this case 
the Saint Venant torque is 

Tsv = GI& 

and the total torque is 

T=I&(G+S) =GlcO(l+S/G). 

Here the correction S/G due to the axial stress is 
of the order of what we neglect in the theory and 
for this case the correction term loses its physical 
significance. It would not be so, however, for 
sections having a low torsional rigidity in their 
natural state. 
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Consider for instance the case of a strip of 
rectangular cross section (Fig. 2). The thickness 
of the strip being c and the width b (Fig. 2). 
The Saint Venant torque is 

Tsv = &bc3Ge. 

The polar moment of inertia 

Ia=cb3/12. 

When the strip is submitted to an axial tension 
S, applying Eq. (28), the total torque is FIG. 3. 

T=;,,,,,~S~=;,,G[l+~(~)*~~~. 
and the polar moment of inertia is 

27rr3c = I@ 

We see that if the thickness c is small compared The total torque when the cylinder is submitted 
to the width, b, the correction t(b/c)*S/G can to an axial tension S is, therefore: 
become very large. 

As another example we take the case of a circu- 
lar thin-walled cylinder split along a generator 

T=$m3G[l+3(;)*;]0. 

(Fig. 3), the radius being Y and the thickness, c. 
The Saint Venant’s torque is The correction in this case is 3(r/c)*S/G. If for 

instance, S/G= l/1000 and r/c= 10, the increase 
T,yv = &rrc3G0 of torsional rigidity is 30 percent. 
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