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ABSTRACT 

The calculation of torsional oscillations in crankshaft-propeller 

systems is carried out by a new method which reduces con- 
siderably the numerical work in the case of in-line engines. The 

theory is briefly outlined and the reader is referred to another 

publication of the author for further details. Three applications 

follow. In the first, all six natural frequencies and the corre- 

sponding modes are calculated for a V-12 engine. In the second 

‘example the method is adapted to the direct determination of 

the fundamental frequency. The third example deals with a 

la-cylinder flat opposed engine coupled to a blower and through 
gears to a propeller; all eight natural frequencies are determined. 

The natural frequencies are determined by plotting a simple 
curve generally close to a straight line and the corresponding 
modes of oscillation in the crank are expressed in terms of a sine 
function. The amount of numerical work involved in the pro- 
cedure is independent of the number of cylinders of the engine. 

INTRODUCTION 

s REGARDS torsional oscillations, an internal A combustion engine with a long crankshaft is 
generally considered to be equivalent to a uniform 
shaft carrying equidistant identical discs. 

The procedures for deriving this equivalent system are 
familiar to vibration technicians. It is easy to calculate 
the discs; the moment of inertia of each is proportional 
to the average rotational inertia of each crank with the 
attached alternating masses. There will be as many 
discs as there are cranks. The calculation of the tor- 
sional rigidity of the equivalent shaft is not as straight- 
forward. The crankshaft being a rather complicated 
elastic structure, it is generally difficult to evaluate 
exactly its average torsional rigidity. Moreover, it 
will depend on the bearing clearances. A practical 
rule is to adopt a shaft of the same length and diameter 
as the crankshaft, and, depending on one’s judgment 
and experience, to vary this length slightly in accord- 
ance with bearing clearances, web rigidity,’ etc. The 
system is thus reduced to a shaft carrying a certain 
number of discs. 

The various numerical methods devised to calculate 
the torsional oscillation of such a system become ex- 
tremely tedious if the number of cranks exceed four. 
The object of the present paper is to show that it is 
possible to introduce considerable simplification in this 
numerical work. 

TREORY 

Let n be the number of discs representing the clank- 
shaft, I their moment of inertia; imd k the’ torsional 
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spring constant between these discs. Number the 
discs from 1 to n, and call 0, the amplitude of oscilla- 
tion of the disc numbered x (Fig. 1). The amplitudes 
of oscillation of three successive discs satisfy the 
equation 

s.+,-(2-~+?z+~~_,=o (1) 

where w/2~ is the frequency of the oscillation. 

/ I 3 4--x n-1 n 

FIG. 1. Schematic representation of a crankshaft and its 
end impedances. 

Setting 

w = 2 *I sin r/2 (2) 

it can be verified that Eq. (1) is satisfied by the solu- 
tion 

0, = A cos px + B sin PX (3) 

in which A and B are arbitrary constants. These 
arbitrary constants are determined by the two relations 

(4) 

which govern the motion of the discs at the ends of the 
shaft. Eqs. (4) involve the mechanical impedances 
Kg and Kd (Fig. 1) of those parts of the engine which 
are coupled to the discs number 1 and number n, re- 
spectively. The method for calculating these im- 
pedances, which are in general functions of the fre- 
quency, will be shown in connection with the numerical 
examples below. 

The substitution of .the general solution (3) into 
Eqs. (4) leads to the conditions 
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a[l+($-l)cosr]+B@-1)sinp = 0 

A 
[ 

cosr(lz+ 1) +& - l)cosPn]+ 

B[sinp(n+l)+e-l)sinpn]=O 

By elimination of A and B one obtains the frequency 
equation, 

sin j~(n + 1) + 
( 

Kg 1 Kd - 2 
> 

sin ,un + 

e-l)@--l)sinp(n-1)=0 (6) 

This equation contains the unknown frequency w/2?r 
in the variable P and in the end impedances Kg and Kd. 
The number of cranks ?z enters as a parameter. The 

reader will find a more detailed derivation of Eq. (6) 
and further information on mechanical impedances in 
reference 2. 

In principle, in order to find the roots of the fre- 
quency equation (6) it would be sufficient to plot the 
left side of the equation as a function of P or w and 
note the value of the abscissa where the curve inter- 
sects the horizontal axis. This procedure, however, is 
rather cumbersome because the function to be plotted 
goes through many oscillations and requires the calcu- 
lation of a great number of points. This difficulty is 
avoided by introducing the complex quantities 

g Pi 

e2 + -t = Age+& 

E 
e2 + 

3 > 
Kd-.1 ,-$ 

(7) 

k 
= Ade+di 

The left side of Eq. (6) is then the imaginary part of 
AgAde(Pn + +g + +dd)i . An equivalent form of the fre- 
quency equation (6) is therefore 

P?8 + & + & = multiple of I (3) 

The quantities 4g and +d are functions of P or w defined 
by Eqs. (7). Their values are 

f& = tan-I[(: - 1) tang] 

&= tan-I[(:-I)tan%] (‘) 

The practical advantage of Eq. (8) over Eq. (6) 
resides in the fact that the left side ,un -i- +g + $d 
plotted as a function of P is a curve generally near to 
a straight line. The form (8) of the frequency equa- 
tion is therefore well fitted for a solution by graphical 
methods or interpolation. It is sufficient to plot the 
curve in the range between P = 0 and P = 180”. 

It is also of importance to the designer to know not 
only the frequencies of the natural oscillations, but to 

estimate their respective danger as regards resonance 
stresses. This is done by calculating the energy input 
of the pressure cycles in each mode. The energy input 
depends on the Fourier harmonics of the pressure cycle, 
the firing order of the engine and the shape of the 
torsional modes in the crankshaft. These shapes are 
easily obtained from the general solution, Eq. (3) and 
conditions (5). The angular amplitude of the crank 
numbered x is 

0, = C sin (W + a) (10) 

where /3 is defined by the relation 

(1 - Kg/k) sin P 

tan ’ = 1 + (Kg/k - 1) cos /.l 
(11) 

The constant C is arbitrary. The torsional mode of 
order I is found by substituting in these formulas the 
values PZ and w, corresponding to that mode. 

Example 1 

APPLICATIONS 

A V-12 engine is represented schematically in Fig. 2. 
It is coupled directly to a propeller through a shaft of 
spring constant kl. The moment of inertia of the 
propeller is Ii. The numerical values are 

I = .415 lb. in. sec.2 
Ii = 162 lb. in. sec.2 
k = 5.10 times lo6 lb. in. per rad. 

kl = 2..05 times lo6 lb. in. per rad. 
n=6 

FIG. 2. V-12 engine with propeller. 

The moment of inertia I1 being very large compared 
to 6I, it is assumed that the propeller does not oscillate. * 
The mechanical impedance on the propeller side is 
therefore reduced to Kd = k, i.e., it is equal to the 
spring constant of the propeller shaft itself. From 

Eq. (9, 

* In all examples treated here the propeller is assumed to be 
rigid. The influence of propeller elasticity will be taken up in 
a subsequent paper. 
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$d = t--I[G - 1)tan;] (12) 
The corresponding natural frequencies are derived 

from Eq. (2). In cycles per minute, 

On the left the crankshaft is free so that Kg = 0; 
hence r&t = 90” is a constant. Expressing all angles 
in degrees, 

P +d 6~ + 9, + +d 

0 0 90 
15 27.2 207.2 
30 46.2 316.2 
45 58.2 418.2 
60 66.0 516.0 
75 71.3 611.3 
90 75.6 705.8 

120 81.6 891.6 
160 86.0 1076.0 
180 90.0 1260.0 

The values 6, + +# + & are plotted as functions 
of ~1 in Fig. 3. The intersections of this curve with 

FIG. 3. Graphical determination of the natural frequencies of 
the engine in Fig. 2 by plotting 6~ j- & j- +d as a function of 
B. 

the horizontals of ordinates BO“, 2 X BOO, 3 X HO”, 
. . . etc., yield six roots of the frequency equation (8). 
These roots are the abscissas of the points of inter- 
section and their values in degrees are 

~1 = 11.25 /.42 = 36.5 us = 64 
J.lp = 92.5 c(6 = 121.5 /.UJ = 150 

fi = 66800 sin 5.64 = 6560 per min. 
f2 = 66800 sin 18.25 = 20,900 per min. 
fs = 66800 sin 32.0 = 35,400 per min. 
f4 = 66800 sin 46.2 = 48,200 per min. 
f6 = 66800 sin 60.7 = 58,300 per min. 
fG = 66800 sin 75.0 = 64,500 per min. 

From Eqs. (10) and (11) the shape of the torsional 
modes are derived. Since Kg = 0, tan /3 = sin p/ 
(1 - cos /A) = l/tan(p/2); hence /3 = (?r - ~)/2. 
The shape of the rth mode is therefore 

.9, = cos P,(X - ‘/cJ ; x = 1, 2, . . . . . 6 

The shape of all six modes is given in the following 
table and represented in Fig. 4. 

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 6th Mode 

01 .995 .949 .848 .692 .489 .258 
82 .956 .576 -.104 -.743 -.999 -.707 
0s .881 -.024 -.939 -.642 .544 .965 
04 .785 -.615 - .719 ,798 .438 -.961 
e6 .633 -.961 .309 .573 -.994 .694 
0s .469 -.933 .990 -.838 .601 -.258 

. - . _-. .- _. 1:: 
.-._ ts 6 

FIG. 4. The six torsional modes of the engine in Fig. 2. 
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It will be noticed 
spring constant of 
Putting 81 = k, 

that the problem is simplified if the 
the propeller shaft is equal to k. 

$d = tan-r [tan b/S)], = p/2 

and the expression 6~ -I- $d + & = 6g i- ‘/z.P -I- 90’ 
plotted as a function of p comes out as a straight line 
In this case the roots p, are 

/..+ = (2/13)(r - l/&r; r = 1, 2, . . . . . 6 

Example ZZ 

Consider the same engine and propeller as in the 
previous case but with a drive shaft of low rigidity 
(Fig. 5). The numerical values are 

I = .415 lb. in. sec.2 
11 = 162 lb. in. sec.2 
k = 5.10 times lo6 lb. in. per rad. 
kl = .46 times lo6 lb. in. per rad. 
It= 6 

FIG. 5. V-12 engine with propeller and extension drive 
shaft. 

One may be interested primarily in the fundamental 
frequency which in this case is low compared to the 
harmonics. It is possible to take advantage of this 
fact to calculate the fundamental mode directly in the 
following way. 

Putting Kg = 0, Kd = kl, Eq. (6) is put in the form 

Mu2 = kl 

with 

X= 
sin pn 

2 sin (p/2) cos fi (n - l/2) 

For small values of J.L, X is approximately equal to n. 
Hence in this case, 

61~~ = k1 (approximately) 

This equation could have been obtained directly by 
assuming the crankshaft to behave as a rigid body. 

wi = 

and from Eq. (2) the corresponding value of p is 

& = 7.0° 

Substituting this value of p1 in A, 

X = 7.02 

and therefore a second approximation is 

wr = dm = 397; ~1 = 6.5’= 

This second approximation is quite satisfactory. The 
fundamental frequency is 

fi = 3Owr/?r = 3800 per min. 

The shape of the fundamental mode is derived from 
Eq. (lo), in which p1 = 6.5’ is substituted, and p = 
(?r - ~)/2. This mode is represented in Fig. 6. 

858% - 9 09 6 . m-k --- 

-.- -- -----_ 

FIG. 6. Fundamental mode of the engine in Fig. 5. 

Example ZZZ 

Consider a 12-cylinder flat opposed engine with 
propeller, reduction gear, and blower. The system is 
represented schematically in Fig. 7. The numerical 
values corrected to crankshaft speed are as follows*: 

I = .65 lb. in. sec.2 
I1 = .49 lb. in. sec2 
12 = 155 lb. in. sec.2 
& = 5.95 lb. in. sec.2 
k = 10.5 times lo6 in. lb. per rad. 

k1 = 8 times lo6 in. Ib. per rad. 
k2 = .6 times lo6 in. lb. per rad. 
KS = .05 times lo6 in. lb. per rad. 
n=6 

The reciprocal of the mechanical impedance Kd corre- 
sponding to the propeller and gears may be calculated 
as a function of p through the following steps 

* The author is indebted for the data on this engine to Mr. 
L. S. Hobbs and Mr. Williams of Pratt and Whitney Aircraft. 

L 

FIG. 7. 12 cylinder flat opposed engine with gear pro- 
peller and blower. 
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1 1 1 _=_--- 
&” kz IgJJ2 

Kd’ = Kdw - Ilw2 

1 
-= 1.1. 
K,i kl &’ 

The impedance on the blower side is given by 
1 1 1 -=-.-_- 

Kg ka 13w2 

The corresponding functions & and $d 
Eqs. (9) are then calculated. 

defined by 

Before doing this, however, it is convenient to take 
advantage of the fact that approximate values for the 
two lower frequencies are easily found. The funda- 
mental frequency corresponds to an oscillation of the 
blower while the engine and propeller stay fixed. This 

gives 

wi = m3 = 91.7; fi = 876 per min. 

and the corresponding value of P is p1 = 1.30’ 
The next frequency corresponds to an oscillation of the 
mass 61 + Ii as a rigid system while the propeller 
and the blower stay fixed. Due to the low value of k3 
the influence of the blower on this frequency is negli- 
gible. The second frequency is therefore approxi- 
mately 

____ = 370; f2 = 3530 per min. 

and the corresponding value of p is 

/.J2 = 5.30° 

Having obtained approximate values for the two lower 
roots the calculation of $Q and +d in the range 0 < p 
< 15’ is limited to three points in the vicinity of each 
value pl and /-Lz. The functions are given in the follow- 
ing table. 

P +u 
0 -90 
1.25 -25.5 
1.30 - 7.1 
1.35 13.8 
4 85.6 
5 86.6 
6 87.2 

15 88.9 
30 89.5 
45 90 
60 90 
75 90 
90 90 

120 90 j 
150 90 
180 90 

-90 - 180 
11.75 - 6.3 
12.9 13.6 
14.1 36.0 
52.2 161.8 
59.5 176.1 
66.3 189.5 
88.7 267 

107 376 
124 484 
144 594 
169 709 
194 824 
231 1041 
253 1243 
270 1440 

The quantity 6~ -i- & + $d is plotted as function 
of P in Fig. 8. The roots determined graphically are 

~1 = 1.268 ~12 = 5.30 /.LI = 27.8 
/.LK = 77 /Le = 101 p7 = 126 

i 

/ 

;_ 

s 

0 45 

p4 = 53 
,.@ = 152 

/080 

Joo 

7ao 

590 

360 

FIG. 8. Graphical determination of the natural frequencies of 
the engine in Fig. 8 by plotting 6p + a%0 + +d as a function of F. 
The curve is not plotted in the range 0 < M < 6” and the two 
lower roots ~1 and ~2 do not appear in the diagram. 

The corresponding frequencies in cycles per min. are: 

fi = 76800 sin .634 = 846 per min. 
f2 = 76800 sin 2.65 = 3540 per min. 
fa = 76800 sin 13.9 = 18500 per min. 
f4 = 76800 sin 26.5 = 34200 per min. 
fs = 76800 sin 38.5 = 47700 per min. 
fe = 76800 sin 50.5 = 59200 per min. 
f7 = 76800 sin 63 = 68400 per min. 
f8 = 76800 sin 76 = 74500 per min. 

A complete plot of the curve 6~ + & + & would 
show that it is not as near to a straight line in the range 
0 < /J, < 6’. However in the range 1.25’ < P < 1.35’ 
and 4’ < P < 6’ it is practically straight so that p1 
and w may be determined quite accurately by linear 
interpolation. 

CONCLUSION 

A simple expression (Eq. (6)) has been developed for 
the natural frequencies of torsional oscillation of a 
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crankshaft-propeller system. In this equation the 
number of cranks appears as a parameter. A further 
simplification resides in the possibility of determining 
the roots of this equation graphically by plotting a 
curve (Eq. (8)) which is near to a straight line and 
therefore requires the calculation of only a few points. 
Once the frequencies are found it is easy to determine 
the energy input in each mode since the shape of each 
mode in the crank is expressed by means of a simple 
sine function (Eq. (10)). An idea of the rapidity 
of the method is given by the fact that the calculation 
of the six natural frequencies and their corresponding 
modes in Example I takes about one and a half hours 
of slide rule work. This is considerably faster than 
by any other method. Other advantages are: the 
necessary smoothness of the plotted curve furnishes 

an immediate check on any numerical error; the 
amount of numerical work is independent of the num- 
ber of cylinders; possibility of calculating the new 
frequencies due to a separate change in propeller, 
crankshaft, or blower, without having to repeat all of 
the computations; possibility of taking advantage of 
an approximate guess of certain frequencies. The 
method is also applicable as such to engines with 
double identical crankshafts in parallel. 
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