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ABSTRACT 

The coupled oscillations of a flexible propeller and an aircraft 
engine with arbitrary number of cranks is investigated. In the 

first part of this paper a practical method is developed to deter- 
mine the complete dynamical characteristics of a rotating vibrat- 
ing propeller of arbitrary shape, and the legitimacy of the ap- 
proximations is checked with a numerical example. In the second 

part the first nine torsional frequencies of a V-12 engine, with a 
flexible propeller are calculated and compared to the frequencies 
of the free-wheeling propeller and those obtained by considering 
the propeller as rigid. The simultaneous influence of the engine 
speed on all nine frequencies and the general procedure to com- 
pute the complete critical speed spectrum are also indicated. 

T HE call for light weight and highly efficient metal 
propellers, together with the high speeds and 

power of aircraft engines, has considerably increased 
the danger of propeller fatigue failure. In fact the vi- 
bration characteristics of the coupled engine-propeller 
system has become one of the primary factors which 
govern the choice of a propeller for a given engine. 
The calculation of these oscillations is a rather compli- 
cated problem and it is made especially difficult in case 
the propeller is coupled with an in-line engine as will 
probably occur more frequently in the future. 

In a previous paper’ the torsional oscillations of a 
crankshaft-propeller system with an arbitrary number 
of cranks has been calculated with the assumption that 
the propeller is rigid. In the present paper the flexibil- 
ity of the propeller is taken into account, the crank- 
shaft and the propeller being considered as two coupled 
vibrating systems, and a method is developed by which 
it becomes practically feasible to predict with fair 
accuracy the vibrational behavior of the system for all 
speeds of the engine. 

It is clear that the propeller is a dynamical system 
with an infinite number of degrees of freedom, and that 
the problem of coupled oscillations implies the knowl- 
edge of the dynamical characteristics of the propeller. 
They are completely defined for the present purpose by 
a function of the frequency referred to hereafter as the 
“dynamic modulus” of the propeller. This concept is 
very similar to that of impedance in electrical engi- 
neering, and it may also be referred to as the mechan- 
ical impedance, as was done in the previous paper.1 
However, in view of its physical significance as a gen- 
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eralization of the concept of spring modulus the 
designation above is preferred. 

The dynamic characteristics of a propeller are rather 
complicated and the dynamic modulus in this case is 
tedious to evaluate by either calculation or measure- 
ment. To increase these difficulties it also depends on 
the speed of rotation. Before considering the problem 
of oscillations of the coupled crankshaft-propeller sys- 
tem a semi-empirical method which leads to a rather 
simple evaluation of the dynamic modulus of a rotating 
propeller is developed. 

Previous authors 2, 3, lo have considered coupled oscil- 
lations of crankshaft and propellers from the theoretical 
viewpoint but limit their investigation to a rigid crank- 
shaft and a non-rotating engine. As pointed out in the 
text, some of the dynamic modulus curves calculated 
by Meyer are erroneous and lead to paradoxical con- 
clusions. Extensive experimental work on propeller 
oscillations in actual flight has been done by C. M. 
Kearns. 4 

THE CONCEPT OF DYNAMIC MODULUS 

Consider an elastic shaft AB (Fig. la) rigidly clamped 
at B. A torque T applied at the other end A produces 

FIG. la. Illustrating 
the spring modulus of 

FIG. lb. Illustrating 
the dynamic modulus 

a clamped shaft. of a mass on a shaft. 

at that point a rotation 0 (radians) with the propor- 
tionality relation 

T = kO (1) 

The constant k which is called the “spring constant” or 
“modulus” of the shaft is a measure of its torsional 
stiffness. If instead of a constant torque, an alternat- 
ing torque T = To sin wt is applied the rotation at A 
follows exactly the variation of the torque and may be 
written 0 = 00 sin wt. At every instant relation (1) 
holds, and the ratio T/O = k is a constant independent 
of the frequency ~12~. 

This would of course not be the case if the shaft 
carried masses. Consider that the shaft carries a disc 
of moment of inertia I at the driving point A (Fig. lb). 

376 
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In that case a harmonic oscillation 0 = 00 sin wt of the Eqs. (5) and (6) give two fundamental rules by which 
disc will be produced by a harmonic torque of magni- it is possible to calculate the dynamic modulus of any 
tude chain of masses and springs. 

* T = (-Id + k)O 

This may be written T = K0 with 

(2) 
Consider, for example, the system of two discs on a 

shaft represented in Fig. 3. The dynamic modulus of 

K = -Iw2 + k (3) 

For a given frequency the amplitude of oscillation is 
proportional to the torque and the system is equivalent 
to a massless shaft of modulus K. This equivalent 
modulus, however, depends on the frequency, being 
equal to k for small frequencies, vanishing if w = dm 
and becoming negative for w > dk/I. This leads to 
the concept of a spring with a negative spring con- 
stant. The quantity K may be considered as a generali- 
zation of the concept of spring stiffness to the case of 
harmonic oscillations of a system possessing both 
elasticity and inertia. This quantity is referred to as a 
“dynamic modulus.” Putting k = 0 in Eq. (3), the 
dynamic modulus of a disc free to rotate about its axis is 

n 

FIG. 3. Illustrating the dynamic 
modulus for a series of masses on a 
shaft. 

the system at the driving point A can be found by 
means of the following steps. The dynamic modulus 
of the disc at C is -Id; adding the shaft k the dynamic 
modulus K of this system at B is given by the relation 

K = -Iw‘J (4) 

The dynamic modulus of a pure mass is always nega- 
tive. 

1 1 1 
-=--- 
K k Iw2 

There are simple rules by which the dynamic modulus 
of a chain of discs connected by elastic shafts may be 
rapidly evaluated. Consider a free-wheeling system 
(Fig. 2) and suppose that for a torque T acting at B 
the dynamic modulus is K. If an elastic shaft AB of 

By adding the mass 11 the dynamic modulus K1 at B 
becomes 

K1 = -11w2 + K 

and the dynamic modulus Kz at the driving point A is 
given by 

or 

FIG. 2. Illustrating the relation between dy- 
namic modulus at A and B. 

modulus k is added, and the torque applied at A, the 
total angular displacement 0 at the driving point A is 
the displacement T/K at B plus the displacement T/k 
of A relative to B. Hence 

0 = T(l/k + l/K) . 

The new dynamic modulus K1 at point A is therefore 
given by the relation 

l/K1 = l/k + l/K (5) 

Similarly, if instead of a shaft, a disc of moment of 
inertia I is added at the driving point B the torque 
necessary to produce a displacement 0 becomes 

T = B(-Iw2 + K) 

Hence the new dynamic modulus K1 in this case is 

K1 = -Iw2 + K (6) 

Hz = 
k,w2[IJw2 - k(Il + I)] 

IJw4 - (kL + kl + kJ)w2 + kk1 
(7) 

SEMI-EMPIRICAL EVALUATION OF THE DYNAMIC 

MODULUS 

Many practical cases involve the knowledge of the 
dynamic modulus of a complicated system, for which a 
direct computation would require too much time or 
simply lies beyond the power of mathematical analysis. 
On the other hand, a direct test involving the measure- 
ment of torque and rotation amplitude at the driving 
point throughout the frequency range is quite difficult 
and tedious. It will be shown here that it is possible to 
evade both difficulties by using a fundamental mathe- 
matical property of the dynamic modulus. This leads 
to a semi-empirical method of evaluation requiring 
only the measurement of a certain number of critical 
frequencies. 

It is clear that those frequencies for which the dy- 
namic modulus is zero correspond to a motion where no 
torque is applied at the driving point. Therefore the 
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equation obtained by putting the dynamic modulus 
equal to zero .yields the natural frequencies of the sys- 
tem when it is free at the driving point. For example, 

putting Eq. (7) equal to zero, 

krW2[&102 - K(Ir + I)] = 0 (3) 

The root w = 0 corresponds to the free rotation of the 
system in Fig. 3; the other 

U12 = K(I, + I)/111 (9) 

gives the natural frequency of the system when it is 
free at the driving point A. Similarly the equation ob- 
tained by putting the dynamic modulus equal to in- 
finity corresponds to the case of zero amplitude at the 
driving point. Hence putting the denominator equal 
to zero in the expression for the dynamic modulus the 
natural frequencies of the system when it is clamped at 
the driving point is obtained. For example, equating 
to zero the denominator in Eq. (7), 

IJu4 - (kI1 + kI + kJJu2 + klk = 0 (10) 

which, as can be easily verified, is the equation giving 
the natural frequencies of the system in Fig. 3 when it is 
clamped at A. 

Denote by *wr2 and *w22 the two roots of Eq. (10) 
and call *wr/2a, *w2/2n the “antiresonance frequencies” 
of the system, while w1/2n will be called the “resonance 
frequency.” By factorizing the denominator in Eq. 

(7), 

K2 = 
KiW2(W2 - WI”) 

(w” - *wi2)(w2 - *w22> 
(11) 

This may be written in a more useful form by taking 
into account that 

Combining this 

and 

*w12 * w.9 = klk/IJ 

relation with the value (9) yields 

kl = *w2 *w22 (& + r> 

W12 

K2 = (I1 + Qw2 *w12 *w22 (w” - WI”) 

W12 (w” - *wl2)(w2 - “w22) 
(12) 

This expression shows that the dynamic modulus is 
completely determined by the resonance and anti- 
resonance frequencies and by the total moment of 
inertia. Note that for vanishingly small frequencies 

Kz = -(II + I)w2 (13) 

In other words, the system behaves as a rigid system 
with the total moment of inertia 1r+ I. 

These conclusions are quite general and hold for a 
system with any number of degrees of freedom. Con- 

sider such a general case in which the total moment 
of inertia of the system is I. Denote by or, 02, wg . . . 

the angular frequencies of resonance, and by *or, *wz, 
*ws . . . the angular frequencies of antiresonance. The 
numerator of the dynamic modulus is a polynomial in 
w2 whose roots are 0, wr2, wz2, ws2, . . ., while the de- 
nominator is a similar polynomial whose roots are 
* 

Wl , 2 *w22, *w32, . . . . Therefore the dynamic modulus 
may be written in factorized form 

K = Aw2 
(02 - Wl”)(W” - w2”) (02 - wg> . . . 

(02 - *wr3 (w’ - *w2”)(w” - *w32). . . 
(14) 

The value of the constant A is determined by the con- 
dition that K reduces to -Iw2 for vanishing frequency, 
hence, 

K= *Iw2X 

*w12 *w22 *ws2.. .(w” - w12)(w2 - w22)(w2 - wsy... (15) 

w12w22w32.. .(w” - *w12)(w2 - *w22)(w2 - *wsy... 
with the plus or minus sign according to whether the 
total number of factors between brackets is odd or even. 

This result shows that if the natural frequencies of a 
system for a free and clamped driving point have been 
measured, i.e., if the resonance and antiresonance fre- 
quencies are known, the expression for the dynamic 
modulus may be written immediately. Experimentally, 
frequencies are easy to measure accurately by the ex- 
citation of resonance in the actual system or in a model. 
As for the moment of inertia appearing in Eq. (15) it 
can either be calculated or measured by the well 
known torsion pendulum method. 

THE DYNAMIC MODULUS OF A PROPELLER 

An alternating torque T = To sin wt is applied to the 
shaft of a propeller, the driving point being located at 
the hub. The dynamic modulus of the propeller is 
then the ratio of the torque to the amplitude of oscilla- 
tion at the hub (Fig. 4). In this case there are an 

FIG. 4. Illustrating the dynamic modulus K, = 
T/E of a propeller. An alternating torque T is ap- 
plied to the hub of a free-wheeling propeller. 

infinite number of resonance and antiresonance fre- 
quencies. The resonance frequencies are the natural 
frequencies when the propeller is supported by a shaft 
‘free to rotate in fixed bearings (free-wheeling) (Fig. 5a), 
while the antiresonance frequencies are those for which 
the propeller is rigidly clamped at the hub (Fig. 5b). 

The dynamic modulus may again be expressed in the 
form of Eq. (15) except that in this case there are an 
infinite number of factors in the numerator and the 
denominator. However, in practice the value of the 
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FIG. 5a. The resonance fre- FIG. 5b. The antiresonance 
quencies of a propeller. frequencies of a propeller. 

dynamic modulus is required only in a range of fre- 
quencies below a certain upper limit and for this pur- 
pose only a finite number of factors have to be intro- 
duced in Eq. (I@, namely those involving the fre- 
quencies of resonance and antiresonance located in the 
practical frequency range. That this is legitimate may 
be seen by writing the dynamic modulus in the form 

The factors involving the higher frequencies become 
equal to unity and may therefore be neglected in the 
infinite products. Also in the case of flexural vibrations, 
as is the case for a propeller, the sequence of frequencies 
tends to approach the sequence of the squares of the 
successive integers. Therefore the quantities w2/w12, 
&G/022, . . . , for instance, decrease as the inverse 
fourth powers of the successive integers and the higher 
factors become rapidly equal to unity. 

This conclusion is further verified in the following 
numerical example. Consider the propeller to be a 
rectangular prismatic slab whose plane contains the 
axis of rotation. The dynamic modulus in this case is 
simple to compute and an expression for it may be 
picked out from the formulas derived by B. C. Carter2 
and J. Meyer.3 Thus, 

&I = (2EJIL)!Na) 

with 

+(a) = a 
sin (Y cash Q - sinh Q cos (Y 

1 + cos LY cash (Y 
U2 = Ca4 
c = EJ/L2p 

EJ is the flexural rigidity of the blade; 
L the length of one blade; 
p the mass of the blade per unit length. 

(17) 

(18) 

(19) 
(20) 

The dimensionless variable cy is proportional to the 
square root of the frequency. Plotting the function 
+(cu) against (Y yields the curve in Fig. 6. It is found 
that the dynamic modulus is zero for the following 
values of a 

ay1 = 3.927; 012 = 7.069; aa = 10.21; etc. 

while it is infinite for the values 

*(or = 1.875; *LYE = 4.694; *Q = 7.855; *014 = 10.99; 
etc. 

From this the three lowest resonance frequencies and 
the four lowest antiresonance frequencies are derived. 

WI2 = Card; w22 = ccu24; Wa2 = CcQ4; *co12 = c*a14; 
* w.2 = PC&?; - *wa2 = c*Ly34* *,,e = c*a44 

Hence the approximate value of the dynamic modulus 
can be computed from (15). 

K* = Iw2 x 
*ml2 *Wz2 *Wa2 *W4* (W” - W12) (CO” - WZ”) (W” - Wr2) 

wirwse wsa(ws - *4&g> (w” - *we”) (w”- *wrr) (w” - *w42) 

(21) 
In this formula I is the moment of inertia of the pro-- 
peller 

I = 2/3pL3 

This approximate expression for K, can be written 
in a form directly comparable with Eq. (17) as follows 

Kfi = (2EJ/L)#‘(a) (23) 

$/‘(a) = 1/aa4 (*m :z2*1; *@4)’ x 

(a’ - f&4) (a4 - 0124) (a” - f&4) 

(a” - *(Yr4)((Y4 - *cUz4)(Q4 - *(Ya4)(Ly4 - *a44) 
(24) 

The function #‘(cr) is an approximation for #(LY) and 
is represented by the dotted line in Fig. 6. The approxi- 
mate curve practically coincides with the exact value 
#(a) up to the value a = *aa. Beyond that point the 
approximate curve is still sufficiently accurate for prac- 
tical purposes up to the highest root *CQ used in the 
approximate expression. 

The curve plotted in Fig. 6 is typical of a dynamic 
modulus function. There are a series of jumps from 
+ F to - 03 and between these infinite values the 
curve crosses the horizontal axis only once. This is in 
accordance with a general theorem of dynamics which 
states that if the number of degrees of freedom of a 
system is decreased by one, each of the new natural 
frequencies lie between two of the original ones.5 
The infinite points correspond to the natural frequen- 
cies of the propeller when it is clamped at the hub, and 

FIG. 6. Dimensionless plot for the dynamic modulus of a 
simplified propeller as a function of the frequency. The 
dotted line represents values derived from the approximate 
formula (24). 
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the points of zero modulus correspond to a freely rotat- 
ing hub, therefore according to the above theorem each 
infinite point must lie between two zero points. It 
must be pointed out that curves have been computed 
by J. Meyer which do not satisfy this condition and 
show, for instance, two successive infinites of the same 
sign and two zero points which are not separated by 
any infinite point. The existence of such curves would 
lead to the paradoxical result that certain propeller 
frequencies would vanish due to coupling with the 
crankshaft. The contradiction is due to an error of a 
fundamental nature which affects Meyer’s results in 
case the mass of the hub is taken into account. 

The present method also yields the possibility of de- 
riving the dynamic modulus of a rotating propeller and 
taking into ‘account the stiffening effect of the cen- 
trifugal force on the flexural vibrations. It has been 
shown by W. Ramberg and S. Levy6 that the natural 
frequencies of a rotating blade may be obtained ac- 
curately by Rayleigh’s method using the modal shape 
of a non-rotating blade. It is shown moreover that the 
modal shapes of a rotating propeller differ very little 
from that of the fixed propeller in the practical range of 
speeds. Ramberg and Levy establish the following 
formula 

WZV% = 0J2 + a(nN/30)2 (25) 

where wrol. and o are, respectively, the angular fre- 
quencies of the rotating and non-rotating propeller, N 
is the speed of the propeller in’ r.p.m. and (Y is a co- 
efficient 

In this formula w is the deflection of the mode for the 
non-rotating propeller, A is the area of the blade’s cross- 
section at the abscissa x along the blade, L is the blade 
length measured from the axis. Note that the value of 
(Y is independent of the amplitude of the mode and 
depends only on its shape. 

Hence the important conclusion is reached that by 
measuring the shapes of the modes for a vibrating fixed 
propeller the natural frequencies of the rotating pro- 
peller can be derived, and thereby also the dynamic 
modulus of the rotating propeller through Eq. (15). 

COUPLEDOSCILLATIONSOFAU-CYLINDERENGINE AND 
A PROPELLER 

Consider the 12-cylinder crankshaft-propeller system 
with the distribution of masses and elasticity indicated 
in Fig. 7. 

I = 0.415 lb. in. sec.2 
Ii = 162 lb. in. sec.2 
k = 5.10 (106) lb. in. per rad. 

ki = 2.05 (108) lb. in. per rad. 
n =6 

Ii is the moment of inertia of the propeller and n is the 
number of cranks. It has been shown’* To 8 that the 
natural frequencies w/27r of this system are the roots 
of the equation 

with 

pn + s/2 + qd = multiple of ?r (27) 

and 

w = 2dk/I sin p/2 (28) 

‘pd = tan-I[(2 - 1) tan E] (29) 

The quantity & in this expression is the dynamic 
modulus of the propeller and the driving shaft kl. As 
mentioned in the introduction, in the previous paper’ 
this quantity was called the mechanical impedance on 
the side of the propeller. 

According to Eq. (5) 

1 1 
-=- 
& ki 

++ (30) 
P 

where Kp is the dynamic modulus of the propeller. If 

FIG. 7. Dynamical system equivalent to a 
12-cylinder V-engine coupled to a flexible pro- 
peller. 

the propeller is assumed rigid, K, = -11w2 is always 
large compared to k1 and for practical purposes it may 
be assumed & = kl. The frequencies for this case 
have been calculated in a previous paper.’ 

Actually the propeller is flexible and for Kp an ex- 
pression of the type (15) has to be used. In the ab- 
sence of experimental data on the resonance and anti- 
resonance frequencies of an actual propeller, the fre- 
quencies are assumed to be distributed as in the case 
of the prismatic slab investigated above. Consider 
first the case of the non-rotating propeller and assume 
the lowest antiresonance frequency to be 

*fi = 1800 c.p.m. 
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Since the frequencies are proportional to c? the other 
resonance and antiresonance frequencies are derived 

fi = 7,894 c.p.m. *fi = 11,280 c.p.m. 
fi = 25,578 c.p.m. *fs = 31,590 c.p.m. 
f3 = 53,352 c.p.m. *fd = 61,831 c.p.m. 

The angle & as a function of p is plotted in Fig. 8 using 
Eq. (29). The dotted line represents the function in 
the case of a rigid propeller. 

FIG. 8. The function (Pd of Eq. (29) plotted against M. 

Plotting now the left side of Eq. (27) the curves 
represented in Fig. 9 are obtained. The dotted line 
corresponds to the case in which the propeller is as- 
sumed rigid. It is seen that the effect of propeller 
flexibility is essentially to produce notches in the curve 
at points corresponding to the resonance frequency of 
the free-wheeling propeller. This curve has nine 
intersections with the horizontals drawn at the ordi- 
nates, r, 2n, 3n, etc. These points yield the nine roots 
p of Eq. (27). The nine frequencies of the coupled 
crankshaft propeller system are then obtained from 
Eq. (28). Results are given in cycles per minute in the 
right hand column of the following table. 

Free- 
Wheeling 
Propeller 

7,894 

25,578 

53,352 

Engine 
with Rigid 
Propeller 

6,552 

20,965 

35,279 
48,321 

58,384 
64,668 

Engine with 
Flexible 

Propeller 

6,048 
8,159 

20,169 
26,158 
35,179 
48,078 
53,817 
58,384 
64,668 

In the left column are the resonance frequencies of the 
free-wheeling propeller (propeller frequencies), while 
the second column gives the natural frequencies of the 
engine with rigid propeller (engine frequencies). The 

propeller frequencies are increased by coupling with 
the engine, while the flexibility of the propeller de- 
creases the engine frequencies. This effect is more 
marked with the lower than it is with the higher fre- 
quencies. Of course when the engine and the propeller 
are coupled it is not strictly correct to speak of the fre- 
quency of the propeller as something separate from the 
frequency of the engine since the system must be con- 
sidered as a whole. In fact, it follows from the above 
method of derivation that if one of the propeller fre- 
quencies happens to coincide with one of the engine 
frequencies, the coupling splits this frequency into two 
components, or into a “doublet,” to use the terminology 
of physics, the original frequency lying between the two 
new ones. In this case obviously neither of these two 
frequencies can be assigned to the propeller or the en- 
gine separately. 

The same analysis may be repeated for various 
speeds of rotation of the engine. The dynamic modu- 
lus of the propeller at various speeds can be derived 
from the values of the resonance and antiresonance 
frequencies at various speeds, and these in turn may 
be evaluated through Eq. (25). By following the 
qualitative nature of the phenomenon it is possible to 
predict the aspect of the plot of the natural frequencies 
as a function of the speed of the engine. This is shown 
in Fig. IO. It will be noticed that when the speed in- 
creases, if one of the natural frequencies is followed 

FIG. 9. The function pn + r/2 + cpd of Eq. (27) plotted 
against p. Intersections with’ the horizontals determine 
the natural frequencies of the coupled engine propeller 
system. 
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FIG. 10. Natural frequencies of the coupled V-12 
engine propeller in Fig. 7 as a function of the engine 
speed. 

through its variation, starting, for instance, with one 
of the engine frequencies at A, it will first stay relatively 
constant, then at B it will increase and become a pro- 
peller frequency, then along CD it will again become one 
of the engine frequencies. 

The calculation of the shape of the crankshaft modes 
can be carried out as in the previous paper and used to 
calculate the energy input for each mode in terms of the 
firing order of the engine and the Fourier harmonics 
of the pressure cycle.g The frequency of the Fourier 
harmonic increases linearly with the engine speed and 
is represented in Fig. 10 by straight lines passing 
through the origin. The line for the Fourier harmonic 
of frequency equal to ten times the engine speed is 
drawn as a dotted line on the figure and the points of in- 
tersection correspond to resonance conditions. A simi- 
lar line must be drawn for each Fourier harmonic of the 
torque cycle, hence the spectrum of critical speeds will 
look quite crowded. All of these speeds, however, 
are not necessarily dangerous because the energy input 
and the damping are very different from one to the 
other. It is believed that by computing the shapes of 
the vibratory modes along the lines indicated in this 
paper it is possible to compute approximately the 
energy input and the damping of each mode, hence to 
estimate with fair accuracy the stresses produced and 
their respective danger as regards shaft and propeller 
failures. 

CONCLUSIONS 

It is shown how the dynamical characteristics of a 
propeller are defined by its resonance and antiresonance 

frequencies, i.e., by the natural frequencies of the free- 
wheeling propeller and that of the propeller rigidly 
clamped at the hub. This yields a practical method of 
evaluation of the dynamic modulus of a propeller by 
measuring a certain number of these frequencies within 
the practical range. ,The correctness of the method is 
checked on the numerical example of a vibrating slab. 
The dynamic modulus of a rotating propeller can be 
derived if the modal shapes for the non-rotating 
propeller are measured. It is then possible to carry 
out the exact calculation for the natural frequencies of a 
twelve-cylinder engine coupled with a flexible propeller. 
Denoting by engine frequencies those of the system 
when the propeller is considered rigid and propeller 
frequencies those of the free-wheeling propeller, the 
natural frequencies of the coupled system are close to the 
above values, the engine frequencies being slightly low- 
ered and the propeller frequencies slightly increased. 
This effect is more marked for the lower frequencies. In 
the particular example above the lowest engine frequency 
is decreased by 8 per cent. If a propeller frequency coin- 
cides with an engine frequency, this frequency is split 
into two components. When the engine is rotating 
these frequencies vary with the speed. This variation 
is indicated qualitatively in Fig. 10. An interesting 
feature shown here is the fact that while the speed 
increases a particular frequency becomes alternately 
an engine or a propeller frequency by a continuous 
change. 
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