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A rrgorous treatment is given of the problem of wave propagation in an elastic continuum 
when the influence of the initial stress is taken into account. After a short review of the theory 
various cases of initial stress are considered. It is shown that a uniform hydrostatic pressure 
does not change the laws of propagation. A hydrostatic pressure gradient produces a buoyancy 
effect which causes coupling between rotational and dilatational waves. Bromwich’s equations 
for the effect of gravity on Rayleigh waves are derived from the general theory and the physical 
transition from Rayleigh waves in a very rigid medium to pure gravity waves in a liquid is 
discussed. The case of the vertical uniform stress is also considered and it is shown that the 
effect of the initial stress on the waves in this case cannot be accounted for by elastic anisotropy 
alone. Reflections may be produced by a discontinuity in stress without discontinuity of elastic 

properties. 

A SIMPLE experiment will show that initial 
stress must have an influence on elastic 

wave propagation. Consider a uniform rod held 
between two hinges. The oscillations of this rod 
obey the well-known equation 

EId4w/dx4 - pw2w = 0, (1) 

where w is the deflection, EI the stiffness, p the 
mass per unit length, w/2a the frequency and x is 
the abscissa along the. rod. The fundamental 
mode for the hinged rod of length I is 

?rX 
w=A sin - 

1 

and the corresponding frequency 

(2) 

If there is an axial compression P in the rod the 
equation for the free oscillations becomes 

d”w d2w 
EI:+P&-pw2w=0. 

.X _r 
(3) 

The shape of the fundamental mode is the same 
as before but the frequency is now 

w ii- EI 

- ( 

a 
-_( 1 -PIP,) (4) 
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with 
P =EIn2/12 e I * 

The axial compression P decreases the frequency. 
When P approaches P,, which is the. buckling 
load of the rod, the frequency falls to zero. 

TP TI* 11 r is negative we have an axiai tension in the 
rod. In that case the frequency is increased. 
Considering a very slender rod with vanishing 
stiffness (EI+O) the frequency becomes 

w 1 /--Pp\, 
_=- c_ 
2a 21 p ) 3 3 

which is the frequency for a string under a 
tension -P. 

When we put the rod under tension it acquires 
partly the properties of a stretched string. From 
the viewpoint of wave propagation a tension in 
the rod increases the velocity of propagation and 
a compression decreases this velocity. 

It is clear that these phenomena must be a 
particular aspect of the more general case of 
elastic wave propagation in three dimensions in a 
body under initial stress. 

The effect of initial stress on oscillations and 
XX,ZXT,P nmnsaZl tinn V.U”._. hat hppn inxrp&icgt& hxr a y. “YUbU”“” l-u” YIIll 111 I ._“..‘bULbU “J 

number of writers, but because of the lack of a 
general and rigorous theory the results are re- 
stricted to the case of an initial hydrostatic 
pressure and are often contradictory or incom- 
plete. L. Brillouin’sl treatment leads to the con- 
clusion that at sufficiently high pressure the wave 



velocities would reduce to zero. This paradoxical 
result is due to incorrect assumptions. In con- 
nection with problems in geophysics the effect of 
initial stress on the oscillations of a gravitating 
sphere has been considered. Correct equations 
have been derived by Love2 for the case of an 
incompressible material under hydrostatic pres- 
sure. He also points out that the compressibility 
-..l-.+ :,c,-fiA..cn q_ :rnt\~rt,,~+ nffn& A h,.mr-nmr ,,,UJL 111LI”UULL all uupvr L-ILL L-llLLl. “I “u”yc4IILy 

but does not attempt to establish any theory for 
this case. By an extension of Love’s method 
Macelwane and Sohon3 have established equa- 
tions for the oscillations of a compressible 
gravitating sphere. These equations may be shown 
to be particular cases of our general theory if we 
introduce explicitly the change of body force due 
to the oscillations of the earth itself. The effect 
of gravity on Rayleigh waves and the oscillations 
_C _.. ,I,&.:, ,l,h, ..,no :__,m.c:,,c,vl L.. T T T’A “I d‘l cJ;lcxJL,L S;l”“C WQ3 11,“r;3LI~ac~u uy I. J. I n 

Bromwich,4 applying the equations derived by 
Love for an incompressible material under hydro- 
static pressure. In a recent paper F. Birch5 has 
applied Murnaghan’s’j theory of finite strain and 
shows that the hydrostatic pressure has no effect 
on the laws of propagation. This paper is re- 
stricted not only by the fact that the initial stress 
is assumed hydrostatic, but also by a condition 
not mentioned explicitly by the writer, namely 
that there is no initial pressure gradient. Further 
restriction is due to Murnaghan’s assumption 
that the material in the unstressed state is 
homogeneous and isotropic, with a definite po- 
tential energy function of the finite strain so that 
the initial hydrostatic pressure condilion is as- 
sumed to be obtained from an initial unstressed 
condition through a reversible process. There is 
no physical basis for this assumption because it is 
very likely that the state of hydrostatic pressure 
inside the earth is produced by a slow process of 

2 A. E. H. Love, The Mathematical Theory of Elasticity 
(Cambridge Univ. Press, 4th edition, 1927), pp. 176-178. 

3 J. B. Macelwane and F. W. Sohon, Introduction to 
Theoretical Seismology, Part I Geodynamics (John Wiley & 
Sons, New York, 1936). 

4T. J. I’A Bromwich, “On the influence of gravity on 
elastic waves and in particular on the vibrations of an 
ela$c gl&e;” F. London Math. Sot. 30,98-120 (1898). 

The effect of pressure upon the elastic 
parameters df isotropic solid according to Murnaghan’s 
theory of finite strain,” J. App. Phys., 9 279 (1938). 

0 F. D. Murnaghan, “Finite deformations of an elastic 
solid,” Am. J. Math. April, 1937. 

creep in which viscosity and physical-chemical 
irreversible processes are predominant. 

The present author has derived7-g a general 

theory of elasticity for bodies under initial stress 
which can be immediately applied to the problem 
of wave propagation. 

No assumption is made on how the initial 
state of stress is produced. These initial stress 
Comnonents satisfvonlv the conditions of internal r _~______ _-_.-., -__. , ---- 
equilibrium. We give a brief review of the theory 
in the case of two-dimensional strain. The deri- 
vation is quite elementary and does not involve 

the use of tensor calculus. The equations are 
applied to various cases of initial stress. We find 
that a homogeneous hydrostatic pressure does 
not affect the laws of wave propagation. When 
there is an initial pressure gradient we show that 
there is coupling between rotational and com- 
pression waves. This coupling is due to a buoy- 
ancy effect whose presence was suspected by 
Love2 and which we derive here in a quanti- 
tatively correct form. This effect is of course 
small for usual earthquake waves, but becomes 
preponderant if we consider tidal waves or the 
modes of oscillation of the earth. In the next 
paragraph we consider the special case of surface 
waves or Rayleigh waves, assuming an incom- 
pressible material with hydrostatic pressure due 
to gravity. 

Our theory in this case leads exactly to 
Bromwich’s equations, but a special feature of 
the surface waves is pointed out which is not 
mentioned in Bromwich’s paper. Finally, we con- 
sider an initial state of stress which is homo- 
geneous but not hydrostatic, i.e., we assume 
unequal initial principal stresses. This approxi- 
mates the state of stress TWX- the qllrfaCP nf the -- ___ _I_ ----- _-_- I------ uI L.1_ 

earth. It is found in this case that the behavior of 
the transversal wave alone is affected by the 
stress. The behavior of these waves cannot be 
accounted for by elastic anisotropy or a change in 
elastic coefficients and the existence of stress 
introduces an essentially new aspect in the nature 

7 M. A. Biot, “Theory of elasticity with large displace- 
ments and rotations,” Proc. Fifth Internat. Congress of 
Applied Mechanics, 1938. 

8 M. A. Biot, “Non linear theory of elasticity and the 
linearized case for a body under initial stress,” Phil. Mag. 
[7] 27, 468 (1939). 

9 M. A. Biot, “Th6orie de 1’Elasticitk du second ordre 
avec application Q la theorie du flambage,” Ann. de la 
Societe Scientifique de Bruxelles, Serie I 59, 104 (1939). 
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of the wave propagation. The velocity of propa- 
gation depends on the stress and it is possible to 
obtain reflections in a medium which has uniform 
elastic properties but contains discontinuities of 
initial stress. These facts must have their im- 
portance for the interpretation of data in methods 
of seismic prospecting. 

GENERAL THEORY 

Consider a state of initial stress such that a 
principal direction is always parallel with the z 
axis, while the small additional strains are as- 
sumed to constitute a state of plane strain in the 
xy plane. 

Cl1 =s11+s11, 

(222 = s22+s22, (8) 

Cl2 = slz+slz. 

The initial stress is defined by the components 
Sr1, Szz and Sr2 referred to rectangular axes x, y. 
They satisfy the equilibrium conditions 

The components ~11, ~22 and ~12 of the stress 
increment depend only on the strain. This stress 
may be referred to the original x, y directions 
and the components then become in first 
approximation 

as11 as12 
-+- 3_dx, Y>X(X, y>=o, 
ax ay 

asl2 asz2 
(6) 

-+- +Ph Y> ux, y>=o, 
ax ay 

css =sll-22snW, 

~Yy=s22+2s22w, (9) 

u.,v=s12+ (S11- S22)w. 

These are the stresses at the point ,$, 17 along the 
x and y directions. 

where p is the specific mass and X, Y the compo- These components satisfy the dynamical equi- 
nents of the body force per unit mass. An elastic librium relations 

element of coordinates x, y acquires the coordi- 
nates E=x+u, q= y+v after deformation and 
rotates through an angle 

u=;(a~/ax-a~/ay). (7) 

The stress components after deformation referred 
to directions which rotate with the material are 

a~zz/ai+a~z,/a7+dt, M(6, d =A&, daWat2, 

a~da~+a~da~+& 9) WY d =dk dawat2, 
(10) 

where p(.$, 7) is the specific mass after deformation. 
Now we can express these equations in terms of the independent variable x, y by using transforma- 

tions of the type 
aa,, ax ah ay 

$=- -+- -, etc. 
ax aE ay aE 

(11) 

The partial derivatives of x, y with respect to E, 7 are in first approximation 

i a24 
__= -__ 

D dy’ 

where D is the Jacobian 

ay 1 a8 - 
i$- 

--- 
D, ax’ 

d(& d 
DC----Z 

4x, Y> 

a24 1+d” - 
ax ay 

av 

ax 
1+a” 

ay 

(12) 

(13) 
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Using these relations and the property 

p(x, Y> =a4 7) t 

expressing the conservation of mass Eqs. (10) become 

in which ezz = &~/8x, eyzl = dv/dy, ez,=+(av/ax+au/dy) are the strain components. We now substitute 
the values (9) for u,,, cyy, vzy and drop terms of higher order than the first; the above equations 
become 

as,, aslz ax ax 

asI1 aslz 
+h--+e 

ax 

asI2 ah 
+e,,-+ezz- 

ax 

In order to obtain these equations account must be taken of the initial equilibrium conditions (6) 

and the identities 

ae,& = (ala4 (e,, - 4, 
n In I^ ,^ \I , \ 
*eddx= ~~idy)t~,+w). 

(16) 

We remember that the stress increments ~11, ~22, ~12, depend only on the strain. They may be taken 
as linear functions of the strain components 

(17) 

Assuming the existence of a potential energy function of the strain it is possible to prove* that the 
elastic coefficients must satisfy the relations 

It is only in case of initial hydrostatic pressure (5’11 = .S&, Sl2 = 0) that the elastic coefficients will be 
symmetric (Bai= Bii). 



The boundary conditions along an element dx, dy of the boundary contour are found to be7 

(su - Snw)dy - (SIZ - Sw)dx = dFz, 

(slz+Sllw)dy-(S2*+S120)dX=dFy, 
(19) 

where dF,, dF, are the projections of the force acting on the boundary element dx, dy. 
For a three-dimensional theory the following equations may be derived as above. We find 

With the following notations: xy= the Cartesian 
coordinates, uy = the displacements, x” = the com- 
ponents of the initial body force, AXV the 
increment of body force due to the motion, wp~ 
= +(&P/ax~-&u~/&V), e,p= $(d~P/dx~+&P/dx~), 
e = CveVv. The derivation of these equations for 
the statical case is given in references 8 and 9. 
We have introduced here explicitly the increment 
of body force AXV due to the motion itself 
this term must be taken into account if we wish 
to state correctly the equations of motion of a 
gravitating body. 

isotropic. This condition must be approximately 
realized in the earth. 

Taking the y axis positive downward we have 

x=0, Y=g, 

where g is the acceleration of gravity. Also 
Srr = Sz2 and Sr2 = 0. From (6) we derive 

a&fax = &s22/ay = 0, 

a.sz2/dy=dsll/dy= -pg. 

We consider now various cases of initial stress 
conditions and examine the corresponding be- 
havior of elastic waves for each case. For 
simplicity we restrict ourselves to two-dimen- 
sional strain. 

We assume the specific mass to be uniform 
(p=constant). With these conditions Eqs. (15) 
become 

as11 ds12 

;+avfpg;=p$t 

dSl2 as22 du d2v 

Uniform hydrostatic pressure 

In this case 

(22) 

Srr = S22 = const Sr2 = 0. 

Moreover a uniform pressure implies X= Y= 0. 
In this case Eqs. (15) become 

d~rr/dx+d~r,/dy= pa2u/at2, 

ds,,/ax+dszz/ay= pd%/dP. 
(21) 

These equations are the same as the classical ones 
for a body in an unstressed state. The influence 
of the pressure appears only in the elastic 
coefficients of the material. 

These equations are different from the classical 
ones for an initially unstressed medium. The 
additional terms are due to the existence of a 
pressure gradient. In order to investigate the 
behavior of the waves for this case, let us 
assume the stress-strain relations to be Hooke’s 
law for an isotropic medium 

Hydrostatic pressure with uniform pressure 
gradient 

Such a case will occur in a material under the 
action of gravity when the influence of creep has 
been acting a sufficiently long time so that the 
stress condition at every point has become 

sr1=Xe+2GeZZ, 

~2~=Xe+2Ge,,, 

s12=2Gezy. 

By substitution in Eqs. (22) we find 

2 
GV2u+(G+A,t+pg~=p~, 

de au 13% 
GV’v+(G+V~-pg~=p;; 

(23) 

(24) 
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We derive the following equations for the 
dilatation e and the rotation w by the usual 
method 

theory of this effect was first attempted by 
Bromwich.3 It is interesting to verify that his 
equations may be derived from our general theory 
provided we introduce the assumption that the 
initial state of stress is hydrostatic. 

GV% - 2pgde/dx = p&/dP. 

These equations show the existence of coupling 
between longitudinal and transversal waves. This 
coupling is due to the existence of an initial 
pressure gradient. The physical meaning of this 
coupling is as follows. Consider a dilatational 
plane wave propagating in the horizontal direc- 
tion. At a point where the material is compressed 
it is denser and therefore has a negative buoy- 
ancy, while in the region of positive dilatation 
the buoyancy is positive. The dilatational wave is 
therefore associated with a periodic distribution 
of vertical buoyancy force which generates a 
transversal wave. Conversely a transversal wave 
propagating in the horizontal direction produces 
a dilatational wave. In this case a portion of the 
material which is horizontal in the initial state 
undergoes a rotation and the initial pressure 
gradient acquires a horizontal component of 
alternating sign which causes a dilatational wave. 
The effect increases with the wave-length and we 
may verify that for the case of the earth it can 
only acquire an importance in the study of tidal 
waves with a wave-length of the order of 1000 km 
or larger. 

We introduce the same simplifying assumption 
as Bromwich, namely that the material is 
incompressible. This eliminates the dilatational 
wave. We then add the assumption that the 
initial state of stress is a hydrostatic pressure 
with a pressure gradient due to gravity, and 
apply therefore the above Eqs. (24). We may 
write Hooke’s law for an incompressible material 
as follows : 

SII= -p+2Gezz, 

~22 = -p-l-X&,,, 

SIZ = 2Ge,,, 

(25) 

where p is the increment of hydrostatic pressure. 
Substituting these values in Eqs. (24) and taking 
into account the condition of incompressibility 
au/ax +dv/dy = 0 we find 

l%L 
GV% - ;(P - pgv) = pdt2, 

d d% 

Gv2v - %(P - pgv) = P%. 

(26) 

Influence of gravity on Rayleigh waves 

Assuming the x axis to coincide 
surface, the boundary conditions 
are s~.2=srz=O or 

with the free 
(19) for y=O 

It was shown by Rayleigh that elastic waves 
may propagate along the surface of elastic bodies 
the amplitude of the wave decreasing expo- 
nentially with depth. It is clear that such waves 
at the surface of the earth must be influenced by 
gravity. The effect must increase with the wave- 
length, and also when the rigidity of the medium 
becomes smaller. In fact, we can imagine ma- 
terials less and less rigid, such as jelly, in which 
gravity would have a predominant effect, and 
consider finally the limiting case of a liquid in 
which the rigidity is zero and the waves such as 
ocean waves are due entirely to gravity. As the 
velocity of the latter depends on the wave-length, 
we may expect that one of the effects of gravity 
on Rayleigh waves is to make their velocity of 
propagation depend on the wave-length. The 

0= -p+2Ge,,, 

0 = 2Ge,,. 
(27) 

Putting pr = p - pgv, the wave equation becomes 

GV2u - dpl/dx = pa2u/at2, 

Gv% - apl/ay = pa2v/at2, 
(2% 

and the boundary condition 

-p1+2Ge,,=pgv, 

2Ge,, = 0. 
(29) 

The quantity $1 may be interpreted physically as 
the pressure increment due to the waves at a 
fixed point (x, y), while p is the pressure at a 
point originally of coordinates x, y but displaced 
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with the material at the coordinates x+u, y+v. 
The case G = 0 corresponds to a liquid medium 
and Eqs. (28) become the hydrodynamical equa- 
tions of an incompressible fluid for small oscil- 
lations. Eqs. (28) and (29) are identical with 
those considered by Bromwich. He also derived 
Eq. (31) below for the velocity. 

We can verify that we may write the following 
solution for Eqs. (28) 

u = (Ale++ Cre-Q) sin (Ix--at), 

v = (Ale&g + CZe-7u) cos (Ix - &), (30) 

with #I= -AdperTV cos (Ix-at) 

r=Z(l-[2)$ t2=o?p/GZ2. 

This solution also verifies the condition du/dx 
+dv/dy = 0 of incompressibility. From the bound- 
ary conditions (29) we derive 

(2GZ2-a*p+pgZ)A+(2GZr+pgZ)C=O, 

This shows that even for a wave-length equal to 
half the earth’s radius the increase of velocity is 
of the order of 5 percent. 

The limiting case pg/GZ=l occurs when the 
velocity (g/Z) 4 of the gravity waves is equal to the 
velocity (G/p)* of the shear waves. 

It is of interest to investigate what happens 
when the material becomes less and less rigid and 
the rigidity G tends to zero. For values pg/GZ > 1 
the solution above breaks down and it is impossi- 
ble to satisfy the boundary condition with a real 
solution. We therefore introduce a solution of the 
following type: 

u = (Ale+- Cp sin py) sin (Ix - at), 

v= (AZe++CZ cos py) cos (Ix-at), (32) 

with p1 = - Aa2pe+ cos (Ix - at) 

2Z2A+(Z2+r2)C=0. Introducing these expressions in the boundary 

Elimination of A and C yields 
conditions (29) we find 

(2_~2)P_!$4(1-i’)‘. 

- 2AZ2 - Ca2p/G = 0, 

(31) A(a2p-2GZ2-pgZ)-CpgZ=O. 

The quantity { in this equation is the ratio of the 
Elimination of A and C yields 

velocity of the Rayleigh wave v= al/Z to the 
velocity of a shear wave vt = (G/p) + 

{=v/vt. 

(2GZ2/(r2p - 1) (Zg/cr2- 1) = 0, (33) 

which can be considered as an equation for 1. 
There are two solutions. One, 

Eq. (31) therefore yields the velocity of the 
Rayleigh wave as a function of the dimensionless 
parameter pg/GZ. This parameter represents the 
influence of gravity and it can be seen that the 
velocity increases with the wave-length 2a/Z, but 
as shown already by Bromwich the correction for 
waves at the surface of the earth is small even for 
very large wave-length. 

For a very small wave-length (I= KJ) the 
equation yields the root 12=0.912 which is the 
value found by Rayleigh. For an increasing wave- 
length the value of the root increases until 
pg/GZ = 1 for which { = 1. 

Consider, for instance, the case of the earth. We 
assume g=981 cm/set., p=3 g/cm3, G= (1.5)101r 
dynes/cm2 then pg/GZ= 1 for a wave-length 

2n/Z= 3200 km. 

Zg/d = 1, 

depends on gravity. The velocity of the corre- 
sponding waves is CY/Z = (g/Z) + and is equal to that 
of the gravity wave. This solution is valid only if 
gp/GZ > 1. 

It is a combination of a pure gravity wave with 
a transversal plane wave coming from the depth 
of the material and being reflected at the surface 
at an angle tan-‘(Z/p) with the vertical. The 
relative amplitude of this wave is 

C(P”+Z”) * GZ * 
z-2-. 

AZ 0 Pg 

It decreases with the rigidity. This indicates that 
a pure gravity wave for wave-lengths or rigidities 
such that pg/GX > 1 cannot persist, but must lose 
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energy by radiation of a transversal wave inside 
the material. This loss of energy vanishes when 
G=O, i.e., the material becomes a liquid, and we 
are left with the gravity wave alone. 

Hence the stress-strain relations become 

The other solution of Eq. (33) is 

sll=Bllezz+B12eyy, 

~22 = B21ezz+-h2euy, 

s12=B33ezy. 

(35) 

2G12/azp = 1. 

It is independent of gravity. The reason for this 
is that A + C= 0 and the displacement v = 0 at 
y=O, i.e., the free surface stays a plane. The 
velocity of this wave is 

From (18) we still have Bl2-B21=&-.!?11. 
Therefore there are four distinct elastic constants 
in these relations. Introducing these relations in 
Eqs. (34) we derive 

or/l= (2G/p)*, 

i.e., 40 percent higher than that of a pure 
transversal wave. Since A = -C, such a wave 
when excited must dissipate very quickly by 
radiation inside. The phenomena pointed out 
here will influence those modes of oscillation of 
the earth which have a wave-length above 
1000 km. 

GV2u+(B,,+G);+(B’-2G)g 

+(sll-s22);=F$ 

Medium under initial vertical compression 

We first consider a state of uniform initial 
stress and take the principal directions of this 
initial stress along the x and y axes. Then Siz = 0 
and the components Sin SZZ are constant values 
of the principal initial stresses. Eqs. (15) become 

with 

+&422);=~$ (36) 

as11 as12 

---&+ay+csl-s22~~=p~, 

(34) 
as12 ds22 

~+ny+(s,,-s22)~=p~. 

These equations are also different from the 
classical ones for an unstressed initial state. It is 
seen that the additional terms depend only on 
the difference between the principal stresses 
Sli--SZZ and on the rotation. Hence only the 
rotational waves are affected by this stress 
condition. 

Consider now a transversal plane wave propa- 
gation in the horizontal direction 

u=o, v=cos (Ix-LYt). 

By substitution in Eqs. (36) we find the velocity 

A similar wave propagating in the vertical 
direction would have the velocity 

V,=(G--%(Su--Szz))g/p*. 

For instance if there is a vertical compression P 
in the material 

We assume that the vertical and horizontal 
directions are directions of elastic symmetry, and 
consider the general stress-strain relations (17). 
Because Sr2 = 0 and the assumption of symmetry 
we have 

s22= -P, sn=o, 

the velocity in the horizontal direction is greater 
than in the vertical. This effect is essentially due 
to the existence of the initial stress, because if 
this initial stress is zero or if it is a hydrostatic 
pressure then the two velocities are the same in 
spite of the elastic anisotropy of the material. 
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Note that this phenomenon is the same if we 

Put 

szz=o, s11= -P. 

The initial condition is then a horizontal tension 
-P and the velocity of shear waves propagating 
in the horizontal direction is 

If we put G=O in this formula we do not find the 
velocity in a membrane or a string under tension. 
This is because the wave in a membrane is not a 
shear wave but a bending wave. For the view- 
point of the theory of elasticity a bending wave is 
the combination of two waves of the Rayleigh 

type at both free boundaries.rO If we calculate the 
velocity of these bending waves and then put 
G=O we find 

V?L= (-p/P>+, 

which is the velocity of a wave in a membrane 
under tension P. 

This analysis shows that propagation and 
reflections of elastic waves in a material under 
initial stress must follow laws which cannot be 
explained by elastic anisotropy or a change in 
elastic constants. In fact, because the velocity of 
propagation depends on the total initial shear, a 
discontinuity in shear may produce a reflection 
even if there is no discontinuity in elastic 
constants. 

10s. P. Timoshenko, “On the transverse vibrations of 
bars of uniform cross section.” Phil. Mag. 43, 125 (1922). 
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