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From the viewpoint of torsional oscillations an internal 
combustion engine with a long crankshaft is generally 
considered to be equivalent to a uniform shaft carrying 
equidistant identical disks. It is here shown that advantage 
can be taken of the regularity of such a system to simplify 
the calculation of torsional oscillations. This is done by 
applying a mathematical method known as the calculus of 
finite diferences. The procedure leads to a frequency 
equation (2.7) of remarkable symmetry in which appear as 
parameter the number n of cylinders in line and two simple 
functions Ki and KE of the frequency which characterize 
the dynamical properties of the machines coupled at both 
ends of the crankshaft. These characteristic functions are 

1. MECHANICAL IMPEDANCE AND DYNAMIC 

MODULUS 

I 
N the theory of electric networks the concept 

of impedance has proved to be a highly useful 
tool for both the analytical treatment and the 
comprehension of electrical phenomena. Its use 
has been extended to the field of mechanics by 
the introduction of so-called equivalent networks 
or, as in acoustics, by defining the mechanical 
impedance as the ratio of force to velocity. The 

* Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 
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of the nature of mechanical impedances, but due to their 
physical interpretation as a spring modulus (or spring 
constant) generalized to dynamic phenomena, the appel- 
lation dynamic modulus is being preferably used in the 
present paper. The concept of dynamic modulus is briefly 
introduced in the first section, while the second deals with 
the establishment of the frequency equation and an artifice 
for its rapid graphical solution avoiding the necessity of 
plotting an oscillatory function. Numerical applications to 
Diesel engines are treated in the last section. An example is 
also given of an extreme case where the fundamental 
frequency has a very low value and a special method is 
used for the calculation of this frequency. 

latter definition is very useful in compound 
electromechanical systems and in those for 
which the amount of dissipated or radiated 
energy is one of the important features. However, 
in systems without or with negligible dissipation 
constituted, for instance, by a combination of 
masses and springs, it seems preferable to intro- 
duce as mechanical impedance the ratio of force 
to displacement. When there is no dissipation 
this ratio is a real quantity which can be either 
positive or negative. It generalizes the concept 
of spring constant to the case of harmonic mo- 
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tion. In order to distinguish this type of im- 
pedance from the other we use the appellation 
dynamic spring constant or simply dynamic 
modulus. The following example illustrates the 
above definition.* 

An elastic rod AB of torsional spring constant 
k is clamped at B and carries at A a disk of 
moment of inertia I (Fig. 1). In order to produce 
an harmonic oscillation of the disk of frequency 
w/2n and of amplitude 8 we must apply to the 
disk a torque 

M= (K-Ll?)e. 

This may be written 

with 
M=Ke (1-l) 

K=k+Ip2 $=iw i=d-1. 

The quantity K is the dynamic modulus of the 
system at A. It becomes equal to the static 
modulus k of the rod for small frequencies, it 
vanishes at resonance and is negative for higher 
frequencies. 

In the case of a shaft carrying two disks and 
free to rotate in bearings as illustrated in Fig. 2, 
it is readily verified that the dynamic modulus 
Kz at the left end is obtained by the following 
steps. The dynamic modulus K’ at the left of 

FIG. 1. Example of mechanical impedance. 

the system (K, a alone is given by 

l/K’= l/k+l/Ifi2. (1.2) 

If we add the mass I1 the dynamic modulus 
becomes K” 

K’!=K’+I# (1.3) 
* Further developments on mechanical impedances, the 

concept of dynamic modulus and the application of the 
calculus of finite dieerences to engineering problems will be 
found in a textbook by Dr. Th. van Karman and the 
author (Mathematical Methods in Engineering (McGraw 
Hill Book Co., Inc., New York, 1940)). 

and adding the spring kl the dynamic modulus 
K2 is given by 

l/Kz= l/kl+l/K”. (1.4) 

The law of formation of the dynamic modulust 
is the well-known series-parallel combination rule 
for the electrical impedance of a ladder-type 

FIG. 2. Example of mechanical impedance. 

network. From (1.2), (1.3), (1.4) we find 

1 
K2=-- --. (1.5) 

1 
‘+__ -- 

1 
-~lw2+__L_ 

l/k - 1/Iw2 I 

The physical meaning of this quantity Kz is that 
a harmonic torque of given frequency w/2a 
acting on the left end of the system produces an 
amplitude at that point which would be the same 
as if the torque were driving an elastic rod 
clamped at the other end and of spring constant 
equal to K2. Also if we put K2 = 0 we obtain the 
frequency equation for the free oscillations of the 
system, while l/K2 = 0 is the frequency equation 
when it is rigidly clamped at the left end. 

2. FREQUENCY EQUATION 

Using the concept of dynamic modulus and 
a mathematical method known as the calculus of 
jinite differences we are now going to show that 
it is possible to establish a frequency equation of 
remarkable simplicity. 

Following the usual procedure we represent 

t A similar rule for the combination of springs is indi- 
cated in J. P. Den Hartog, Mechanical Vibrations (McGraw 
Hill Book Co., New York, 1934), p. 41. 
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equation may be treated by methods similar to 

9X :=L 
those used in the solution of differential equa- 
tions, with relations (2.3) playing here the role 
of “boundary conditions.” 

G 

Let us first assume that 1 CXI <2. In that case 

= h$ ;K K.I: 

IW #I 

:-I 

x y 
the so-called general solution of Eq. (2.2) is 

d m known to be 

k I e,=A cos px+B sin px, (2.4) 

where A and B are arbitrary constants and p is 
/ L 3 4--x n-/ n related to the frequency by the relation 

FIG, 3. Schematic representation of an internal combustion 
engine and its end impedances. w=2(k/l)* sin p/2. (2.5) 

schematically the crankshaft rods and pistons The arbitrary constants A and B are determined 

by a uniform shaft carrying as many disks as by substituting the general solution (2.4) into the 

there are cylinders in line. (Fig. 3). Let n be the boundary conditions (2.3). Putting Kr/k - 1 = M, 

number of disks (or cylinders in line) numbered KJk-l=N we find 

from 1 to n, I their moment of inertia and & the 
amplitude of oscillation of a disk numbered x. It 

A(l+Mcos~)+BMsin,u=O 

is well known that the amplitudes of three A[cos &+l)+N cos /UZ] 
successive disks satisfy the equation +B[sin p(n+l)+Nsin WZ]=O. (2.6) 

Iw2e,= k(+._,+ze,-e,,,), (2a1) These are two simultaneous equations for A and 
where w is the angular frequency of the oscillation B. A more detailed derivation is given in the 
and k the torsional spring constant of a section Appendix at the end of the paper. The elimina- 
of the shaft between two disks.* If we put tion of A and B between these two equations 
d=Iw*/k Eq. (2.1) may be written yields the frequency equation, 

ez_l - (2 - a2)e2+ez+1 = 0. (2*2) sin p(n+l)+(M+N) sin pn 

There are n - 2 such equations for x = 2, 3, * . . , +MNsin ~(n-l)=O. (2.7) 

n - 1. In order to express the corresponding rela- 
tions for the end disks we assume that a machine 

We have assumed / a 1 < 2 or w = 2(k/I)* which 

of dynamic modulus K1 is coupled at the left end 
means that the frequency Eq. (2.7) yields only 

of the shaft and a machine of dynamic modulus 
the natural frequencies of the system which are 

Kz at the right end. Then the amplitudes of 
lower than 2(k/I)i. In most practical cases how- 

oscillation 01 and 02 satisfy the equations, 
ever this range will be sufficient as it will actually 
cover all the frequencies of the system or at least 

e2-(l-az+K1/k)B1=0 the greatest number of them and the most im- 
0n-1-(1-a2+K~/k)0,=0. (2.3) portant ones. The limiting value w, = 2(k/I)* of 

The recurrence Eq. (2.2) is called an equation 
the frequency has an important physical sig- 

with finite differences of the second order. Such an 
nificance as regards the response of the crank- 
shaft to vibrations. In the terminology of electric 

* As pointed out by R. Grammel [see for instance: Pber 
einige dynamische Probleme bei Kolben motorelz Schriften 

wave filters w, is called the cut-of frequency. In 

der Deutschen Akademie der Luftfohrtforschung (1939)] fact the crankshaft is the mechanical equivalent 
due to the existence of play between bearings and crank- 
shaft journals, the model should include a slight coupling 

of a low pass filter and it reflects all torsional 
between the disks x and x+2. This can also be treated by waves of frequency higher than the cut-off fre- 
the method of finite differences. It is believed however 
that the classical method of perturbations might yield 

quency. For a frequency approaching this limit- 
more quickly the corrected modes and frequencies. Another ing value the mode of vibration in the crankshaft 
correction which can be obtained by the method of per- 
turbations is due to the fact that the moments of inertia 

is such that two successive cranks oscillate in 
of the disks include a periodic function of time. opposite phases. 
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In principle, in order to find the roots of the 
frequency equation it would be sufficient to plot 
the left side of Eq. (2.7) as a function of p or w 
and note the abscissas where the curve intersects 
the horizontal axis. This procedure however, is 
generally cumbersome because the function to 
plot is highly oscillatory and requires the calcula- 
tion of a great number of points. This difficulty 
may be avoided and the numerical work con- 
siderably simplified by the following artifice. 

We notice that the frequency equation may be 
written in complex form by putting 

&12+Me-cii2=A re’p’i 
epi12+Ne-pi12=A2eQzi. (2.8) 

The left side of the frequency Eq. (2.7) is then the 
imaginary part of A1A2e(“n+“+~2)i. An equivalent 
form of the frequency equation is therefore 

pn+ cpr+ cp2 = multiple of ir, (2.9) 

where cpr and cp2 are functions of p given by 

Vr=tan-‘[(g-l) tan:], 

~2=tan-r[(~-I) tan:]. (2’10) 

In Eq. (2.9) the left side represents a smooth 
function of p generally near to a straight line. 
This form of the frequency equation is therefore 
well fit for solution by graphical methods and 
interpolation. The procedure will be made clear 
by the numerical examples below. 

The method is of course not limited to the 
calculation of frequencies lower than the cut-off 
frequencies. If 1 OL 1 > 2 the general solution of the 
difference equation (2.2) is 

O,=A(-l)Zcosh~~+B(-l)Zsinh~x, (2.11) 

where p is related to w by the relation, 

w = 2(k/r)* cash p/2. 

Proceeding as we have done above this leads to a 
frequency equation similar to (2.6) this time with 
hyperbolic instead of circular function. 

The shape of the modes of vibration in the 
crankshaft may be calculated below the cut-off 
frequency by (2.4) and above by (2.11). Using, 
for instance, the first condition (2.6) we may 

write (2.4) in the form * 

0, = C sin (w+@) 
with 

(2.12) 

tanP=(l-Kr/k) sinp/[l+(Kl/k-1) cosp] 

and C an arbitrary constant. The torsional mode 
of order r is found by substituting the values pLr 
and w,., roots of the frequency equation and 
corresponding to that mode. 

Example 1 
3. APPLICATIONS 

We consider the case of a crankshaft with n 
cranks free at both ends. Then Kr=K2= 0. The 
frequency Eq. (2.7) may be written 

sin p(n+l) -2 sin pn+sin j.~(n+l) =0 
or sin pn = 0. 

The roots are p=@r/n (p=O, 1, 2, a.., n). The 
values p = 0 and p = n must be excluded because 
they do not correspond to any motion of the 
crankshaft. The (n-l) natural frequencies are 
therefore given by the formula 

wp = w, sin @r/n, p=l, 2, .--, n-l. 

The spectrum of frequencies is represented in 
Fig. 4. We notice that the highest frequencies 
have a tendency to gather in the vicinity of the 

\ 

FIG. 4. Frequency spectrum of a 12-cylinder in-line engine 
without end impedances. 
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FIG. 5. Six-cylinder Diesel with pump flywheel and pulley. 

cut-off frequency wc = 2(k/I) t. This is a general 
feature in the oscillations of long crankshafts. It 
is also of interest to consider the frequency equa- 
tion in the form (2.9). JVe may write in this case 
cpl= cpz= --r/Z then the Eq. (2.9) becomes 

j~n=multiple of R. 

In this case the left side of the equation as a 
function of p represents a straight line. 

Example 2 

A six-cylinder Diesel installation is represented 
in Fig. 5. The numerical data are:* 

I=3920 lb. in. sec. 2 k= 730X10” in. lb./rad. 
II = 139800 lb. in. sec.2 kl =402 X lo6 in. Ib./rad. 
IZ = 26400 lb. in. sec.2 k,= 1334X106 in. lb./rad. 
I3 = 708 lb. in. sec.2 kS =2070X lo6 in. Ib./rad. 

The dynamic modulus K1 at the left end of the 
crankshaft is given by 

l/K1= l/ka- l/13& 

and 2k/K1 expressed as a function of p by means 
of relation (2.5) is 

2k 2k I 1 
-=---- ---. 
K1 k3 213 sin2 p/2 

Introducing this in the first formula (2.10) we 
calculate cp1 as a function of EL. In the same way 
we calculate 2k/K2 where K2 is the dynamic 
modulus at the right end of the crankshaft. This 
may be calculated as a function of p in the 
following steps 

&‘= 4k/I sin2 p/2 
1 /K’ = 1 /kz - 1 /12u2 

K”= - Ilo2+K’ 
2k/Kz= 2k/k1+2k/K”. 

* The numerical data for this engine are taken from S. 
Timoshenko, v&ration Problems in Engineering (D. Van 
Nostrand, New York, 1939), p. 150. 
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Introducing this function in the second formula 
(2.10) we calculate cp2. Calculations need only be 
made in the range 0 <P <n. The frequency 
equation 

6r.~+ cpl+ cpz= multiple of a 

will be solved graphically by plotting the left 
side as a function of p. The values of the func- 
tions ~1, cp2 are given in Table I. 

The curve representing &+(pl+(p2 is plotted 
in Fig. 6; the intersections of this curve with the 
horizontals of ordinates 0, r, 2a, 37,4x, ST, yield 
the roots of the frequency equation (3.6). These 
roots are in degrees; 

/.~l= 12.75 /.~2=37.5 ~3=63.7 
/~=91.2 /.L~= 129 /.&= 149. 

The corresponding frequencies are derived from 
the formula w = we sin p/2 where wc = 2 (k/I)+ = 866; 
the natural frequencies are 

866 12.75 

f1=2r sin 
-= 15.3 sec.+ 

2 

866 37.5 

f2=X- sin 
__I = 44.3 sec.-’ 

2 

“’ * 63*7 -72.4 set --I 

f3=2?r sln 2- 
866 91.2 

f4=z?r sin 
-=98.3 sec.-l 

2 

866 129 
fs=- sin --= 124 sec.-l 

2r 2 

866 149 
fG=- sin ---= 132 sec.-l. 

24 2 

TABLE I. 

P 

i 
10 
15 

Iz 

:: 
7.5 
90 

105 
120 
1.50 
280 

(01 (0% 
_ ___-- 

-90 -90 
-8.20 -89.3 

5.75 -88.2 
14.7 -87.3 
22.1 - 86.3 
34.8 -83.7 
46.5 -82.2 
56.0 -79.5 
63.5 - 76.3 
69.1 - 75.4 
73.6 -74.1 
77.6 -73.6 
84.1 - 78.2 
90 -90 

- 

= 

= 

- 180 
-67.5 

- z.4” 
5517 

131 
234 
336 
437 
533 
629 
724 
905 

1080 



These are the six natural frequencies of the 
system below the cut-off frequency whose value 
is in this case 138 sec.?. The system has actually 
eight natural frequencies, there are therefore two 
more frequencies higher than 138 but their prac- 
tical importance is not great. They could how- 
ever eventually be calculated by the procedure 
indicated above [cf. Eq. (2.11)]. 

The complete calculation of the six frequencies 
requires about two or three hours of slide rule 
work. The method is very well fit to discuss 
rapidly the effect on the frequencies of a struc- 
tural change of the system. If, for example, the 

1080" 

900" 

360' 

-180" 45” 

I--- 
-c 

FIG. 6. The function 6~+91+qp2 for the engine in Fig. 5 
plotted as function of p. 

number of cylinders were 12 instead of 6, the 12 
natural frequencies below 138 would be obtained 
without repeating all the calculations by solving 
the equation 

12j~+cpr+cp2=multiple of a, 

where the functions cpr and cp2 are numerically 
the same as above. 

FIG. 7. A six-cylinder Diesel ship drive with flywheel 
and propeller. 

Example 3 

We consider the six-cylinder Diesel ship drive 
represented in Fig. 7. The propeller is driven by 
a long shaft. The data are,* 

k=Kr=675X106 in. lb./r-ad. 
Kz= 13.5 X lo6 in. lb./rad. 
I=2560 lb. in. sec.2 

Ir=75000 lb. in. sec.2. 

Since Kl=O we may take for cpr the constant 
value cpr = - 90’ while cp2 is calculated as a func- 
tion of p as in the previous example. We find the 
values given in Table II. 

The curve representing 6~ - 90+ cp2 as a func- 
tion of p is plotted in Fig. 8. The intersections of 
this curve with the horizontals of ordinates 0, 
P, 2a, 3a, 4a, ST, 6~ yield seven roots of the 
frequency Eq. (2.8) 

/.L2 = 14.9 /.~,=42.0 /~a= 69.5 
/ALg= 97.0 j.~~= 124.5 p,= 152. 

The lowest root ~1 determined by the horizontal 
of abscissa 0 cannot be evaluated easily by this 
method unless the function cp2 is calculated very 
accurately in the interval O-5”. This is not very 
convenient and it is preferable in this case to use 
directly the frequency equation in the form (2.7). 
Since Kl= 0 it may be written 

sin pn 
021 =K2. 

2 sin (p/2) cos j~(n-5) 

For small values of P the factor 

VP) =- 
sin pLn 

2 sin (y/2) cos ~(n - +) 

is approximately equal to n and the frequency 
equation becomes 

nw21= K2. 

* The numerical data of this engine are taken from J. P. 
Den Hartog, MechanicalV&~_&~~s (McGraw Hill Book Co., 
New York, 1934), p. 208. 
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45 40 135 180 

FIG. 8. The function 6s+(pl+(p2 for the engine in Fig. 7 
plotted as function of P. 

It is clear that this equation is the frequency 
equation for the case of a rigid crankshaft. The 
factor X plays the role of a correction factor 
taking into account the elasticity of the crank- 
shaft. Introducing the numerical data and put- 
ting z = 2 sin p/2 the frequency equation may be 
written 

0.02X+0.7736-(10.15X+275)z2+275Xz4=0. 

A first approximation for the lowest root is found 
by putting X = 6. Neglecting the term in z4 we find 

0.02 X6+0.7736 
22 = =2.65X1O-3 

10.15X6+275 

2=.5.15X10-~. 

This corresponds to an angle ~=2.95”. Intro- 
ducing this value of p in the factor X we find 
X = 6.09. This yields the second approximation 

22, 
O.O2X6.O9+O.7736+6.O9X275X(2.65)21O-6 

, 
10.15X6.09+275 

~=5.19XlO-~, pi=2.98’=. 

L-IlIDh__ .Pp;n,de 

w-- 4timode 
e-- 5hmode 

b+Pfl-- Q&mode 
- T’modc 

FIG. 9. The shape of the torsional modes in the crankshaft 
of the engine in Fig. 7 for the seven natural frequencies of 
the system. 

This second approximation is quite satisfactory. 
The lowest frequency is 

X512=4.24 set-l. 

TABLE IT. 

P (D) 6/~-9O+w 

0 -90 -180 
lSS.1 
173.8 
180.07 
184.35 
191.65 

45 200.0 380.0 
208.2 
216.1 
224.1 
231.6 
239.4 

1.50 254.7 1064.7 
180 270 1260 
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The other frequencies are TABLE III. 

1024 14.9 
fz=y sin ---21.2 2 sec.-l 

1024 42.0 . 
f3=~ sm ---2-= 58.4 sec.-l 

1024 . 69.5 
fa=r sin T= 92.8 sec.-l 

1024 97.0 
f5=r sin --= 122 sec.-l 

2 

1o24 124.5 flJ=y-- sm . -= 145 s ec _-l . 

CRANK MODE MODE MCIDB MODE MODE MODE 

x=1 0.999 0.990 933 819 662 466 
x=2 .996 .916 453 -258 -819 -994 
x=3 .991 .773 -2258 -996 -469 6.56 
x=4 .983 .573 -838 -422 933 087 
x=.5 .972 .325 -987 707 241 -94.5 
x=6 ,959 .061 -629 906 -992 819 

formula (2.12). Since Kl=O we have 

sin p P 
tan /3= = cot -. 

1 -cos /.J 2 

r=7 
7TH 

MCIDE 
-- 

241 
-682 

939 
-987 

798 
-422 

2rr 2 

1024 152 
Hence /3 = n/2 -p/2 and the modes are given by 

f7== sin -2- = 158 sec.?. 

In this case we obtain all seven natural fre- 

8,=sin (p2+:-:) =cos [ypr]. 

quencies of the system. The modes of vibration The values are plotted in Fig. 9 and recorded in 
in the crankshaft are easily calculated from Table III. 

The solution (2.4) is 

If we choose P so that 

APPENDIX 

based on the following trigonometrical identities 

sin (x+l)~-2 sin XP cosp+sin (x-l)p=O 
cos (x+l)~-2 sin XP cos p+cos (x-l)p=O. 

cos/.L=l--_3Ly2 
or (Y= 2 sin p/2, 

(a) 

(b) 

we may verify from the identities that the expression 

&=A cos ,ux+B sin ox 
satisfies the n-2 equations, 

e2_1-(2--2)e,+8,+1=0, 

(c) 

(d) 

whatever the values of the constants A and B. These constants may be adjusted in such a way that 
expression (c) also satisfies the Eq. (2.3) which may be written 

e2-2e1 cos p-Me1=o 
e,_1 - 28, cos p - Ne, = 0. (4 

Substitution of expression (c) in these equations yield 

A[cos2~-2cos~cos~-~cos~]+B[sin2~-2sin~cos~-~sin~]=O 
A[cos (n-l)p-2cosnpcosp--NcosnP]+B[sin (n-1)~-2sinn~cos~-Nsin~]=0. (f) 

This may be simplified by taking identities (a) into account 

cos2/..L-2cos/.lcos~=1 
sin 2~-2 sin p cos p=O 

cos (n-l)p-2 cos n/.L cos /_&=cos @2+1>/.& 
sin (n- 1)~ - 2 sin np cos p = sin (n+ 1)~. 

Equations (f) then take the form (2.6) in the text. 
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