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ABSTRACT 

THE EARTHQUAKE stresses in a structure are generally greater than those which would be 
produced by a constant acceleration equal to the maximum value reached during the 
earthquake; there is an amplification due to resonance. This effect depends on the period 
of the structure and is measured by a function of the period, designated here as the spec- 
trum of the earthquake. A mechanical analyzer is described by which the spectrum curves 
for several strong-motion earthquakes have been plotted. It is shown how the spectrum 
can be used for the evaluation of earthquake stresses in complicated structures, and the 
particular example is treated of a multistory building with an elastic first story. 

I. INTRODUCTION 

THE PRESENT paper is mainly an application of a general method of analysis of 
earthquake stresses developed by the author at the California Institute of 
Technology in the year 1932. A complete outline of the theory has been given 
in two previous publications.’ 

Application of the method requires the use of accelerographs of destructive 
earthquakes. When the method was first developed, such records did not exist 
and practical conclusions were therefore restricted to hypothetical statements. 
During recent years, a certain number of accelerographs of destructive earth- 
quakes have been made available through the work of the United States Coast 
and Geodetic Survey. Extensive use of these records has been made in the 
present investigation. 

Our method is based on the possibility of drawing a curve representing some 
kind of harmonic analysis of the earthquake, where the acceleration intensity 
is plotted as a function of the frequency. We call such a curve an earthquake 
spectrum. An electrical device to evaluate the earthquake spectrum was men- 
tioned in the previous paper,2 suggesting the use of a photoelectric cell. HOW- 
ever, we preferred to use the purely mechanical analyzer, described below, 
because of its simplicity and cheapness of construction. 

Section II of the present paper deals with the effect of an earthquake on a 
rigid mass connected elastically to the ground and capable only of horizontal 
motion. The concept of earthquake spectrums as a means of predicting earth- 
quake stresses in an undamped oscillator is introduced in Section III, and a 

* Manuscript received for publication September 4, 1940. 
1 M. A. Biot, “Theory of Elastic Systems Vibrating under Transient Impulse, with an 

Application to Earthquake-Proof Buildings,” Proc. Nut. Acad. Sci., 19:262-268 (1933); 
“Theory of Vibration of Buildings during Earthquakes,” Zeitschr. f. ungew. Math. U. 
Med., Bd. 14, H. 4, pp. 213-223 (1934). 

2 The second paper cited in note 1, above. 

[ I511 
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mechanical analyzer for the evaluation of the spectrum is described. In Section 
IV are shown and discussed spectrum curves obtained with the analyzer from 
the acceleration records of various destructive earthquakes. Sections V and VI 
show how spectrum curves can be used to predict earthquake stresses in com- 
plex structures such as a building with an elastic first floor and the San 
Francisco-Oa.kland Bay Bridge. The former problem has also been solved in the 
previous work,3 but the results are presented here in a more applicable form. 
Applications of the concept of earthquake spectrum, using the author’s ana- 
lytical method, have also been made by R. R. Martel and M. P. White in an 
unpublished report,4 and experimental work along similar lines has been car- 
ried out by L. S. Jacobsen. 

The use of a spectrum for the prediction of earthquake stresses has also been 
emphasized by H. Benioff. 5 

The present work was carried out at Columbia University. Results were the 
subject of discussions with Professor R. R. Martel, to whom the author is 
indebted for valuable suggestions in the preparation of the manuscript. 

The author also wishes to acknowledge the cooperative help of the United 
States Coast and Geodetic Survey, which supplied copies of the earthquake 
records andthe data for their interpretation. 

II. EFFECT OF AN EARTHQUAKE ON A SIMPLE OSCILLATOR 

Consider a mass M connected to the ground by weightless springs (fig. 1). The 

horizontal displacement of the mass relative to the ground is denoted by u, and 

M 3 
the spring rigidity is such that a horizontal force F 

I I! 
produces a displacement 

F 
I I u=- 

k 
0.1) 

: : 
I1 ,I 

/’ I 
The constant 7G is called the spring constant. 

I/ : 
If the ground is given a horizontal acceleration uo 

/ I I applied very gradually so that no transient oscilla- 

////I/////////////// 
tion occurs, the mass will assume a constant deflection: 

- a/v Ma0 
uo = - (1.2) 

Fig. 1. Simple structure k 
constituted by a rigid 
mass IM connected to the 
ground by weightless 

The total shear in the springs is then 

springs and oscillating 
horizontally. S = Mao (1.3) 

3 See note 1 above. 
* R. R. Martel and M. P. White, “Some Studies on Earthquakes and Their Effects on 

Constructions,” Rept. on Earthq. Studies for Los Angeles County, Pt. I (1939) (unpub- 
lished); and L. S. Jacobsen in Part II of the same report. 

6 Hugo Benioff, “The Physical Evaluation of Seismic Destructiveness,” Bull. Seism. 
Sot. Am., 24:398-403 (1934). 
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During an earthquake the horizontal acceleration is a function a(t) of the 
time t. Denoting by v the displacement of the ground and neglecting the damp- 
ing, the equation of motion of the mass M is 

M$2(u+v)+ku=0 (1.4) 

The displacements u and v are taken positive to the right while the acceleration 
is taken positive to the left; hence 5 = -a(t), and equation (1.4) may be 
written 

Mii + ku = Mu(t) (1.5) 

The latter equation shows that the relative displacement u obeys the differen- 
tial equation of motion of a simple oscillator under the force Mu(t) = F(t). The 
earthquake is taken to start at the instant t = 0; the mass M being initially at 
rest, the relative displacement u as a function of time is given by the well- 
known solution6 

or 

u=&L’F’(B)sin J$(t-0)&I (1.6) 

T UC-- 
s 2?r 0 

’ u(0) sin; (t - 0) d0 (1.7) 

where T = 21r d-- M 

-C’ 
is the natural period of the oscillator. 

The total shear in the springs is 

S=&=M.$ J’ 0 

’ u(0) sing (t - e) de 

The quantity : 
2?r 

s r 0 
t a(O) sin: (t - 0) do 

(1.8) 

(1.9) 

is a function of time which gives the complete stress history of the oscillator; 
i.e., if the integration is performed with respect to 0 between the limits 0 and t, 
and repeated for all values of t, we obtain a function of time which according 
to (1.8) will give the value of the total shear X at every instant t. We are espe- 
cially interested in the maximum value of this function because it will give us 
the maximum shear produced by the earthquake in the elastic system. Denot- 
ing by A the maximum value of expression (1.9), the maximum shear is 

S=MA (1.10) 
6 Th. v. Karman and M. A. Biot, Mathematical Methods in Engineering (New York, 

McGraw-Hill Book Co., 1940). 



154 BULLETIN OFTHE SEISMOLOGICAL SOCIETYOFAMERICA 

Comparing with (1.3), we may say that, as far as the maximum shear is con- 
cerned, the effect of the earthquake is equivalent to that of a constant acceler- 
ation A applied gradually so that only a statical deflection is produced without 
the occurrence of any transient oscillation. 

Of course for a given earthquake the value of A depends on the parameter 
2lr 

appearing in expression (1.9) ; i.e., on the natural period T of the oscillator. 
r 
We refer to this quantity A as the equivalent acceleration of the earthquake 
for the period T. 

III. EARTHQUAKE SPECTRUM MEASURED WITH ANALYZER 

It will be noticed that the equivalent acceleration for a particular earthquake 
depends only on the period of the oscillator. We may therefore evaluate this 
equivalent acceleration for various oscillator periods and consider it to be a 
characteristic function A(T) of the period. We call this function the ac- 
celeration spectrum of the earthquake. 

The engineering significance of this concept lies in the fact that, once the 
spectrum is known, it is possible to write immediately the value of the maxi- 
mum shear produced by the earthquake on an arbitrary simple oscillator. To 
obtain the shear produced by an earthquake in such a structure of period T we 
multiply the mass of the structure by the ordinate of the spectrum for the par- 
ticular value T of the abscissa. Furthermore, it is possible to extend the useful- 
ness of the spectrum to structures much more complicated than the one degree 
of freedom oscillator considered above. In fact, it will be shown in Section V, 
by treating the particular example of a building with an elastic first story, how 
the acceleration spectrum may be used to determine the maximum stresses 
produced by the earthquake in any complex structure. 

It is relatively tedious to evaluate the spectrum by analytical methods, as 
this would involve the calculation of the integral (1.9) from a graphically given 
accelerogram a(t) and for a great number of values of both T and t. Fortunately 
there are simple experimental methods by which this can be done. In the pre- 
vious paper we suggested the use of an electrical analyzer. An accelerogram 
record moving in front of a photoelectric cell would transform the accelerations 
into voltage fluctuations which in turn would act on a system with variable 
tuning. However, in view of the uncertainties still attached to the now avail- 
able earthquake records, it occurred to us that perhaps a less accurate but 
simpler analyzer, using purely mechanical devices and direct reading of the 
original records by eye, might prove satisfactory for engineering purposes. 

The principle of the analyzer which we are now going to describe is based on 
the properties of a torsional pendulum the point of suspension of which is given 
an angular oscillation with an amplitude following the earthquake accelera- 
tions. We denote by a the angular displacement of the pendulum mass, and by 
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I its moment of inertia. This mass is suspended by a wire of torsional spring 
constant c to a pivot which itself is given an arbitrary angular displacement 
so(t) function of time. The equation of motion of this pendulum is 

Iii + c(a - a,) = 0 

or 

lti + Ca = cao(t) (2.1) 

This equation is mathematically identical with (1.5), and therefore if the pen- 
dulum is initially at rest we can apply to it the solution (1.6). We find 

ca0 (0) sin 

or 

2?r 

s 

t 
Q=-- 

T o 
a0 (13) sin’s (t - e> de 

The quantity T’= 27r 
J 

f is the natural torsional frequency of the pendulum 
c 

when the pivot is held fixed. Comparison of this expression with (1.8) shows 
that if co(t) is proportional to the acceleration a(t) of an earthquake (a = Zao) 
the maximum amplitude am of the torsional pendulum will be a measure of the 
equivalent accelerator A of the earthquake for the period T(A = la,). Hence 
the acceleration spectrum can be plotted by using a pendulum which can be 
easily tuned through a required range of periods. 

An apparatus based on this principle is shown in figure 2. The pendulum 
consists of a magnesium T bar carrying two movable weights and suspended 
horizontally to a pivot through a piano wire. The natural frequency can be 
varied by moving the weights along the bar, thus changing the moment of 
inertia of the pendulum. Magnesium has been selected for the bar in order to 
obtain a low residual moment of inertia and cover thereby a wider range of 
frequencies with a calibration curve frequency-weight position close to a 
straight line. The pivot mounted on ball bearings is rigidly connected to a 
horizontal arm terminated by a pointer. The earthquake accelerogram lies 
underneath this arm on a carriage which moves horizontally at low speed in the 
direction of the time axis. It is then possible to follow by eye the accelerogram 
curve with the end point of the arm and thereby give the pivot of the pendulum 
an angular motion proportional to the earthquake acceleration. This procedure 
is improved by having the record pass under a bridge made of a strip lying close 
to the paper. The edge of the strip is perpendicular to the time axis of the 
accelerograph and what the eye actually follows with the pointer is the inter- 
section of the accelerogram record with the edge of the bridge. The maximum 
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amplitude of the pendulum is recorded on paper tape by means of an electric 
spark. 

The time scale of course is considerably slower than that of the actual earth- 
quake and depends on the speed of the record. The record can be made to move 
at three different speeds, 0.3 mm/set., 0.5 mm/set., and 1 mm/set., and by 

Fig. 2. A view of the mechanical analyzer by which 
the earthquake spectrum can be plotted. 

changing the position of the weights the frequency of the pendulum can vary 
from 3.25 sec. to 20 sec. The speed of 5 mm/set. corresponds to an earthquake 
about twenty times slower than the actual one and the period of the pendulum 
must be about twenty times longer than the period for which we wish to 
measure the acceleration spectrum. A change in record speed is equivalent to a 
change in pendulum frequency. Using the three record speeds given above with 
various pendulum frequencies, it is possible to cover a range of actual earth- 
quake frequencies from 0.1 sec. to 2.4 sec. 

It takes an average of 8 hours to plot a complete spectrum curve. The total 
cost of the instrument amounts to less than $40. 
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IV. SPECTRUM CURVES OF VARIOUS EARTHQUAKES 

In recent years a number of earthquake accelerograms have been obtained by 
the United States Coast and Geodetic Survey. Four of these records were put 
in the analyzer described above and their acceleration spectrums plotted. The 

Acceleration down 

I 5 seconds I 
----- 

--_--------- 

Acceleration south 

dew\- 

Acceleration west 

Fig. 3. Accelerogram of the earthquake of Helena, Montana, 
October 31, 1935. 

records were chosen for their sharpness and cleanliness. Direct photographic 
prints in the original scale were used. Results are shown and discussed here- 
after. As a check on the accuracy of the results, and also as a help for their 
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interpretation, the spectrum of an artificial sinusoidal earthquake with a length 
of four cycles was also measured. All acceleration spectrums are plotted in 
fractions of gravity as a function of the period in seconds. 

I .f .4 .6 .8 I.0 
Fig. 4. Spectrum of E-W horizontal acceleration of the earth- 

:e of Helena, Montana, October 31, 1935. 

DOW 

-I 
Northeast 

Southeast 

o Seconds 5 10 15 20 --_-----_-------_-----------------_______ I 

Fig. 5. Accelerogram of the earthquake of Ferndale, California, February 6, 1937. 

Helena, Montana, October 31,1935.-The accelerogram is shown in figure 3. 
The first 5 seconds of the E-W acceleration record has been analyzed. 

The corresponding acceleration spectrum is plotted in figure 4. A peak of 
equivalent acceleration of l.lg occurs for a period of 0.16 sec. The maximum 
acceleration on the earthquake record is 0.16g. The amplification due to reso- 
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nance is therefore 6.9. The epicentral distance for this shock is estimated to be 
from 3 to 5 miles. 

Ferndale, California, February 6, 19S7.-The accelerogram of this minor 
intensity earthquake is shown in figure 5. The analysis of the northeast 

Fig. 6. Spectrum of the NE horizontal acceleration of the earth- 
quake of Ferndale, California, February 6,1937. 

acceleration between the instants 4 sec. and 20 sec. yields the spectrum in 
figure 6. The spectrum shows a peak of 0.379 for a period of 0.315 sec. Since the 
maximum intensity of the recorded acceleration is O.O39g, we obtain an amplifi- 
cation of 9.5. The epicentral distance of this shock is estimated at about 
50 miles. 

Northeast 

Southeast 

Fig. 7. A4ccelerogram of the earthquake of Ferndale, California, September 11, 1938. 

Ferndale, California, 10.10 P.M., P.S.T., September 11, I$.%?.-The two hori- 
zontal accelerations in the directions northeast and southeast are shown in 
figure 7. Approximately the first 15 seconds of both records have been analyzed 
and the corresponding spectrums plotted in figure 8. 
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An acceleration peak of 1.029 occurs in both spectrums for a period of 0.19 
sec. No correspondence, however, seems to exist between other peaks. The 
maximum accelerations of the records are 0.17g for the northeast and 0.149 for 

Fig. 8. Spectrums of the Ferndale, California, earthquake of 
September l&1938. Upper curve is spectrum for the acceleration 
in the NE direction; lower curve for the SE direction. 

the southeast direction. This corresponds to amplifications of 6 and 7.3, respec- 
tively. This shock was recorded at the same location and with the same instru- 
ment as the previous earthquake. 
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Fig. 9. An artificial earthquake constituted by a sinusoidal 
acceleration of amplitude O.lg and four cycles 

of period 0.5 sec. 

Fig. 10. Spectrum of the sinusoidal earthquake in figure 6. 

Artificial earthquake.--In order to check the validity of the method, we 
analyzed a sinusoidal accelerogram with a total length of four cycles, shown in 
figure 9. The amplitude of the sinusoidal acceleration is O.lg and the period 
0.5 sec. The corresponding spectrum is plotted in figure 10. A.peak value of 
1.238 occurs for the period 0.5 sec. The amplification is therefore 12.3. On the 
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other hand, it is possible to calculate the amplificat,ion. A sinusoidal accelera- 

tion of unit amplitude sin F introduced in expression 1.9 gives 

2?r 

s 

t 27r 2a0 1 2at t 23rt 
sin-(t-@sin---cZdB=-sin----cos- 

To T T 2T TT 

The maximum values of this function occur very closely at the points t = g y 

T3T 
’ 2 ‘*** 

etc. After 4 cycles t = 4T and the value of this maximum is b = 

12.5, which is very close to the experimental value found above. We conclude 
that the damping of the analyzer has a negligible effect even in the case of 
relatively sharp peaks. 

Remarks.-One of the most striking features of these spectrum curves is 
their great number of sharp peaks in the region of shorter periods. This would 
seem to lead to the conclusion that earthquakes contain a great number of 
individual periods. It might be advanced that these special features are due to 
the characteristics of the recording instrument itself or of the building in which 
it is located. The instrument being highly damped (amplitude ratio l/10), and 
its period being 0.1 second, it cannot produce any of the sharp peaks appearing 
in the spectrums described above. The motion of the building undoubtedly 
exerts an influence on the recording instrument in its basement, since the 
ground on which the building rests is elastic. This effect, however, does not 
seem to be a major one, judging from the two Ferndale records of 1937 and 
1938 obtained in the same building and having a quite different distribution of 
peaks in their respective spectrums. Comparing the spectrums for the 1938 
Ferndale earthquake in the northeast and southeast directions, we notice that 
the individual peaks do not correspond and seem to have little significance. The 
spectrum envelope, on the other hand, is of the same magnitude for both 
curves, and therefore should constitute the basic information for the prediction 
of earthquake stresses. On the other hand, the existence of individual sharp 
peaks could explain the rather large variations in the destructiveness of earth- 
quakes on similar structures at the same location, since a slight difference in 
natural frequency of a structure might correspond to large differences in the 
equivalent acceleration. Another important feature is the high value of the 
equivalent acceleration for the shorter periods. The Helena and 1938 Ferndale 
earthquakes show equivalent acceleration of the order of gravity for periods 
around 0.2 sec. This would indicate that for structures of equal strength the 
earthquake is more destructive on those of periods around 0.2 to 0.5 sec., which 
corresponds to buildings of small to medium heights. From observation of the 
effect of actual earthquakes on buildings, a magnitude of the equivalent ac- 
celeration of the order of gravity does not seem possible, but it must be kept in 
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mind that the spectrum curves given above correspond to negligible damping. 
In fact it must be expected that when the amplitude of the stress reaches the 
yield point in some part of the structure, plastic deformation and dry friction 
will produce by hysteresis a dissipation of energy which will counteract any 
further increase in stress. Assuming, for instance, that this type of damping sets 
in as soon as the equivalent acceleration is greater than 0.2g, the stresses will be 
considerably less than those produced in a completely undamped structure. 

Fig. 11. Standard spectrum proposed to represent those in figure 4 
and figure 8 with special reference to design. 

The damping considered here sets in only at large amplitudes of vibration and 
therefore can be observed only during earthquakes. Another type of damping 
is due to the dissipation of the energy by radiation in the elastic soil support- 
ing the structure. The importance of this type of damping was the object of a 
theoretical investigation by K. Sezawa and K. Kanai.? These remarks point 
to the importance of the damping as a factor in reducing earthquake stresses. 

It was suggested in the previous paper that for design purposes standard 

spectrums should be established, giving the equivalent acceleration as a func- 
tion of the frequency. These standard curves would be the envelopes of a 
collection of earthquake spectrums and could be made to depend on the nature 
and magnitude of the damping and on the location. Although the previously 
analyzed data do not lead to final results regarding such standard curves, we 
may nevertheless reasonably conclude that the spectrum will generally be a 
function decreasing with the period for values of the latter greater than about 

’ “Some New Problems of Forced Vibrations of a Structure,” Bull. Earthq. Res. Inst. 
(Tokyo), 12:845 (1934); “Decay in the Seismic Vibrations of a Simple or Tall Structure 
by Dissipation of Their Energy into the Ground,” ibid., 13:68 (1938). 
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0.2 sec. A standard curve for earthquakes of the Helena and Ferndale types 
mentioned above for values T > 0.2 sec. could very well be the simple hyperbola 

A = F and for TC0.2 sec., A = g(4T + 0.2), where T is the period in 

seconds and g the acceleration of gravity. This standard spectrum is plotted 
in figure 11. Whether this.function would fit other earthquakes can only be 
decided by further investigations. 

V. EARTHQUAKE STRESSES IN A BUILDING WITH ELASTIC FIRST STORY 

In order to show how the acceleration spectrum may be used to calculate 

earthquake stresses in a complex structure, we shall consider the case of a 

- a@) 
Fig. 12. Simplified model of a 

multistory building with an elastic 
first story. 

building with an elastic first story. We assume that the building undergoes only 
a horizontal shearing deformation and that the shearing rigidity and the mass 
are uniformly distributed from the second floor to the roof (fig. 12). 

The following notations are introduced : 

X coiirdinate measured downward from the top as origin 

h total height between the second floor and the top 

M total mass of the building 

kl rigidity of the first story; force necessary to produce a unit 
horizontal displacement of the second floor relative to the 
ground 

k rigidity of the rest of the building; force necessary to pro- 
duce a unit relative displacement of the roof relative to the 
second floor 

u horizontal deflection relative to the ground 
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The method here presented implies knowledge of the natural modes of oscilla- 
tion of the structure. The equation for the free oscillation of the building is 

hkd”” = J!f CPU 
8X2 h at2 

with the boundary conditions 

(4.1) 

au 0 _= 
ax 

atx=O 

hkz= -kIu atx=h 

The deflection curve of each mode is found to be 

z&(x) = ui co9 hi; (4.2) 

where Ui represents an arbitrary roof amplitude of the 9 mode and X is the itb 
root of the equation 

XtanX =1 (4.3) 

The parameter kJlc is the ratio of the elasticity of the first story to that of the 
rest of the building. We shall call it the elasticity ratio. 

The natural periods of the building are 

(4.4) 

The quantity 4 
M 
c is the fundamental period of the building for an in6nitely 

rigid first story. 

The values of 3 for the first three modes are given in table 1 as a function 
n- 

of the elasticity ratio. 

k&C 
_____- 

0 
0.556 
0.834 
1.11 
1.66 
2.50 
3.33 
5.0 

10.0 
co 

-_ 

- 

TABLE 1 

1st mode 
- 

0 
0.433 
0.510 
0.566 
0.656 
0.732 
0.784 
0.842 
0.920 
1.00 

2d mode 3d mode 

2 4 
2.11 4.02 
2.15 4.08 
2.20 4.11 
2.28 4.16 
2.38 4.23 
2.46 4.30 
2.57 4.40 
2.74 4.60 
3.00 5.00 
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We shall now use the results just given to derive the forced oscillations and 
the stresses produced by the earthquake. It is well known that any motion can 
be considered as a superposition of oscillations of each mode. Each of these 
modes behaves like a simple oscillator and their motions are independent of 
each other. We may therefore apply to each mode separately the treatment 
used above for the case of a o,ne degree of freedom system. 

Let us imagine that by some complicated restraining mechanism the build- 
ing is only allowed to deflect in a shape identical with that of the first mode 
(i = 1). The whole building then becomes a one degree of freedom system. 
Suppose now that a unit horizontal acceleration is gradually applied to the 
ground so slowly that no oscillations are produced; what will be the deflection 
of the building? The answer to this question is easily obtained by using the 
energy method. The effect of a unit acceleration is the same as if a uniformly 
distributed horizontal force equal to M/h per unit length were applied gradu- 
ally to the building. The work done by this force is 

1M h 

s 

1M h 
-- 
2h o 

uldx =--4Ju1 cos * dx 
2h s 0 h 

On the other hand, the elastic potential energy is 

1 M 

s 

h 1 M 

s 

h 

-f&2- u12 dx = - w?- U12 cos2 Lx dx 
2 h o 2 h 0 h 

(4.5) 

(4.6) 

with w1 = f . The latter expression is really that of the kinetic energy in the 
1 

fundamental mode of vibration at the instant of zero deflection, but we know 
that this kinetic energy is equal to the potential energy at the instant of maxi- 
mum deflection. Expressions (4.5) and (4.6) must be equal, hence 

s h 

cosXxdx = w2U 11 
s 

hcos2kxdx 
0 h 0 h 

(4.7) 

which is an equation for the roof deflection U1 of the fundamental mode due to 
a unit constant acceleration. We find 

(4.8) 

The distribution of the total shearing force along the height is given by the 
expression 

kh!!!!! = -_Lux sin? 
dx 

11 
h 

(4.9) 
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Its maximum value occurs for x = h and is constant t,hroughout the first story, 

hence the maximum total shear is 

with 

(4.10) 

(4.11) 

’ Comparing with expression (1.3), we see that in a building with distributed 
mass and elasticity the fundamental mode picks up only a fraction Cl of the 
shear which would be produced in a one degree of freedom system of the same 

Icl 
mass. This coefficient Cl is a function only of the elasticity ratio - . 

k 
The action of an earthquake on the first mode of the building can now be 

deduced as in the case of a simple oscillator. The maximum shear generated in 
the lower mode will be 

x1 = ClMA(T1) (4.12) 

where A(!?,) is the value of the equivalent acceleration for the fundamental 
period T1 of the building. 

In the same way the maximum shear in each of the higher modes is 

xi = CiMA(Ti) (4.13) 

where Ti is the period of the particular mode considered. The value of the CO- 

efficient Ci for the higher modes is 

Ci = +21”:i$Q (4.14) 

Comparing with the expression (4.11) for C1, we notice that the factor sin Xi in 
the numerator occurs with the first power instead of the square. This corre- 
sponds to the fact that for the higher mode the maximum stress occurs for 

sin 2 = 1 and not foa x = h. 
h 

The coefficients Ci for the three lower modes are tabulated in table 2 as 
functions of the elasticity ratio. 

It appears from the values in tables 1 and 2 that the effect of an elastic first 
story may be considered as twofold. According to table 2, the distribution of 
stress among the various modes will be modified. This effect, however, is of 
little practical significance since the values of C1 show that the fundamental 
mode will generally carry the greatest part of the shear in all cases. Hence, 
from the designer’s viewpoint, the effect of an elastic first story is essentially 
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the same as that of lengthening the period of the building. From the experi- 

mental spectrum curves given above, it is seen that for periods above 0.2 or 0.3 

sec. an increase in period corresponds to a decrease in equivalent acceleration; 

therefore an elastic first story will in general decrease the stresses. Table 1 

shotis that the period is appreciably affected only for values of the elasticity 

ratio smaller than three. It is clear, therefore, that in high buildings an elastic 

first story will not be effective unless it is flexible beyond practical limits of 

construction. Moreover, the fundamental period of high buildings being around 

TABLE 2 

0 
0.556 
0.834 
1.11 
1.66 
2.50 
3.33 
5.00 

10.00 

- 

.- 

1st mode 
Cl 

---- 

1 
0.993 
0.992 
0.982 
0.965 
0.947 
0.931 
0.910 
0.870 
0.816 

- 

2d mode 

Ca 

3d mode 

c3 

0 0 
0.0295 0.00436 
0.0392 0.00621 
0.0472 0.00788 
0.0595 0.0115 
0.0712 0.0155 
0.0784 0.0185 
0.0850 0.0230 
0.0912 0.0291 
0.0905 0.0326 

1 sec. or more, occur in a region of the spectrum where the equivalent accelera- 

tion is relatively small and constant in value so that no practical benefit can be 

obt,ained by lengthening the period. As for the shorter buildings of periods 

around 0.2 or 0.3 sec., the question remains open whether to build them very 

stiff and give them very short periods, or to use an elastic first story to increase 

their period. The answer to this appears to belong to the field of practical de- 

sign and may depend upon the particular requirements of each case. 

VI. EARTHQUAKE STRESSES IN THE SAN FRANCISCO-OAKLAND 

BAY BRIDGE 

Formula (4.13) may be generalized to predict earthqlake stresses in trusses 

and cables. The maximum shear S, and the bending moments M, in each mode 

of vibration excited by the earthquake in the truss or cable may be written 

respectively 

S, = C, S,! (T,) (6.1) 
9 

(6.2) 
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where S, and M, are the maximum shear and bending moments produced by a 
static horizontal force equal to gravity and T, the period of the particular 
mode considered. The coefficients C, and B,, which may be called “efficiency 
factors,” depend on the type of structure and the order of the excited mode. 
Values of these coefficients for a cable and a pin-ended uniform truss are given 
in table 3. The coefficients for a cantilever beam are of the same order as those 
of a pin-ended truss. 

TABLE 3 

Order of excited mode n=l n=3 n=5 

C,forcsble............................... 0.816 0.0905 0.0326 
C,fortruss............................... 0.816 0.010 0.0013 
B,fortruss............................... 1.03 0.012 0.0916 

Using the data in a paper by Raab and Wood,8 and the standardized en- 

velope A(!!‘) = y g represented in figure 11, we can apply these results to 

evaluate an upper limit for the stresses which would be produced by an earth- 
quake of the Helena or Ferndale type in the San Francisco-Oakland Bay Bridge. 

The formulas given above apply only where the ground moves rigidly, and 
would not cover the case where the towers of the bridge and anchorages are 
moving out of phase. However, in the latter case it may be verified that the 
stresses are generally less than they would be if the ground were rigid. 

Center-span truss.-The measured period in the center-span truss being 9.0 
sec., from the formulas (6.1), (6.2), and the coefficient Cl = 0.816 we find the 
maximum shear in the fundamental mode 

s1 = 0.017 s, 

This is the same as that produced by a static force of 1.7 per cent gravity. 
Similarly for the bending moment, applying formula (6.2) with B1 = 1.03 

Ml = 0.022 M, 

We may say that the equivalent accelerations for this case are 1.7 per cent and 
2.2 per cent gravity. 

Side-span truss.-According to Raab and Wood, a probable period of the 
side span is 3 sec. This corresponds to end conditions intermediate between 
pin-ended and fixed. 

The maximum shear and bending moment for the fundamental mode are 

x1 = 0.053 s, 
Ml = 0.067 M, 

8 N. C. Raab and H. C. Wood, “Earthquake Stresses in the San Francisco-Oakland Bay 
Bridge,” Proc. Am. Sot. Ciu. Engin. (1940). 
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The equivalent accelerations for the shear force and bending moments are 
respectively 5.3 per cent and 6.7 per cent gravity. 

Cables.-The periods for the center-span and side-span cables are respec- 
tively 5.9 and 3.1 sec. Hence the corresponding maximum shear stresses for the 
fundamental mode of these cables are 

& = 0.027 S, 
x1 = 0.053 s, 

The equivalent accelerations are 2.7 per cent and 5.3 per cent gravity. 
Higher modes.-The stresses in the higher modes are smaller than in the 

fundamental. Take, for instance, the case of the side-span truss. The excited 
symmetric mode next to the fundamental will have a period around 0.3 sec. 
Using the coefficients C3 = 0.010 and Ba = 0.012 of table 3, we find the shear 
and the bending moment. 

s3 = 0.0066 s, 
MI = 0.008 M, 

These stresses are negligible as compared to those in the fundamental mode. A 
similar conclusion holds for the cables. 

Remarks.-We have calculated the stresses which the Helena and Ferndale 
earthquakes would produce in the San Francisco-Oakland Bay Bridge and 
found that a stress corresponding to a static force of 6.7 per cent gravity could 
be produced in the side-span truss. The peak acceleration of the earthquakes 
considered is about k7 per cent gravity. Since stronger earthquakes with a 
peak intensity of 30 to 40 per cent gravity are not improbable, it seems that 
we should have to consider side-span stresses corresponding to an equivalent 
acceleration of about 10 to 12 per cent gravity. We must remember, however, 
that the effect of the damping has been neglected. This effect for large stresses 
can be quite considerable, owing to the friction at the expansion joints, local 
plastic deformations, and the dissipation of energy by radiation in the ground 
through the foundation and the anchorage. 

VII. CONCLUSIONS 

From the viewpoint of the designer the basic information regarding the dynam- 
ic effect of earthquakes on undamped structures can be condensed in a simple 
curve, which we call an earthquake spectrum. If the spectrum of a given earth- 
quake is known, an upper limit for the stresses produced by that earthquake in 
any structure may be readily evaluated if we know the natural periods and 
modes of oscillation of the structure. A number of strong-motion records have 
been analyzed and their spectrums measured by means of a mechanical ana- 
lyzer. Results for the Helena, 1935, and Ferndale, 1938, earthquakes show that 
for periods around 0.2 sec. the equivalent acceleration can be as high as 
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gravity. In other words, during those earthquakes an undamped structure of 
0.2-sec. period would undergo a horizontal shear equal to its own weight. 
Observations of the effect of actual earthquakes indicate that for most struc- 
tures such high stresses are not reached and this points out the importance of 
the damping or other causes of stress reduction. Considerable hysteresis damp- 
ing will set in as soon as the yield point in some part of the building is reached. 
The equivalent acceleration falls rapidly for increasing periods, so that increas- 
ing the period of a structure increases its resistance to earthquakes. The effect 
of an elastic first story in a building is found to be mainly the same as that of 
lengthening the period. Consequently the earthquake stresses will be reduced, 
but the effect will only be appreciable in short buildings of periods around 0.2 
to 0.5 sec. When we possess a collection of earthquake spectrums at a given lo- 
cation, it is suggested that a simplified envelope should be used as a standard 
spectrum for the purpose of design in that region, Further investigation is 
needed to establish such reliable spectrum envelopes and correct them for the 
influence of the damping and other causes of stress reduction. 

. 
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