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The author’s general theory is applied to the calculation of the settlement through consoli- 
dation of a soil loaded uniformly on an infinite strip of constant width with particular reference 
to the nature of the settlement at the edge of the loaded area. The solution is obtained by first 
calculating the settlement produced by a suddenly applied load with sinusoidal distribution. 
The use of a Dirichlet integral and the principle of superposition leads then directly to the 
solution for the discontinuous loading. 

I N the calculation of foundations and the 
prediction of settlement we are not so much 

interested in the absolute value of the settlement 
but rather in the differences in settlement which 
can occur in a loaded area due to differences in 
load intensity. Then differential settlements are 
the direct cause of damage in buildings and 
structures carried by the soil. A typical case of 
settlement due to differential loading occurs 
when the load is applied uniformly to an infinite 
strip of constant width. In particular one may 
ask what happens at the edge of the loaded area ; 
how much additional settlement is due to the 
water flowing from the loaded region to the 
unloaded region; how much restraint does the 
settlement of the loaded area encounter from 
the unloaded region; and how much settlement 
does the unloaded area undergo in the vicinity 
of the load. The present paper is a quantitative 
answer to these questions. The problem is essen- 
tially one of two-dimensional strain in a plane 
perpendicular to the axis of the loaded strip. 

1. SETTLEMENT UNDER A LOAD WITH 

SINKSOIDAL DISTRIBUTION 

In the previous paper1 we have established the 
following equations for the consolidation of a 
completely saturated clay : 

G ae au 
Go:+--- ---=Q, 

i-2vax ax 

G de an 
GV;+------=O, 

1-2vay ay 
(1.1) 

* On leave of absence from Columbia University. 
‘M. A. Biot, “General theory of three-dimensional 

consolidation,” J. App. Phys. 12, 1.55 (1941). 
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G ae au 
G&+-----=O, 

1-2v az a2 

d= (i/~)(a~/at>, (1.2) 

where u, ZJ, w are the components of the displace- 
ment of the soil and G, v, are the shear modulus 
and Poisson ratio for the completely consolidated 
clay. 

e = a24/ax+av/ay+aw/az. 
c=k/a coefficient of consolidation. 
k = coefficient of permeability. 
a = (1 - 2v)/2G( 1 - v) final compressibility. 
u = water pressure increment in the pores. 

We consider an infinitely deep layer of clay 
and take the xy plane to coincide with the surface 
while the z axis is oriented positively downward. 
We propose to find the settlement of the surface 
of the clay where a uniform load is suddenly 
applied at the instant t=O at the surface of the 
clay on a strip infinitely long in the y direction 
and extending from x= --l/2 to x=1/2. The 
water contained in the clay is assumed to escape 
freely at the surface so that the water pressure 
at the surface is a constant equal to the atmos- 
pheric pressure. This is essentially a two-dimen- 
sional problem where v=O and all unknowns are 
functions only of x and z. We shall solve this 
problem by first considering a load distributed 
sinusoidally along the x direction and then using 
a Fourier expansion and the principle of super- 
position to find the settlement for a rectangular 
load distribution. 

The settlement due to a sinusoidal load applied 
suddenly at the instant t =0 is found most con- 
veniently by the operational method. In the 
present two-dimensional problem writing sym- 



bolically a/a!=p, Eqs. (1.1) and (1.2) become Solving Eqs. (1.5) for C3 we find 

G&j- 
G ae aa 

----~(), 
A (I- V)X2+$qBc+(1 - v>x(X”+plc)~ 

l-2vax ax 

G ad an 
(1.3) 

c3= --g 

x2+Pl@ (1.7) 

G&+----=0, with 
l-2v as as 

V&/C. 
/3=(1-Zv)/(l-v)2. 

The soil deflection at the surface as a function 

We have to solve these equations with the of time for a sudden sinusoidal load distribution 

boundary conditions is written in operational form 

(1) that all variables vanish at infinite depth A sin Xx IA2 
w= l- 

z= 00, 2GX x2+ P/PC 

(2) a=0 at z=O, 
+ 

(1 - v)X(h2+p/c)~ 

x2+ P/PC 1 1 (I). (1.8) 

(3) flZ=2i[z+&) = -A sin Xx at z=O, 
.The function represented symbolically by this 
e.quation may be calculated from the following 
operational expressions 

au aw. .-. 
(4) Gfax==O at z=o. 

The second condition expresses that the water is 
free to escape at the surface. The last two equa- 
tions express that at the surface the normal stress 
is equal to the load and the shearing stress is zero. 
These conditions are derived from relations (2.11) 
in the previous paper by putting g = 0. 

We may verify that a solution of Eqs. (1.3) 
satisfying the boundary conditions (1) is 

a = [C&-X”+ C2~&+P/cA 

- &(I- XZ)t+“] cos xx, 

w=[ _ CrXe-Xz_ C2(X2+p/c)le-(“*+~/cjf~ 

- C&e+] sin Xx, 
(1.4) 

u = [C2(p/ac)e- (h’+pl~)~z-2C~G~e-h”] sin XX. 

The arbitrary constants Cl, CZ, Ca, are to be 
determined by introducing these values of u, V, w, 
in the three boundary conditions (2), (3), (4). 
We find 

Cap/c - 2GaXC3 = 0, 

CrXZ+Cp(X2+p/2Gac) -CaX= -A/2G, (1.5) 

-CCIX-Cz(X2fp/c)~+C3=0. 

Now we are interested only in the vertica1 de- 
flection ti at the surface .z=O. This value is 

w = [_CJ- C2(X2+p/c)“] sin Xx 

= - CI sin XX. (1.6) 

427 

(1.9) 

x(i+p/c)t 

AI;+&C 
1(t) =P[X(c@] 

. ..*’ _(l-,)*e-x’sc”p[X((l-_)ct)f], (1.10) 

t\&ere 

.gt 
P(x) =f Je-r”d3 

0 

is _$ tabulated function called the probability 
integral. .-. 

The first operator is elementary2 while the 
second. may be derived by using the shifting 
formula3 from the well-known operator. 

(1.11) 

With these results the deflection of the soi 
surface is finally written 

A sin Xx 
w= 2GX (l-v(l-e-~e@~~)+(l-v)PIX(cl)f] 

- ve ““Bc”P[X((1-_8)ct)t]j. (1.12) 

2 Th. van Karman and M. A. Biot, Mathematical Methods 
in Engineering (McGraw-Hill, 1940), cf. Chapter X. 

a V. Bush, Operational Circuit Analysis (John Wiley, 
1929), pp. 130 ana 191. 

JOURNAL OF APPLIED PHYSICS 



1 percent by 

F(O, r) = 1 -@lrt++,-‘.sr. (2.4) 

The integrations in expression (2.3) can then be 
performed by means of elementary functions. 
We find 

+I tan-l 
n= 

By adding a load equal to PO/~ and extending 
from - 00 to 00 we obtain a total load p, extend- 
ing from 0 to 00 as shown in Fig. 2. The settle- 
ment for this case is obtained by superposition. 
Denoting the right-hand side of Eq. (2.5) by 
f(t) this settlement is 

~~=2ap0 - 
0 

ct iCf+f(c)l. (2.6) 
7r 

In order to represent the settlement as a 
function of time it is convenient to introduce for 
the abscissa a characteristic length 1 which can 
be chosen arbitrarily and write 

w~=P~p,(q)~[~+f(f~)]. (2.7) 

FIG. 2. Settlement of the soil surface at various time 
intervals for a load extending from x=0 to x= C-Z. 

due to water flowing out at the surface directly 
under the load. In the second phase the settle- 
ment is due partly to water flowing from the 
loaded region to the unloaded region so that this 
increases the settlement in comparison with the 
case when the load is applied uniformly from 
x= - ~0 to x= + CQ . This effect, however, is very 
small and is hardly visible in the figure. In the 
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Then settlement curves arc plotted as a func- 
tion of x in Fig. 2 at time intervals corresponding _ 
to (ctt/Z) =+, 4. $, $. 2, and compared directly 
with the settlement 

wSi = 2apo(ct/n) 4, 

which would have occurred after the same time 
intervals if the load extended from x= - 00 to 
x = 00. These settlements are represented by the 
horizontal lines of ordinates 

The slope of the soil deflection at the edge of 
the loaded area (X =0) is infinite as may be 
verified analytically by calculating the derivative 
df/dE for .$ = 0 ; it constitutes, therefore, a singular 
point probably associated with infinite stresses. 
However, this infinite slope does not show up in 
the plotted curve because it is a highly localized 
effect. 

It is interesting to follow the settlement at a 
given point X. Consider first a point located under 
the load (X > 0). The settlements w8 and w,, are 
equal at first, then w. becomes slightly larger 
than w,i while. for large values of the time W, 
becomes smaller and smaller compared to w8ir 
This is due to three distinct phases in the settle- 
ment. In the first instant the settlement is mostly 

/ ,,,,,,,, m” ,,,,, 
I I - 

ad LJ(f -jo p” -‘i 
i 

FIG. 3. Rectangular load distribution. 



FIG. 4. Settlement of the soil surface at various time in- 
tervals for the load distribution represented in Fig. 3. 

third phase the unloaded‘ region restrains the 
settlement of the loaded area because of the 
elastic stresses originating between the two 
regions. Similar phases can be distinguished for a 
point lying outside of the loaded area (x<O). At 
first no motion is observed; then the surface is 
lifted by a slight amount. This swelling of the 
soil is due to the water escaping for the loaded 
region. Finally a settlement is observed because 
the unloaded region is dragged down elastically 
by the settlement of the loaded area. 

3. SETTLEMENT UNDER A RECTANGULAR 
LOAD DISTRIBUTION 

By superposition we may easily derive from 
the previous solution the settlement due to a 
constant load extending from x = -l/2 to x = l/2 ; 
as shown in Fig. 3, using the solution (2.6) we 

may write for the settlement 

The settlement curves are represented in Fig. 4 
as a function of x at time intervals corresponding 
to (d/Z)=+, i, $, *, Q, and compared directly 
with the settlement wsi which would have 
occurred after the same time intervals if the load 
extended from x = - 00 to x= + 00. These settle- 
ments are represented by the horizontal lines of 
ordinates 

It will be noted that immediately after loading 
the settlement is little affected by the unloaded 
regions on both sides, while in the last phase the 

FIG. 5. Ratio of 
settlement at the 
middle of the 
loaded area (x = 0) 
to the settlement 
which would take 
place if the load 
extended from x = 
- m tox=+m. 

settlement is considerably reduced by the re- 
straining effect of the unloaded regions. The 
settlement at the center of the loaded area is 
obtained from (3.1) by putting x=0 

28, =4apo(ct/~)2f[z/2(ct)i]. 

We may also write 

(3.2) 

w,,/wsi=2f[Z/2(ct)?]. (3.3) 

This ratio which represents the restraining effect 
of the unloaded regions is plotted in Fig. 5 as a 
function of (ct)*/Z. The larger the size of the 
loaded area the less quickly this restraining effect 
comes into play. It will be noted that for small 
values of t the ratio wJw,i is slightly larger than 
unity which means that the settlement is in- 
creased by water flowing from the loaded region 
to the unloaded region. We have assumed the 
Poisson ratio to be zero. From the remark at the 
end of paragraph 2 we may deduce that if this 
is not the case the restraining effect of the * 
unloaded region will be still greater. 
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