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An investigation is made of the consolidation settlement for a soil whose top surface is 
impervious and loaded uniformly on an infinite strip of constant width. The settlement under 
the load is accompanied by considerable swelling of the unloaded area on both sides of the load. 

I N a previous publication1 the settlement of a 
consolidating soil under an area of constant 

width was obtained when the water is allowed to 
flow freely through the top surface both outside 
and under the load. We are going to investigate 
the same problem when the top surface is com- 
pletely impervious both outside and under the 
load. It is clear that in this case the settlement is 
due to the fact that the water contained in the 
soil flows from under the load to unloaded 
regions. Since it is assumed that the water 
cannot escape through the top surface, this will 
produce a swelling of the unloaded area in the 
vicinity of the load. For the basic theory the 
reader is referred to a recent paper.2 

I. SETTLEMENT UNDER A LOAD WITH 

SINUSOIDAL DISTRIBUTION 

In the previous paper2 have been established 
the following equations for the two-dimensional 
problem of the consolidation of completely satu- 

1 M. A. Biot, “Consolidation settlement under a rec- 
tarrgrlarAloa~~lstribution, J. App. Phys. ,12, 426 (1941). 

“General theory of three-dimensional con- 
solidation,” J”. ‘App. Phys. 12, 155 (1941). 
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rated clay with zero Poisson ratio 

de au 
GVz~+G---=O, 

dx dx 

GV2w+Gaf-d”=0, 

(1.1) 

dz az 

V%=p,/c. 

In these equations u and w are the components 
of the displacement of the soil, E= au/ax+aw/& ; 
G is the shear modulus for the completely con- 
solidated clay ; c = k/a coefficient of consolidation ; 
k is the coefficient of permeability; a=1/(2G) 
the final compressibility ; u water pressure incre- 
ment in the pores; p=d/at symbolic operator. 
These equations must be solved with the bound- 
ary conditions (1) that all variables vanish at 
infinite depth z= XJ ; (2) %/dz=O at z=O; 
(3) - o+2Gaw/a2 = -A sin Xx at z = 0 ; (4) au/az 
+dw/dx = 0 at z= 0. The second condition ex- 
presses that no water flows from the top surface. 

The last two conditions express that at the 
surface the normal stress is equal to the load and 
that the shearing stress is zero. 
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It may be verified that a solution of Eqs. (1.1) 
satisfying the boundary condition (1) is 

id=[C1Xe-Xz+C2Xexp [-(Xz+p/c)tz] 

- C,( 1 - Xz)e-Xz] cos Xx, 

w = [-- CIXecXz- C2(X2+p/c)+ 

Xexp C- (X*+P/c)*z] 

- C3Xze&“] sin Xx, 
(1.2) 

u= 2G[Cz(p/c) exp [ - (X*+p/c)*z] 

- C3Xe-xz] sin Xx, 

in which the arbitrary constants Cr, CZ and Cs 
are to be determined so that the remaining 
boundary conditions (2), (3) and (4) are satisfied. 
We find 

(p/c)C*(X~+p/C)~--C3X~=0, 

2GX2(C1+Cz)= -A, 

XC~+(X*+p/c)~Cz-C=o. 

(1.3) 

We are interested in the vertical deflection w at 
the surface, s=O. This value is from (1.2) and 

(1.3) 

w= [ - CIX- C2(X2+p/c)+] sin Xx 

= -C3 sin Xx. (1.4) 

Solving (1.3) for Ca we obtain 

Cs=A 
(l +p/x*c>+ 

2GX @“c/p-l)(p/X*c+l)+-X*c,‘p’ 
(1.5) 

The soil deflection at the surface as a function 
of the time for a sudden sinusoidal load distribu- 
tion is written in operational form 

A sin Xx p2/c2X4 - 1 - (1 +p/cx”)a 
w= 

2GX p*/c*x4-p/cx2- 1 
. (1.6) 

The function represented symbolically by this 
equation may be calculated from the following 
operational expressions. 

p*/&-t4 

p*/A4 -p/CA* - 1 
1(t) = exp cip’2’ [sinh ($*ct) +.5t cash ( GA2d)]. 

1 

p*/c2x4 - p/cx* - 1 
1 (t) = - exp ‘zy’[-sinh (Gh2ct)+5*cosh (~~2ct)]-l, 

(l+PlCh2)t 
--1(t) = 

exp [(l+S*)X*ct/2] 

p*/c*x4 -p/LA* - 1 5: 
P[(l+s*)X(ct)+]-P[X(ct)q 

(1.7) 

(1.8) 

exp [(l--5))X*ct/2] 
- 

5% 
-P[(l-s*)h(ct))]. (1.9) 

The first two operators are tabulated” while 
the third is derived by separation into partial 
fractions and applying the shifting formula4 to 
the well-known operator 

pSl(t) 2_. 
(art) t 

(1.10) 

With these results the deflection at the soil 
surface is written 

A sin Xx 
w=--h- l+P[X(ct)(] 

1 

+ 
exp [(1+5t)X2rt/2] 

51 
(l --pC(l +s+)X(ct)~]) 

exp [ (1 - S+}X*ct/2] 
-__ 

51 
(1 --P[(l -Sql(Ct)+]) . 

I 
(1.11) 

In these formulas we have 
3 E. Berg, Heauiside’s Ofizrational Calculus (McGraw- 

Hill Book Company, Inc., New York, 1929), p. 165. 
4 V. Bush, Operataonal Circuit Analysis (John Wiley and 

Sons, New York, 1929), pp. 130, 191. 
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FIG. 1. Settlement of soil surface at various instants of 
time for a uniform load po extending from x=0 to 
x= M. 

a tabulated function called the probability in- 
tegral. 

The settlement is composed of two parts: a 
purely elastic deflection which occurs at the 
instant of application of the load and a settle- 
ment due to consolidation which occurs gradually 
thereafter. Since we are interested only in the 
latter we proceed as follows: 

For t =0 the deflection is purely elastic, its 
value is 

wi = A sin XX/~GX. (1.12) 

The settlement due to consolidation is 

Ws=W-Wia (1.13) 

For convenience we will write Eq. (1.13) in the 
form 

ws = (aA/X) F[X(ct)i] sin Xx. (1.14) 

II. SETTLEMENT UNDER A UNIFORM LOAD 
WITH DISCONTINUITY 

For practical purposes we are interested in the 
differential settlement occurring when the load 
distribution has a discontinuity. Such a load 
distribution will be represented by the following 
function of x 

PO 

s 

* sin Xx 
v(x) =- -dX (2.1) 

T 0 x 

in which case q(x) = -PO/~ for x<O, PO/~ for 
x>O with a discontinuity at x=0. 

The settlement due to this load is obtained 
from (1.14) by the principle of superposition ; 

FIG. 2. Settlement of soil surface at various instants of 
time for a uniform load PO extending from x=-l/2 to 
x= +1/2. 

FIG. 3. Rates of the settlement at the center of the 
loaded area in Fig. 2 when the top surface is pervious to 
the settlement, when the top surface is impervious. 

we find 

aP0 w,=- S 
m F[X(ct)i] 

sin Xx& (2.2) 
vr 0 x2 

which can be written in the form 

e(i)“=$J”ysin (7l)d-r (2.3) 

with [=x,/(d)?. 
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This integral can be evaluated numerically by 
the use of an approximate analytical expression 
for the function F(r). It may be verified that 
this function is represented within 2 percent by 

F(r) = 1 -e--~-ye-~’ - 1 .06y2e-3r 

+0.28y2e-‘.2”. (2.4) 

If (2.3) is integrated with the substitution 
(2.4) we find 

W8 n- 0 
* 1 

- - 
2ap0 ct 

=-$ log l++ +--$ tan-r E 
7r ( > 

1 1.06.$ 0.28E 

-24 tan-1 ‘Y2 - %- 2r’(9+P)+2~~(1.44+~;);5) 

By adding a load equal to PO/~ and extending 
from x= - 00 to x= + m we obtain a total 
uniform load extending from x=0 to x= ~0 as 
shown in Fig. 1. In doing so we do not change 
the settlement because the water is imprisoned 
in the soil by the impervious layer at the surface 
and therefore a load extending from x= - 00 to 
x= + m cannot produce any settlement. Hence 
the settlement for the load $0 extending over 
the positive x axis is given by the same expression 
(2.5) which we write 

w, = 2ap0(ctln) %t>, 

where f(t) denotes the right-hand side of Eq. 
(2.5). It is clear that the volume of the water in 
the soil being constant, the total area under the 
curve f(t) is zero. 

In order to represent the settlement as a 
function of time it is convenient to introduce for 
the abscissa a characteristic length 1 which can 

be chosen arbitrarily. We then have 

2 (ct)i x 1 
ws=-apol- -- 7rt 1 4 1 (ct)i 1 . (2.6) 

Then settlement curves are plotted as function 
of x in Fig. 1 at time intervals corresponding to 
(ct)i/Z= l/8, 2/S, 3/8, 4/S, S/8. 

III. SETTLEMENT UNDER A RECTANGULAR 
LOAD DISTRIBUTION 

By superposition we may easily derive from 
the previous solution the settlement due to a 
constant load PO extending from x= -l/2 to 
x=1/2. Using (2.6) we get 

w?>Po~~ [f(Z) -9(S)]. (3.1) 

The settlement curves are represented in Fig. 2 
as a function of x at time intervals corresponding 
to (ct)+/l= l/8, 2/8, 3/8, 4/8, S/8. 

It will be noted that immediately after loading 
the settlement at the edge is greatly affected by 
the unloaded section adjacent to it. This un- 
loaded section provides an escape for the water 
which is not as readily available for the water 
under the center of the load. Also since this load 
and deflection are symmetrical to the line x=0 
no water will flow across this line and therefore 
the area under the curve from 0 to ~0 must be 
equal to zero. 

If the ratio of the deflection at x= 0 is com- 
pared with the case in a previous paper2 in 
which the loading is the same but the water was 
allowed to flow freely from the top surface the 
effect of an impervious top surface will be seen. 
This comparison is made in Fig. 3. 
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