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The calculation of the settlement and bending of an elastic slab resting on a consolidating 
foundation under the action of a load concentrated on a line. Two cases are considered: first, 
when the slab is perfectly pervious to water, and second, when it is impervious. The problem is 
two-dimensional. 

1. SETTLEMENT OF A PERFECTLY POROUS SLAB 
UNDER A SINUSOIDALLY DISTRIBUTED 

LOADING 

I 
N previous papers*v3 the problem of settlement 

was considered in case the load was directly 

applied to the soil. We shall now evaluate the 

settlement for the case where an elastic slab is 

interposed between the load and the soil. The 

problem is analogous to that of the bending of a 

beam on an elastic foundation which was treated 

in an earlier publication.2 In fact it may be con- 
sidered as a particular case of the present 
problem. 

We shall first evaluate the settlement of a slab 
under a sinusoidally distributed load. Consider a 
slab of stiffness EI per unit width resting on a 
foundation. The vertical deflection w under a 
vertical load e(x) and a reaction PI(X) of the soil 
satisfies the differential equation 

EId4w/dx4=&)-PI(X). (1.1) 
Putting 

w=wo cos xx, 
p = po cos xx, 

p,=A cos Xx, 
we find 

EIX4wo = p. - A. (1.2) 

This is a relation between the beam deflection 

* On leave of absence from Columbia University. 
l M. A. Biqt, “Consolidation settlement under a rectan- 

;;k) load distribution,” J. App. Phys. 12, 426 (May, 

* Ik A. Biot, “Bending of an infinite beam on an elastic 
foundation,” J. App. Mech. 4, (March, 1937). 

a M. A. Biot and F. M. Chngan, “Consolidation settle- 
ment of a soil with an, impervious top surface,” J. App. 
Phys. 12, 578 (July, 1941). 

and the soil reaction. Another relation between 
the soil reaction and the deflection has been 
obtained in a previous paper.2 Assuming the 
Poisson ratio to be zero (V = 0) formula (1.8) of 
this previous paper yields in operational form 

1 

Cl +9102c>It 1 ’ 
(1.3) 

where a = 1/2G is the compressibility and p is the 
differential operator a/at with respect to time. 

From (1.2) and (1.3) we derive 

w,= 
P0a 

. (1.4) 
1 

~ , 

l+llcl+P/(~2c)l~ 1 
Now we are interested primarily in the settle- 
ment due to consolidation. We therefore subtract 
from wg the initial elastic deflection at f=O. 
This deflection is obtained by putting #= Q) in 
the expression for wo. The value of the settlement 
is therefore 

P0a 1 cos xx. 
X[EIX3a+ l] 

(1.5) 

The following notation is introduced 

EIa = b3, 

where b is a characteristic length and y= bX. 
Then the settlement may be written 

1 
ws=bapo 

(~3+1)C1+Pl(X2C)l~-_y3 

r(r3+1)‘6(Y3+1)2(l+pl(Xzc))-yal’ 
(1.6) 
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Actually this expression is an operator by which 
it is possible to find the time settlement relation 
when the sinusoidal load is applied suddenly at 

FIG. 1. Settlement of a pervious slab under a concentrated 
load P at various instants (2/7=(&)*/b). 

the instant t = 0. The two operators appearing in 
the above expressions lead to the following 
functions 

----1(t) =&A) - 
(l+P>* (l--a)* 

----e-~-“l”P[((l-ar)t)*], 
p+a a CY 

(1.7) 
1 

-l(t) =+1-e+), 
B+P P 

where 

P(X) =$ S 
5 
e-t’dc. 

n- 0 
Putting 

7=ctp, s=q/(l+r”), 

1 
47, 7)= 

r(2r”+l) 
{P(rz/7) - 6 

+6e-(1b*)Yz7[1-P(~y~/7)]}, (1.8) 

we derive the value of the time settlement func- 
tion for a suddenly applied sinusoidal load at 
t=o, 

zLJs= ba$Jocp(y, 7) cos xx. (1.9) 

2. SETTLEMENT OF PERFECTLY POROUS SLAB 
UNDER A CONCENTRATED LOAD 

From the value of the sinusoidal settlement 
we derive the settlement under an arbitrary load 
distribution $0(x) by using a Fourier integral 
representation of the load. 

PO(X) =~J-dhJ+Wfio(xI) cos X(x-XI)dXI. (2.1) 
--m 

The corresponding settlement of the slab will be 

m 
W,(X) =” dy 

s s 

+@ 

fio(aMY, 7) 
n-0 -03 

xcos ;(x-xl)dzl (2.2) 

or 

Xcos +I). (2.3) 

Now if we have a concentrated load P extending 
over an infinitesimal interval x= --E to x=e we 
may write, +e 

P= S poem -6 

FIG. 2. Maximum bending moment due to settlement as a 
function of 1/r = (ct)*/h. 
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and the settlement becomes 

aP m 
w,(x) = - 

s 
cp(Y, 7) cos rldr (2.4) 

17 0 

with x/b = ,f. 
In order to integrate this function the following 

approximations for cp(y, 7) are substituted, 

cp[y, (0.EQ2] = 7.05ye-4.1r - 0.7e-5-sr 

-0.062e-1~7~+1.32e-8~06~, 

cp[y, (1.0)2j = 17.0re-4.6y - 1.6e-+ 

-00.062e-‘.7r+2.79e-9.0au 

q[y, (1.5)2]=25.0ye-4~gr-3.4e-6.7r 

-0.160e-2~f5.2.5e-g~04~, 

q~[y, (2.0)2]==32.6ye-6.27-l.le-6r 
(2.5) 

-0.060e-2~+3.41e-11*2~, 

~p[y, (2..5)2] =37.6re-6.3y - 1.4e-6.7r 

-00.160e-2~+4.38e-10~8r, 

~[y, W] =46.6ye-5~6~+13..5e-10~ 

-0.115e-2~6r+0.0148e-~. (2.6) 

FIG. 3. Settlement of an impervious slab under a concen- 
trated load P at various instants (1/r= (ct)+/h). 

Also, if it is desired to secure the value of the 
bending moment due to settlement, this is 
given by 

d2W, 
j/f,= -_ljI-= 

dx2 
b2floy2p(y, 7) cos Xx (2.7) 

for the sinusoidal load, or 

Pb m 
M J=--- 

s 
Y~P(Y, 7) ~0s rfdr (2.8) 

r 0 

for the concentrated load. 

When these are integrated we then have the foIlowing: .^ 

wJ7= (0.5)2,=f 16.8 - 
7.05 

(2 3.50 0.11 10.6 
--- 

7r [16.8+t2-J2 25+t2 2.89+E2+64.9+E2 ’ 1 
ze)*[7= (1.0)2,=~ [ 17.0 

21.1- r;2 8.00 0.11 25.1 
--- 

7r [21.1+~2]2 25+E2 2.89+E2+81.0+F2 ’ 1 
ze)J7= (1.5)2,=C 25.05 

24.0 - f2 22.7 0.32 47.46 
-- 

n- [24.0+E2]2-44.9+E2 4+12+81.7+t2 ’ I 

27.0 - E2 5.5 0.12 38.2 

w8[7= (2.0)2] =- 32.6 [27.0+E212 ---- ~ 1 ’ 25+t2 *+,$2+125+E2 _ 
=f7 

28.1- E2 9.38 0.32 47.3 ws[7= (2.92, 37.6 

[28.1+&44.9+E2 
-- ___ 

n- 4+t2+116+E2 ’ 1 

(2.9) 

M.[r= a,=? 46.6 
[6[4-1120~2+5900]_135 6t2-200 +. 288 6t2-12.5 612-2 

7r (31.3+(z)” (100+.$2)3 * (6.25+52)3 
-0.0148----- . 

(l+t2?a I 
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In Fig. 1 are plotted the settlements at various instants, and Fig. 2 shows ‘how the bending due 
to the settlement at the location of the load varies with time. We note that for t= 00 the limiting 
value of this bending moment 

M,=O.l038Pb. (2.10) 

In order to check the accuracy of the above method we may derive this expression by using the value 
of the bending moment obtained previously2 in the case of a purely elastic foundation. By an easy 
adaptation of the formula to the case of two-dimensional strain the bending moment under the 
load is 

2 2(1-9) i 
M=-.- 

[ 1 Ph 
343 1+v , 

(2.11) 

where v is the Poisson ratio of the elastic foundation and b is defined as above. Now in the case of a 
consolidating foundation the bending moment immediately after loading corresponds to an incom- 
pressible foundation (v= $). This value is 

Q 
MO=- d Pb. 

3d3 

The bending moment for t= 00 corresponds to v= 0, hence 

2 
M,=- 2 3Pb. 

343 

(2.12) 

(2.13) 

The maximum bending moment due to settlement is the difference between these expressions 

Mo-M,=O.lOOPb, (2.14) 

which is in fair agreement with the value (2.10) above. 

3. SETTLEMENT OF A SLAB IMPERVIOUS TO WATER UNDER A SINUSOIDALLY DISTRIBUTED LOADING 

Proceeding as before we have instead of (1.3) the relation obtained in a previous pape? for the 
settlement of a soil in the case in which no water was allowed to escape from the top surface. 

Aa 
zUo=- lf 

x [ 

1 

I Plcx2+(l+P/CX2)t . 

Combining this with (1.2) we then have the expression corresponding 

Pea 

(3.1) 

to (1.4) 

1+ l/(Plcx”+Cl +fi/cx219 1 (3.2) 

As before we find the deflection at t = 0 and since we are interested primarily in the settlement due 
to consolidation of the soil, we will subtract this original deflection and obtain the 
settlement 

zUS= wg- 
[ 

Pea 

I 

baPo 
cos xx = 

(Y3+1)(PIcx2) - C(l+PlCX2)l++73 

X(E1X3a+l) r(r”+l) (Y~+1)2(P/cx2)2+(Y~-1)(P/ch2)-2y3-1 

with the same notation as above: EIa= b3, r=bX. 

value of the 

cos xx (3.3) 

38 JOURNAL OF APPLIED PHYSICS 



By factoring the denominator and separating into partial fractions we obtain forms which can be 
evaluated by (1.7). 

Making the same substitutions as before, r=ct/b2, we obtain the expression corresponding to 
(1.9) and (1.8) 

ZU,= bafi,,+(r, 7) cos Xx, (3.4) 

1 

+(?,, r)=y(l+*is)2 1 2(1:(r3+l)/(Y3+5)3j-1) 
(1 -PC$(l- C(r3+~>l(r3+l)l)~Y2/~1) 

l-$(l-[(r”+s)/(-r3+1)]+) 

(r”+l)” Y3 
Xexp C(%Cl- [(r3+5>l(r3+l>li12- 1>~r21------- 

( 
--PCrl/TI 

2-f3+1 r3+1 > 

3(C(r”+l>l(r”+s>l”+l> 

-1-a(l+C(r”+s)l(r’+l)If)” 
(1-PC%(1+C(r3+5)l(r3+l)l))Y~~1) 

1 
Xexp~[(t[l+C((~3+5)/(~3+l)l~12-~)~~21). (3.5) 

4. SETTLEIKENT OF IMPERVIOUS SLAB UNDER A CONCENTRATED LOAD 

The settlement due to a concentrated load P is 

aP m 
W,(X) =- 

s 
#(r, 7) cos r@-h* 

?r 0 
(4.1) 

The following approximations for #(y, T) are 

$[r, (0.5)2] = $ye-3.3r+0.25y2e-2u2, 

#C-f, (W21=w 3.6r+1.48y2e-3.1y2+0.065y4e-l~~Y2, 

#C-y, (1.5)2]=2.25ye-3.gy +3.2y2e-3~6~*+0.04y4e-1~5~z, (4.2) 

*[r, (2.0)2] =4ye-4.4r+2.5y2e-3.1~‘+4.4~2e-K.5y2, 

#CT, (2.5)2]=6.25ye-4~7~+1.52y2e-3.8~+8.3~2e-4.7~2-4.0y4e-6~1~2. 

The bending moment and settlement at r= 00 are the same as before. When (4.1) is integrated 
with the approximation given in (4.2) we obtain 

aP 1 11.9-t2 
,w*[7= (0.5)2-J=- 

7r [ 
- 
4 (11.9+,$2)2 

+0.0391(1- t2/4) exp (- t2/8) 1 , 

+O.lZO(l - 12/6.2) exp (- E2/12.4) 

+0.00524(3-2[z-l-.$4/9) exp (- E2/6) I, 

t&CT= (1.5)2]=- 

J 

-+0.216(1- E2/7) exp (- f2/14) 

(4.3) 

+0.00322(3-2E2+,$4/9) exp ( -E2/6) 1 , 
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~+0.151(1-~2/6.2) exp (-12/12.4) 

+0.1Sl(l-~2/11) exp (-f2/22) 1 , 
14.4-352 

+11*64(14.4+p)3 
+0.361(1- t2/9.4) exp (- t2/18.8) 

- 0.00963(3 -0.492i2+f4/149) exp (- .$2/24.4) 
I 

. 

Figure 3 shows the above value of w, plotted. In comparison with Fig. 1 it is seen that the prevention 
of water flow from the top surface decreases the rate of settlement. However, the amount of the 
bending moment at T = 0 and r = 00 is the same for both cases. Also, it can be seen that at a position 
[=3.5 very little settlement takes place in the case of the impervious slab. 
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