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INTRODUCTION 

T HE” ‘USE QF the acceleration potential in thin airfoil 
‘theory was introduced by L. Prandtl.1~2~6 The 

m’:thod has since been applied by several authors3~4~5~s 
‘CO problems of stationary and non-stationary flow in 
both compressible and incompressible fluids. A strik- 
iq feature of this method is that no use has to be made 
of vortex wakes because the acceleration potential is 
,everywhere continuous in the fluid. Such concepts 
as the trailing vortices and the induced downwash 
play no direct part in this theory. 

The purpose of the present article is the treatment of 
two dimensional airfoil theory in an incompressible 
fluid by the combined use of conformal transformation 
and the acceleration potential. This method of ap- 
proach greatly simplifies th,e solution of certain airfoil 
problems. 

First the reader is introduced to the fundamental 
properties of the acceleration potential in an incom- 
pressible fluid. Then it is shown how the problem of 
ifinding the acceleration potential can be solved by 
conformal representation of the airfoil on a circle and 
a simple relation is derived between the velocity and 
the “stream function” corresponding to this potential. 
The method is next applied to the stationary airfoil 
with and without flap, and to the determination of the 
airfoil camber line and thickness function for a given 
pressure distribution along the chord. The simplicity 
of the method is especially apparent for the case of the 
oscillating airfoil which is the subject of the last treat- 
ment. For the sake of brevity only translatory oscilla- 
tions are considered. 

PROPERTIES OF THE ACCELERATION POTENTIAL 

Newton’s law applied to fluid motion leads directly 
to the equation 

pE = -grad p (1.1) 

where p = the mass per unit volume, Z = the acceler- 
ation vector, and p = the pressure. 

For an incompressible fluid p = const., and Eq. 
(1 .l) implies the existence of a scalar function q such 
that 

Z = grad cp 

PV = -Pt 
(1.2) 

cp is called the acceleration potential. 
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The velocity u considered as a vector field function 
of the coordinates x, y, z and the time t is related to the 
acceleration by Euler’s kinematic equations 

a = (&/bt) + (i.v>U (1.3) 

Assume the velocity field to be composed of a uniform 
velocity i? along the x direction and a small perturbation 
-I u. 

;=a+&’ (1.4) 

Introducing the so-called linearized theory which neg- 
lects all quantities of higher order in u’, Eq. (1.3) 
becomes 

a = (hi’/&) + U(bi’/bx) (1.5) 

For an incompressible fluid the velocity u’ also satisfies 
the continuity equation 

div &’ = 0 (1.6) 

Taking the divergence on both sides of Eq. (1.5) 

hence from (1.2) 

div a = 0 (1.7) 

v%p = 0 (1.3) 

The important result is thus obtained that in the 
linearized theory of an incompressible fluid the acceler- 
ation potential’ satisfies Laplace’s equation. If there 
is a velocity potential I#I, 

u -’ = grad C$ (1.9) 

and from Eq. (1.5) the following relation is derived 
between the acceleration and velocity potential. 

cp = (WW + WWIW (1.10) 

In this method of approach flow problems are solved 
by considering the field of accelerations and using for 
the acceleration potential solutions of Laplace’s equa- 
tion. The velocity potential and the velocity field 
may then be derived by integrating Eq. (1.10) with 
C$ as an unknown function. The above equations are 
applicable to thin airfoils where the velocity perturba- 
tion u’ introduced by the airfoil is small compared to 
the main stream velocity U. It will be shown below 

t To be absolutely general this equation should contain an 
additional term which is an *arbitrary function of time inde- 
pendent of the coordinates. This term can be omitted for our 
purpose because a and $J are taken to vanish at infinite distance 
in all applications treated in this article. 
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The two functions P and # are conjugate harmonic 
and satisfy the so-called Cauchy relations 

I (%0x) = (W/by) 

(%/by) = -(b#/W 
(2.7) 

I 
I ---A Use is made of these relations for the following reason. 

-X--J 
The condition that the normal acceleration components 

-I 
t 

I satisfy the kinematic boundary condition on the wing 

+I x does not necessarily imply that the kinematic condition 
is satisfied for the veloci’ty. Therefore it is necessary 

FIG. 1. to derive the value of the y component of the velocity, 

how this can be applied in the case of two dimensional 
v = (Why) (2.8) 

airfoil theory. Taking the y derivative of both sides of Eq. (1.10) 

Two DIMENSIONALAIRFOILTHEORY 
(&f&j = (dv/dt) + U(bv//bx) (2.9) 

According to the results derived in the previous 
and from (2.7) 

paragraph the solution of thin airfoil problems depends - (a#/%) = (&J/a) + U(&J/dx) (2.10) 

on finding a solution of Laplace’s equation for the 
acceleration potential. This potential will be deter- 

There are two important cases to consider. For a 

mined by the condition that the acceleration normal 
stationary airfoil the term (bv/bt) vanishes. In this 

to the airfoil has a given value depending on the shape 
case, integrating both sides of Eq. (2.10) with respect 

and motion of the airfoil. The case of the airfoil 
to x and assuming that both \L and v are zero at infinity, 

of infinite span will be treated by this method. The 
gives 

flow is then two dimensional. Take x and y to be the 
v = -Ii//u (2.11) 

coordinates in the plane of flow and the airfoil section Hence the simple result that ZJ is proportional to the 

tb lie approximately along the x axis with the leading conjugate function of the acceleration potential. 

edge at x = - 1 and the trailing edge at x = f 1. The In the case of non-stationary flow for an airfoil 

equation of the airfoil boundary for the general case performing harmonic oscillations the functions ‘p, $ 

of a movable o.r deformable airfoil is and v are replaced, respectively, by cpeiwt, #ei”’ and 

Y = Y(XtO (2-l) 
vezwt. Eq. (2.10) becomes 

For a thin airfoil, neglecting higher order terms, the -(d$/dx) = iwv + U@v/?Jx) (2.12) 

coordinate x of a fluid particle moving along the bound- Solving for v as an ordinary linear differential equation 
ary is of the form and assuming that v = 0 at x = - 03 gives 

x = x0 + ut (2.2) 

Hence its velocity normal to the boundary is 
v = _(,-WJ ~~eiU’~u(~#/&c)& (2.13) 

5 = U(by/hx) + (hy/dt) 
-co 

(2.3) 

and its normal acceleration 
It must be remarked that the imaginary number i 
used in connection with harmonic functions of time in 

j; = U(2b2y/d~2) + 2U(d2y/bxbt) + (d2y/bt2) (2.4) Eqs. (2.12) and (2.13) is different from the imaginary 
TWO dimensional potential problems are conveniently number appearing in the complex potential, Eq. (2.6). 
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handled by conformal transformation. The equation 

x+iy=z= [r+(l/r)1/2 (2.5) 

transforms the circle of unit radius in the { plane to a 
straight segment from x = - 1 to x = + 1 on t.he real 
axis of the z plane (Fig. 1). The point of polar co- 
ordinates r = 1 and 6 on the circle corresponds to the 
point of coordinate x = cos 0 on the airfoil. The 
problem is then to find a complex function 

f(r) = cp + iJ/ (2.6) 

such that. the normal derivatives of the acceleration 
potential cp on the circle satisfy the values derived from 
the kinematic equation (2.4) for the normal accelera- 
tions on the airfoil. 



SIMPLIFIED METHODS 

- 

FIG. 2. 

Actually different notations should be introduced to 
distinguish between them. However in the following 
applications they will not be used simultaneously so 
that confusion is easily avoided. 

The Kutta-Joukowski condition in the classical 
theory states that the velocity is finite at the trailing 
edge. An equivalent form of this condition is that 
there is no pressure discontinuity at the trailing edge. 
The Kutta-Joukowski condition is therefore taken care 
of in the present theory by choosing an acceleration 
potential which is continuous at the trailing edge. 

THE STATIONARY AIRFOIL 

Symmetric Airfoil 

Consider a thin symmetric airfoil at an angle of attack 
(Y (Fig. 2). Eq. (2.1) becomes 

y= -ax (3.1) 
From Eqs. (2.3) and (2.4) 

Y’ -aU,Y=O (3.2) 
The normal acceleration on the airfoil must be zero; 
therefore in the z plane the vertical component of the 
acceleration potential gradient must be zero on the 
circle. A potential satisfying this condition is that 
due to a source-sink doublet at the point of coordinate 
{= - 1. The conjugate harmonic functions for this 
case are 

49 = A(sin 0,/r,) 

$ = A(COS &/Ti> 
(3.3) 
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where 01 and rr are the polar coordinates shown in 
Fig. 2. It is clear that this solution satisfies the Kutta- 
Joukowski condition that q is continuous at the trailing 
edge. On the circle 9 is a constant 

# = A/2 (3.4) 

The circle is a streamline of the acceleration potential 
but the constant A which determines the intensity of 
the doublet must be evaluated by introducing the 
kinematic condition for the velocity. From Eqs. 
(2.11), (3.2) and (3.4) at the airfoil 

Hence 

v= -cuu = -(A/2u) (3.5) 

A = 2crU= (3.6) 

Hence from Eqs. (1.2) and (3.3) the pressure distribu- 
tion on the airfoil 

p = -2apU2 (sin &/ri) (3.7) 

The lift distribution I is the pressure difference on both 
sides; introducing the values er = e/2, rl = 2 cos (e/2) 
gives 

1 = 20rpU2 tan (e/2) (3.8) 

which is the well known lift distribution on a thin 
airfoil (Fig. 3). The zero lift at the trailing edge is 
due to the Kutta-Joukowski condition. The total 
lift is 

L=s_:‘&=l 1 sin ede = 2raplJ2 (3.10) 

The resultant of this lift distribution is located at the 
quarter chord point. 

FIG. 3. 
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Airfoil with Flap 

The case of ,an airfoil with flap is handled similarly. 
The same doublet as in the previous case is located at 
the point corresponding to the leading edge. In addi- 
tion a source and sink are located on the circle at the 
points 00 and -00, respectively (Fig. 4). These points 
correspond to a flap hinge of coordinate 

x = cos eo 

The total acceleration potential is 

(o = A sin Br/rr + B log (rJr3) (3.11) 

and the corresponding conjugate function is 

9 = A cos e,/rl + Bez (3.12) 

It is immediately verified that the circle belongs to the 
streamlines of this source-sink system. The con- 
stants A and B determine the strength of these sources 
and sinks. Their values are fixed by the kinematic 
condition of the velocity. The y component of the 
velocity forward of the hinge is obtained from Eqs. 
(2.11) and (3.12). 

v = - (A/2U) - (Be,/U) (3.13) 

This velocity must be zero because the angle of attack 
of the airfoil is assumed to be zero forward of the hinge, 
hence the equation 

-A - 2BBo = 0 (3.14) 

Similarly aft of the hinge the vertical velocity is er = 
- fi U where /3 denotes the flap angle, hence the equa- 
tion 

-pu = -(A/‘2U) - (B/U)(eo - T)* (3.15) 

Solving Eqs. (3.14) and (3.15) for A and B 

A = 2puz(eo/T) B = - (PV/?r) 

The lift distribution derived from the value of the 
acceleration potential Eq. (3.11) is, : 

l=2&3U2 ~tan~+~log~ 
[ 1 

or 

k = 2PplJz 3 tan 2 + i log 
sin l/de + e,) 
sin lj2(e - e,) II 

(3.16) 

The total lift is 

L =S_:’ I& = fisine& = 2ppU2(eo+ sineD) 

(3.17) 

AIRFOIL WITH GIVEN PREXXJRE DISTRIBUTION 

The derivation of the camber line and the thickness 

* With reference to Fig. 4 it must be kept in mind that the 
oertex of the angle 0, is to be considered as lying in the region 
vutside of the circle. Therefore when passing from the forward 
to the aft side of the hinge, 02 decreases by the amount r. 

FIG. 4. 

function for a given pressure distribution along the 
airfoil by the use of the acceleration potential is shown 
for the particular case of an airfoil with uniform 
pressure. 

Camber Line of Airfoil with Uniform Pressure 

The potential due to a pair of equal and opposite 
vortices at points -t-l and - 1 on the circle (Fig. 5) is 

(0 = A (0, - 0,) (4.1) 

and the conjugate harmonic function 

9 = A log (%w (4.2) 

On the upper half circle the acceleration potential p 
is obviously ‘equal to 

‘p = (x/2)A * (4.3) 

and on the lower half circle 

cp = - (7r/2)A (4.4) 

This gives a uniform lift distribution along the chord. 

I = rpA (4.5) 

The normal velocity is given by Eq. (2.11). Using 
Eqs. (2.3), (4.2) and (4.5) the following equation is 
obtained 

WY/d4 = - (wvU> log (Q/G) (4.6) 

Substituting the values rr2 = 2(1 + x), r22 = 2(1 - x) 
which are simple to derive geometrically, Eq. (4.6) 
becomes 

(dy/dx) = (Z/%rP vz) [log (1 - x) - log (1 + Cc)] (4.7) 
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FIG. 5. 

Integrating with the condition that y = 0 at the leading 
and the trailing edge the following expression is ob- 
tained for the camber line 

I 
- y = 27rpu2 [ 

2 log 2 - (1 + x) log (1 + x) - 
1 

(1 - X) log (1 - x) 
J 

(4.8) 

This camber line is represented in Fig. 5. 

Thickness Function of Airfoil with Uniform Pressure 

In a similar way the thickness function for an airfoil 
with uniform pressure distribution can be found. The 
harmonic conjugate functions for this case are obtained 
from two doublets at points - 1 and + 1 as indicated 
in Fig. 6. 

(b = A [(cos B&l) - (cos ez/r2>3 

9 = -A [(sin Br/rr) - (sin e2/r2)] (4.9) 

The pressure on both sides of the airfoil is uniform and 
equal to 

p = -p(p = -pA 

Proceeding as above leads to the equation 

sin ~9~ --- 
r.2 1 (4.10) 

This may be written 

@y/d%) = - (p/2;,U2) [tan (e/2) - cot (e/2)] 

or since dx = -sin 8dO 

FIG. 6. 

The thickness function is found by integration 

y = - (p/pU2) sin 0 (4.12) 

The cross-section given by this thickness function is 
an ellipse. * 

OSCILLATING AIRFOIL 

The case of an oscillating airfoil is amenable to a 
particularly simple treatment by the acceleration 
potential. As an example the case of vertical trans- 
lator-y oscillations will be considered. The translation 

FIG. 7. 

* It is clear that the theory breaks down at the leading edge 
and the trailing edge. This is due to essential limitations of the 
so-called thin wing theory which is only a first order approxima- 

(4.11) tion. dy = (p/plJ2) cos Ode 
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of the airfoil is represented by 

y = y&?“~” (5.1) 

There is now a vertical acceleration ‘j = -w2yoeiw 
which is the same at each point of the airfoil. This 
is also true for the velocity j = iwyoe”w”. For the case 
of the stationary theory in the section on The Station- 
ary Airfoil a doublet was located at the point - 1. In 
the present case an acceleration potential must be 
added to take care of the vertical acceleration at the 
wing; this extra term is provided by introducing a 
doublet at the center of the circle as shown in Fig. 7. 

The harmonic conjugate functions are 

cp = cpl + P2 

t = $1 + $7 

with 
(ol = A(sin &/rl) (02 = B(sin e/r) (5.2) 
#I = A (cos 0&l) &? = B(cos e/r) 

In the following it is assumed that all functions are 
multiplied by e”““. This factor cancels out of the 
equations and is therefore dropped out of all expres- 
sions below. The acceleration of the wing must be 
equal to --2yo. Hence the value B = w2yo. The 
term with B gives rise to the well known apparent mass. 

The value of A must be determined by the kinematic 
condition for the velocity. Using Eq. (2.13) gives for 
the vertical velocity at a point x = - 1 + E on the 
airfoil, 

This value is independent of the coordinate e on the 
airfoil so that E can be made infinitely small. There 
is a singularity at the leading edge and in order to make 
the expression integrable it is convenient to integrate 
by parts the term containing d#l/ax. The limiting 
value for E ---) 0 becomes 

The value of J/1 on the airfoil is 

$1 = A/2 

Noting from the conformal transformation (2.5) that 

r1 = --x-1+++-1 

r= -x + dx2 - 1 

and substituting I!?, = 0 = a in Eq. (5.2) it is found that 
outside the airfoil (for x < -1) 

$1 = -A/(-x - 1 + z/x” - 1) 

$2 = -B/(-x + dx2 - 1) 

To integrate 
s 

-1 
ezOX/u &dx the variable of integration 

x is replaced by lx. In reducing the integrals to the 

form below care must be exercised to give the radical 
the proper sign. 

s -1 
,i@/u ,/,& = 4 

-m 
2Jl‘me-iwz~u[1 -$z]dx= 

(5.5) 

Similarly, 

s -&I W2 e 
-m 

xdx = w2yOJl’me-iuX/“[ 1 -d&-~ 

iw 
= -w2yo K1 - 

[ 0 

u 
-7-e -io/V 

u 1 (5.6) 
ZW 

Ko and K1 are modified Bessel functions of the second 
kind. * Eq. (5.4) is an equation for A; after some 
simple cancellations it becomes 

_ $[K($) + X0@] - iwy&($) = 0 c5e7) 

Hence 
Kl(iW/u) 

A = -2iwyouK~(iw/u) + Ko(iw/U) 
(5.8) 

The lift distribution is obtained from the acceleration 
potential (5.2), 

1 = pA tan (e/2) + 2p02y sin 0 (5.9) 

where A is the complex function of the frequency (5.8). 
The second term in Eq. (5.9) represents the apparent 

mass due to the surrounding fluid. The first term 
shows that the non-inertia part of the lift distribution 
is the same as for the stationary case and has its re- 
sultant at the quarter chord point. 
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