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1, SUMMARY

The application of transient theory to the rational
determination of dynamic loads on airplane structures during
initial landing impact 1s discussed. Simplified procedures
are described by which the distribution of the maximum at-
tainable value of the dynamic stresses in the structure may
be obtained, Illustrations of the procedure are given by
numerical examples for the case of airplane wings. This
indicates approximate orders of magnitude to be expected in
a typical problem. The valldity of the underlying simplifi-
cations and assumptions is discussed. 4 brief outline of
the general mathematical theory of transients in undanped
elastic gystem 1s presented.

2. INTRODUCTION

During landing, the airplane structure undergoes
transient oscillaticns which are excited by the initial lard-
ing impact, Recent experience has shown that in the case of
largs alrcraft these oscillations may produce eritical design
conditions for the structure; whereas heretofore design loads
for the landing condition have been based upon calculations
whiech assums tihs structure to be rigid. Since the advent of
larger aircraft has resulted in heavier and more flexible
structures, these calculations are consideradly in error.
This together with the fact that flight load factors are re-
duced in the case of large aircraft makes it necessary that
methods be developed for predicting dynamic landing loads,
The present theoretical fnvestigation of this problem is of a
preliminary nature, I% has the twofold purpose first of pre-
senting methods by which the designer may predict the dynamic
loads and second of serving as a guide in the experimental
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investigation by defining the significant factors involved
and determining the approximate magnitude of the quantities
to be measured.

It appears that the problem may be approached in two
different ways: ‘ ‘

In the case of the landplane to consider the alrplane
structure and its landing gear as a whole, and to introduce
the actual force displacement characteristics of the landing
into the theory. In thls procedure the dynamic stresses re-
sult from the sudden application of moving constraints im-
posed on the alrplane during landing. Similarly for the
seaplane the elastic structure and the water surrounding the
hull may be considered as interacting bodies. While this
method is not precluded. in the investigation of specific
cases or for research purposes, it involves inherent comolex-
ities, such as those resulting from the nonlinear properties
of the landing gear and the variable-mass effects of the
water surrounding the hull of a seaplane, which tends to make
this type of approach less adequate for design purpose,.

In the other procedure, in which stresses in the struc-~
ture are considered to be caused by a landing impact force
applicd directly to the structure, it is assumed that the
time history of the impact force may be investigated inde-
pendently of the elastic properties of the structure. In
this way the investigation involves two separate phascs - a
study of the landing forces and a study of the dynamic be-
havior of the structure under such forces. This procedure
involves the assumption that a landing impact force may be
defined in such & way that its time history is for all prac-
tical purposes independent of the elastic properties of the
structure. Since i% is believed that the rcelative simplicity
¢f the latbtor approach overshadows the approximations in-
volved, it has been adopted as the basis for the present work.
This procedure was described previously in reference 1l in
conncction with tho problem of dynamic stresses in dbuildings
during an earthquake and the present work is essentially an
gdartation to alrecraft structures of the methods described
in thisg refersnce.

It is assumed that in first approximation the damping
and the aerodynamic forces may te neglected. The landing
impact force is applied directly to the elastic structure as
an external force of given time history. The response of
the structure is representod as a supcrposition of natural
modes excited by the landing impact. A first step in the
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thersfore to obtain the natural modes of the air-
by caleulation or by a shake tegt. Calculation

T
¢ recently been developed by which natural modes
s may be derived in a relatively simple way.

An importa T
landing 'lrmﬂe 'n*r'nn'!__

igner's approach to the

t : at he is not go muech in-
ime h ry of the structure as he

is in the mag nluude of the highest attainable stresses during:
the oDeratlon of the airplane. This vicwpoint was introduced
in the procedurs by using a statistical approach. The stress
amplitudes of each mode are superposed with their positive or

negative values irrespective of phase and the worst possible
combination is used as a basis for design. Furthermore, the
stress history in each mode is not actually computed but the
stress amplitude is obtained directly from a graph represent-
ing what is designated as a "dynamic response factor." This
factor itoelf results from a statistical analysis of the ef-
fect of forcés of various time histories on a single degree

of free&on oscillator, using a sufficient number of sueh time
histories to represent all possible types of landing condi-
tions. Values of the dynamic response factors are obtained
by applying typical time history excitations to a torsional
endulum (described in reference 1) and measuring the maxi-

P
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modes of the airplane are known, the landing loads are read-
ily obtained without the necessity of integrating the dif~

foerential equations which govern the behavior of the elastic
structure In the transient condition.

The method has its limitations and is not necessarily
applicable to all types of transient problems. Some of
these limitations are pointed out in the discussion,but the
extont to which the methods are valid for some particular

b A s a 2 ...:._.11-_
ciass of problems will have to bes determined experimentally.

&, WOTALTION

M,m mass

k spring constant

Al e\ cOT e N S
LAWY generalizgea iorce
w circular frequency
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T period

b, T time wvariable

Y dynamie response factor

q generallzed coogrdinate

é deformation displacement of any point on the wing

¢ normal function describing the wing mode shape

o normal function dcescribing tho mode shape of twisting

about the clastic axis

h normal functiorn describing the mode shape of bending
of the clastic axis

I moment of inortia

5 static mass moment

J subscript denoting Jth mode

k subscript denoting kth spanwise wing station

P mass per unit volune of prismatic bean

A cross-secetional area of prismatic bean

E modulus of elasticity

n vertical landing load factor

=

(t) 1landing reaction
¥(t) shoeck strut axial force - time relation
D{(t) drag force -~ time relation caused by wheel spin-up

a(t) observed acceleration time history in a drop or
landing test

W gross welght of airplane

gross weight of slirplans less landing gear weight

4
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T, effective rolling radius of wheel

V,  landing speed

B coefficient of sliding friction of tire on runway

5 stress

IW noment of inertia of wheel and tire about axis of
rotation

Try period of shock strut axial impulse or seaplane
vertical impulse

T:p period of drag impulse

8 angular displacement of wheel

4, THE EVALUATION OF TRANSIENT !MOTION OF ELASTIC BODIES

BY THE USE OF GENERALIZED COORDINATES

As pointed out in the introduction,the theory proceeds
on the assumption that the landing impact force is known.
In this way the theoretical problem is reduced to the evalu-
ation of the response of an elastic structure to a force of
given time history. Methods for the determination of this
landing impact force from test data will be discussed later
in gection 5.

In order to introduce the fundamental concepts involved
in the present theory, the simplest possible elastic systen
will first be considered. This system is illustrated in fig-
ure 1 as a slngle mass oscillator,

x = Mw?
e
i
Ao o e NN L g..“g.....v_“.... Iy (t)
A jomm——

A R PR PR

Figure 1



NACA ARR Wo. 4H10 6

Denoting by M the mass and w the natural frequency of
oscillation (w 1is the circular frequency expressecd in
radians/scc), the spring constant is k = Mw2 The expres-
sion giving the displacement q of this mass under a force
F(t) of arbitrary time history is well known (references 2,
3, and 4). It may be written as:

t
= -l%'—/ sin w(t - T)dT (1)
0]

where T 1is a variable of integration. It is usunally desig-
nated as Duhamel's integral. According to this formula the
computation of the displacement q at the instant t re-
quires the evaluation of a definite integral between the
limits of integration O and +t, and the time history of g
is obtained by repeating this procecss for every value of ¢,
It 1s noted that even in the simple case of a single-mass
system the process of computing the transient response is
guite elaborate, TFortunately, this difficulty may be avoided
in adapting the theory to practical problems of design by
considering only the maximum value of ¢q instead of its com-

plete time history. How this is achieved will be explained
later (sec. 7). '

Lssume for the present that the complete time history
of the deformation in the airplane structure is desired,

Such a structure differs from the simple system of figure 1
by two features:

(a) It is a free body.
(b) It is an clastic body with many degrees of freedon.
In order %o show how the previous discussion may be ex-

tended to include these fecatures, consider a free system of

two massocs ¥ and m conneeted by a spring of constant X
ag illustrated by flgure 2.

RO Axl
- _..._m._,xz k . ._..__.;...__. —
Cah ] ¥ er)
SN o Susius o SN N o

Ve

Figue 2
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The mass M is under the action of a force TF(t) of ardi-
trary time history. The straightforward way of describing
the motlon of this system ig in terms of the displacements
x;, and xz of each mass. However, there is a more general

approach, By an elementary analysis it 1s shown in appendix
II that this motion may be described as the superposition of
two configurations. One in which the two masses move to-
gether as a rigid body (fig. 3a), the other in which the cen-
ter of gravity remains fixed with the masses moving in oppo-
site phase and with amplitudes inversely proportional to the
respective masses {(fig. 3b).

Fixed c.gT ] m
- g s =W
e e SN )
}'f"""?‘ > "':*.“:j:‘.‘___,* () . m"” — T 'cr Fi®)

(a) Rig 1d conflvuratlon (b) Motlon about o.c.

Figure 3

Eack of these configurations hag only one degree of freedon.
The displacement in the first configuration is measured by
the quantity q, and in the other by the quantity q,;. The

actuval displacements of the masses M and m in terms of
the motion of cach configuration are,respectively,

xl=q.o+-'ql

(25

X2 = 4o — Q1

These two configurations méy be interpreted physically as
representing the natural modes of oscillations of the system.
From this viewpoint the rigid transiation 4, ®bay be thought

of as a mode of gzero frequency or "gzero mode." The other
configuration where the center of gravity remains fixed and
the masses move in opposite phase represents a mode of fre-
quency w3i. Since the coordinate q¢ of the zero mode rep-
resents the motion of the center of gravity, it is determined
by the motion of a single mass Mg = M + m wunder the force
P(t) (fig. 4a). As shown in appendix II, the motion in the
mode defined by q, may be determined from that of an esquiv-
alent system which is constituted of a single mass M,
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elastically re-trained and under the action of a force Q;(t)
proportional to F(t) (fig. 4b).

. f < Q]

{

,ﬁ;m«w}gmu.-F(t) j%n,u_-wAvﬁ¢\¢\/\_mwyM1 ‘émww@l(t)

[ “”'v"h

(o) g LTS ,f'i£).‘,

Figure 4

The natural freguency of this equivalent system is the same
wy as the natural frequency of the mode which it represents

in the actual physical system., Such coordinates as g, and
g1 are called generaliged coordinates. The mass My of the
equivalent system is referred to as the generalized mass of
the corresponding mode and Q,(t) is referred to as the
generalized force for this same mode, It is also shown (see
appendix II) that the value of this generalized mass is de-
rived quite simply by expressing that the kinetic cnergy T

in theyequivalent system is the same as in the corresponding
mode C

My q:° =

1
U
Wi

mog,% + M2 g2 (3)

7

i

where ¢ = % is the ratio of the amplitudes of the masses m

and M in the ¢, mode.

Hence M; = m + M ®° (4)

N

Similarly the generalized force Q,(t) is derived by

expregsing that the work done by (t) on the actual system

is equal to the work done by Qi(t) on the equivalent sys-
tem ~ that 1s,

i

¢ g F(t) Ql(t> a3
or (5)
Qy () ¢ F(t)

i

The problem of finding *the transient motion of two masses

connected elastically has thus been reduced to that of two
independent single masses for which the motion may be ex-

pressed by Duhamel's integral (equation (1)).
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Consider now a simplified airplane in which the wing is
represented by two masses elastically connected to a rigid
fuselage as illustrated in figure Ba.

i I o B
S

. q S s S

T ° (a) o
T /e T wla )
E; (%) (e)

)
® Figure 5

Obviously, for symmetric deformations this simplified
structure is cquivalent to the two-mass free system of fig-
ure 2. The motion under the landing impact force may be
described as the superposition of a rigid translation (fig.
5b) which represents the motion of the center of gravity and
a natural mode (fig. 5¢) which represents the motion about
the center of gravity. The equivalent single mass systems
are the same as in figure 4.

This procedure may be immediately generalized to a come
plex airplane structure. Instead of a single deformation
mode as in the case of the simplified airplane discussed
above, there are actually an infinite number, It can be
shown that the deformation of the structure may be repre-
sented by a superposition of these modes. If damping is
neglected as is the case here, these modes are uncoupled.
The behavior of each one under the landing impact force is
independent of the other, The motion of each mode is repre-
sented by that of an equivalent single mass oscillator of
the same natural frequency and excited by a generalized
force. As an exanmple, %take the case of a wing in pure bend-
ing. There are an infinite number of bending modes, a few
of whieh are represented in figure 6. The motion of the
center of gravity represented by the rigid airplane with the
generaliged coordinate qo is referred to in the present
text as the "zero mods."
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2 Figure 6

The amplitudes of the wing tip are usually selected as
generalized coordinate and denoted by qi for the first

mode, ¢y for the second mode, and so forth, The correspond-

ing generallgzed masses are determined by the condition that
the kinetic energy be the same for the mode and its eguivalent
system, Thig yields the expression:

k
rﬂr -
, { 2
M, = > ;be;:) My
- (6)
\ ’a 2
Mp = /| \E my, and so forth
In these expressions, ¢(j) represents tho amplitude at

-

station %k of the mass my, of that station in %he jth mode

for a unit deflection of the wing tip. Similarly, the gen-
eralized forces determined by the conditions that the work
done by P{(t) %be the same in the particular mode as the
work done by Q(t) in the equivalent system are

a, (1) = 7(e) 02
(7)
Q(t) = F(¢) ¢(§), and so forth

The subscript F refers to the etation at which the landing
impulse force is applied.
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5., TEE LANDING IMPACT FORCE TF(%)

In the preceding discussion, the time history F(t) of
the externally applied landing impact force is assumed to be
known, In the case of a landplane, the forces are applied
to the wing through an oleo strut. In the case of a flying
boat, they are transmitted to the wing through a hull or
pontooun.

For the landplane, a convenient source of information
of axial strut characteristics is the oleo drop test. In
the drop test, a mass~o0leo strut system is dropped in a jig,
and the acceleration time history of the mass 1s measured,
The mass corresponds to the zero mode mass.

F(t) = M a(t) (8)

An additional source of landing force data is from
actual landings with accelerometers installed in the airplane
which are capable of recording ¥ime history. This method
provides the only present source of seaplane data. A4 sketch
of such a record is shown in figure 7.

!
f
,’/ H

4
i
i
1

oscillograph record

a L
m “"J,_/ ' '\/\/\
| N

i
- = - - assuned a(t) curve H N !

Figure 7

The high-.freguency oscillations must be disregarded
since they represent oscillations of the structure relative
to its center of gravity. The average dotted line which is
shown would be considered as a(t) in the computation of
the applied landing force TF(t) 1in equation (8).

6., BVALUATION OF THE STREISSES

Having derived the time history of the deformation of
the structure, the time history of the stresses is obtained
by a straightforward procedure, In this discussion, stress
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is used as a general term which refers to shear or moment,
It is convenicnt to consider the total stress as resulting
from the superposition of the stresses due to the deformation
in each mode, In this approach, the zero mode which is a
rigid motion does not contribute any stress. Only the first
mode, second mode, and so forth, have to be considered.

From a practical viewpoint it is also important to note that
the stresscs in each mods are convéniently calculated by us-
ing the inortia foreos of the natural oscillation rather
than by trying to calculate the strain from the space curva-
ture of the mode shapes. Consider, for example, a pure
bending mode as represented in figure (8).

[ - Q(l)(X)Qi

’wr"f“§%%‘ _ b [ _ e
______,T._:t_;' e /"f,'__:._,n__L. ___%_' ed e _.:T.'l.:\....,:._\“\. \\'t e __{, . / ——— S B ‘ a1 ‘
g | RS
R wy® m o) o
. Pigure 8

The shape of this mode is represented by a function

¢(l>(x) such that if q; 1is the tip deflection ¢(?)qu

is the deflection at the location x. The bending moment
in this modc is

d)(l)(

2 ) qs (9)

2
M(x) = 21 &

dx

M is proportional to g, and varies along the span as

2 (1)
g1 & ¢ Z(X). Obviously the process of computing the
d=x
\

second derivative of ¢(l’(x) is elaborate and inaccurate.
It is therefore preferable to derive the bending moment in
each mode directly from d'Alembert's principle by expressing
the equilibrium condition which exists in the natural mode

between the bending moment at station k and the inertia
e

(1 . s N
forces @, @y O 7 dy duc'to cach mass my located out-

board from x. Sinilarly the shear in each mode may be ob-
tained from the summation of all inertia forces.
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It is seen that the stress s(g) in the Jjth mode at
the kth wing station may be expressed as

s(g) - A(kj) a, (10)

each of these stresses being proportional to the coordinate
aj of the corresponding mode. The total stress is obtained

by supsrposition and is

B = ij A(kj) aj (11)
1

7. THE DYNAMIC RESPONSE FACTOR Y

It has been shown that the response of each mode is de-
fined by the motion of an equivalent simple oscillator acted
upon by a generalized force Q(t). The motion of a simple
oscillator under the action of an arbltrary force T(t) 1is
glven by an cvaluation of Duhamecl's intcgral as shown by
equation (1). Consider, for cxample, the motion of a simple
oscillator under the influence of the isosceles triangle
force-~time impulse shown in figure 9.

Q A
MT_ I :/N
SR I
| R R AR I
k= 4w 0 VA (t)
Ymnax
L-_. NN A Asmimeeis { M },4 S~ Q ( t) /“/ \(-/Q
o T | sy + S ’ / \\ '
. T . e
P - .\
ot TI e
Figure 9
Let q, = gtatic displacement caused by Qmax

(=]
3]

2n/w = natural period of the oscillator
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T period of the triangular impulse

I

The completce time histories of the motion of the oscillator
have boen cvaluated for the isosceles triangular impulsc for
two ratios of T1/T, and are plotted in figure 10, The re-

sponge of tho osclllator is expressed as a ratio of its ac-
tual displaccment to its static displacement under Q4.

/IA!'\‘ \U(?
o
11 ’/\ \ ‘\ - 17 N
AN a | /N T
/’ ! \ ' t ] A g | ! \ ’/’ ! \\
/ / |'Y1\\ ' ! [} ! "%' / \~ 'rYS \
/1 ; oo T 2 / 7 ; N
S L R N W
O bt Pt L IR N~ T N
?Iz ! ! 2?1 v 87y N -y
“YZ, I y S
-+ \;‘ } ‘ \ i 7 \'\!'
7 . v .
~1.4 i -l + .
T1/T = 1.26 T1/T = .25
Figure 10!
4 For cach poriod ratio T1/T therc is a maximum valuc of
q/qs in tho positive direction, and a maximum value in the

negative direction.
as dynamic response factors and denoted by ¥
sign affizxed, There are two values of 7Y associated with

each period ratio as shown by figure 10,

These maximum values are designated here
with the proper

Consequently a curve

may he drawn showing the variation of dynamic response factor

with period ratio,
impulse is shown by figure 1l.

Such a curve for the isosceles triangular
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The determination of a dynamic response factor-period ratio
enrve may be accomplished for any arbitrary Q(%) variation
by & numerical or analytical evaluation of Duhamel's integral.
However, both processes are quite lengthy, and require plot-
ting of the time history as shown by fipgure 10. A mechanical
analyzer consisting of a torsional pendulum has been devel-
oped (reference 1) which may be used to measure the dynanic
response factor without rccourse to an evaluation of the com-
plete time history of the motion, By such means, a dynamic

respongse factor diagram for any shape of Q(%t) curve may be
evaluated in a relatively short time.

8, STATISTICAL APPROACH TO TEE LANDING PROBLEM

The methods outlined above are applicable when the time
history of the externally applied landing impact forces are
accuratoly known. Actually, the shape of the landing inpact
force~time curve is apt to vary considerabdbly from one landing

- to the next, and with different operating conditions of the

airplane, Furthermore, the responses of the various modes
are sensitive to small variations in the shape of the F(t)
curve, FYor these reasons, it is not practical to design for
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a single mathematical landing, but instead it is desirabdile
to employ a statistical approach to the prodblem. In the
previous section it was shown that the extreme positions of
oscillation of a simple oscillator for any one type of ap-
plied force-time curve may be conveniently represented by
means of a dynamic response factor-period ratio curve., It
is possible to consider a large number of shapecs of landing
force~time curves varying from soft to harsh landings, and
evaluate a dynamic response factor-period ratio curve for
each of them, These curves may be plotted on the same graph,
and an envelope curve may be drawn which bounds all of them,
This envelope would represent conditions which excesd in
severity every type of landing which was considered. Such a
statlstical basis may be used to establish design landing
dynamic response factor envelopes for the landplanc and the
seaplane. (For example, see fig, 13.) By means of the dy-
namiec response factor envelope, the maximum deflectiorn of
the structure in cach mode during the landing may be evalum
ated quite simply. Considering any single mode, it is as-
sumed that the structurc is restrained to dcflect in that
mode only, while the maximum value of the generaligzed force
1s applied statically, The deflection may be computed under
these conditions and then multiplied by the dynamic response
factor in order to obtain the maximum dynamic deflection
during the landing.

ol 3)

- ( F(t ) pay® 'y
935(max) © Yj 935(static) © “ﬁ;giil j Mjazja (12)

It is apparent that the phase relations between the modes
are lost when an approach of this type is employed. However,
this is not serious since for design purposes it must be
agsumed that sometime during the life of the airplane the
phasing between the modes will be such as to produce the
worst combination of stresses. For this reason, the maximun
eflections are superposed without regard for phasse in order
to yield the most critical combination.

9., THE LANDPLANE WING

In the case of the landplane, the forces and noments
are applled to the airplane structure through the shock
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strut-tire system. These consist of a force applied in an
axial direction along the shock strut caused by the landing
reaction component parallel to the strut, and a moment about
the landing gear attachment point caused by the landing re-
action component perpendicular to the strut. Two dynamic
responsgc factors must be determined. One for the axial strut
force, and one for the moment about the landing gear attach-
ment point,

The shock strut axial force.- A study of force-time
curves for axial strut reactions obtained from drop and
flight test data shows that they differ considerably with
pilot technique and landing attitude. 4 group of six types
of force-time curves are considered which would represent

various types of strut characteristics. These are shown in
figure 12.

N . ;
/// \\\ L 7 \\\ e // \
/ \ L . ‘\ /
P ’//

» /
. . N
/
, \ p s \\ . \

P — > 2 ‘ = e
:_%%N' (1) F,?%Nmuuuﬁ (2) ng TIN ~ > (3)
. e o,
/“// ﬁ\\"x\ » f E\‘Drop test (a) ; i\?rcp post (1)
/ e f ~..
/ Vol T N
(4) ‘ (5) (6)
Figure 12

Dynamic response factor curves similar to figure 11 have
been determined for each of these six curves by means of the
mechanical analyzer (reference 1). The points which define
these curves have been plotted on one graph in fizure 13, and
a smooth envelope curvo has been drawn which bounds all of
them. The condition, which the envelope shown in figure 13
represonts, oxceccds iIn severity the condition of the six
types of landings considered. It is possible that after con~
sideration of a large number of shapes of axial shock strut
force-time curves taken from drop and flight test records, an
envelope of this type may well represent conditions which ex-
cecd in soverity every probable landing which would be exper-
ienced during the normal operation of a land-type airplane.
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In order to apply the landplane dynamic response factor
envelope, the impulse poriod must be known., A plot of
limited data available at the Burcau of gross weight against
landing gcar vertical impulse period during the first impact
of landing as dotormined by flight test is shown on log-log
paper by figure 14, This graph has been determined from ac-
celerometor records of various types of landings made by 11
airplancs of various weights, Hach point reproscnts an av-
crage of scveral landings. The equabtion which fits the
curve drawn in figure 14 is

G 3 °r1e7s
TIH = 0,235 {Tm} (13)

where
TIN axial shock strut impulse period in seconds
W gross weight of alrplane in pounds

The wheel drag force,~ The characteristics of the drag

force on the wheel are not as well known as those of the
axial strut force. The drag force is produced by the spin-
ning up of the wheel when ground contact is made. If it 1is
assumed that the tire is slipping or on the verge of slip-
ping on the runwap at all times during the wheel spin-up
time, and that the coefficient of sliding friction p is
constant, the following differential equation may bhe written,

I \8

D(t) = pN(t) = ——— (14)
T
e
Integrating once gives
T1D
VI ,
b o w(t)dt (15)
To B9

where
VZ landing speed, feet per second
I, moment of inertia of wheel and tire, slug-fect square

r, effeective rolling radius of wheel under impact loading,
fooet
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Tiy period of drag force impulse, seconds

If the shock strut axial force is assumed t0 grow linearly
with time during the wheel spin-up period, then equation
(15) may be solved for the maximum value of the drag force
in terms of the period of the drag force impulse.

2V, I
D = 2l cw . (16)
max QT

Te *ID

With the assumptions used to write equation (16), the drag

force-time variation is of the type shown in figure 15,
D(t) &

T

Dmax

ke T1p  —

Figure 15

pd

The dynami¢ response factor curve for the force-time
relation shown by figure 15 is given in figure 16, The
wheel spin-up time is of the order of one~fourth to one-
fifth of the axial strut impulse period, and the wheel is
nften up to speed before the axial strut force reaches its
maximum value,

In the case of modern large aircraft with retractable
landing gears, the assumption that the landing gear leg is
rigid in fore and aft bending may be consideradbly in error.
Because of this lack of rigidity, there is an additional vi-
bration mode to be considered which involves large wheel and
strut amplitude and very little wing torsional motion, This
lack of strut rigidity may be particularly troublesome if
the fundamental fore and aft bending frequency of the land-
ing gear 1s coincldent with some other mode of the structure,
and resonance iIs established,

In a general consideraticn of the landplane landing
problem, drift and one wheel landings which excite antisym=
metric wing oscillations should be considered as well as sym-
metric landings. The principles discussed heretofore are
quite general and apply ogually well in either casse.
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Dynamic response factor curve for
landplane drag force impulse of
the type showp by figure 15.
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10, THE FLYING BOAT WING

In the flying boat problem, the forcing impulses are
transmitted to the wing through the hull structure, and the
problem may be assumed identical to the landplane problen
except that the force and moment is applied at the center
line of the airplane rather than outboard at a landing gear
station, The problem of the impact of a flying boat hull in
water is considerably more complex than the landplane impact
problem,. A limited amount of test data is avallable showing
time histories of center of gravity vertical and drag ac-
celerations, and pitching acceleration for flying boats.
These records indicate that the time history of the landing
reaction varies widely according %0 landing attitude, pilot
technique, condition of seaway, and detailed characterigtics
of hull, Theory on the seaplane impact problem is extensive,
however, its applicability to the complex hull shapes of
modern flying boats has not yet been demonstrated, and hence
little attempt is made to use it for design purposes, Not
only the force-time relations of the vertical and drag forces
are necessary, but also their lines of action on the hull
bottom must be known., Of these necessary items, the charac-
teristics of the vertical force are more completely known
than any of the others. Very little general information is
available concerning the drag force and how the exact line
of action of the vertical and drag forces vary throughout
the impact period, Becduse of this lack of information, it
is difficult to determine exactly how the impulses are ap-
plied to the flying boat wing. Furthermore, the influence
of the moment on the wing vibration is undetermined unless
the effect of fuselage and tail oscillations are considered.
Such a consideration is beyond the scope of this discussion,
A firgt approximation may be obtained by considering only
the effect of the vertical force applied at the elastic axis
of the free wing., 1In the absence of more comrlete test data
it may be assumed that the vertical force on the seaplane
hull, during the initial landing impact, varies as a half
cycle of a sine wave, A dynamic response factor envelope
hag been determined for a half cycle of a sine wave impulse
and is given in figure 17, The variation in the impulse
period is as wide as the variation in the shape of the im-
palse curve, and hence it ig not possidle to derive an en-
pirical relation for the impulse period from test data, as
was the case with the landplane., In order to apply the dy-
namic response factor curve, an impulse period must be as-
sumed, oOr a value taken from flight test. data on an alrplane
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of similar size to the one being investigated, A conserva-
tive procedure, in any case, would be to choose a period
ratio TI/Tj 30 as to yield the most eritical combination

0f stresses,

11, ILLUSTRATIVE NUMERICAL EXAMPLE FOR LANDPLANE WING

The principles discussed in section 9 are illustrated
by a numerical example in which the stresses due to landing
in the four~engine land type bomber of reference 5 are com-~
puted. Mode shapes and fregquencies of the free wing of this
airplane are computed in reference 5, The bending and tor-
sional moments are computed at seven wing stations, 1In this
example, the wing chord is assumed parallel to the ground
during the landing, and the landing gear strut is assumed to
be perpendicular to the wing chord line, The landing gear
strut is assumed to be rigid and rigidly attached to the
wing. Figure 18 shows the assumed conditions during the
landinge.

~Elastic axis

" Angular dis-
///’ \\\ placements and
" torques

N,

Linear displacements
and forces

In this particular example, the elastic axis pagsses di-
rectly over the landing gear leg as is shown by figure 18,
The computations may be carried out by table 1 which is self-
explanatory when reference is made to appendix I, A table
similar to table 1 is required for each wing mode, The mode
shapes and frequencies of the free wing are taken from ref-
erence 5 and tabulated in tables 2, 3, and 4, where the first
three wing modes are considered, The following additional
data are required to complete the tables,.
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Gross Welght, W teieseeseseonsesscsncasansasssanss 47,200 10
Gross weight less weight of landing gear, Wy «.... 44,426 1D
Moment of inertia of wheel and tire, Iy ..oee.... 28 slug-ft?®
Effective rolling radius, I, sisssesscacescccnsocses 2,08 %
Landing speed, VS chedrseerisreersesssessssssvassss 124,8 fps

From equation (13), the period of the vertical impact
force is,

- o.25 J‘ 200\0 1475

j Lloooj

Tiy =»O.25 { = 0,441 second

The maximum value of the vertical impact force is

X 44,426n = 22,213n

=
tH
s
i
o fi-

where n is the ultimate vertical load factor, In this ex-
ample, it is assumed that =n = 4,

Npax = (22,213)(4) = 88,852 pounds

It is assumed that the pericd of the drag force is one-fifth
that of the wertical force,

1 0,441

TID = 5 ‘I'IN = = = 0,0882 second:

From egquation (16), the maximum value of the drag force is

eValy _ (2)(124.8)(28)
r.*Trp  (2.08)%(0.0882)

Phax = = 18,290 pounds

From the data computed in columns 5, 6, 13, and 14 in
tables 2, 3, and 4, wing bending and torsional moments are
plotted in flgures 19 and 20, respectively, for each mode in
the first and second extreme positions of oscillation., Orit-
ical values of bending moment and torsional moment at each
station are obtained by adding corresponding ordinates of
the three bending moment curves on the same side of the zero
axis. TYor example, at the airplane center line, the criti-
cal negative bending moment is obtained by adding:
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TABLE 3

Mode number 1

Frequency f = 3.365 cps

Landplane
Et;t;on By ék I, b, ax my by ? Iy a8 2ay hy 8y Item Axial force | Drag moment’ j
o{ o | =8.5 0 ® -0.078 | © I (D] Fpax OF Mpey | 88,858 [1,839,000
1 (133 16.3 -640 | 85,334 | -0.031 | -0.00084 0.0157 0.0601 -0.0333 - |(® ™ 1.607 1.607
2 {817 5.87 0 1,388 .| +0.047 | -0.0018 0.01169 0.00330 ® ¢§,1) -0.031 ~0.00084
3 [ 307 -9.15 | -569 | 61,717 | +0.164 | -0.00183 0.246 0.3065 +0.342 ® T 0.441 0.088
4 438 0.974 0 536 | +0.374 | =0.00185 0.1361 0.00184 ® T, 0,297 0.297
5 | 548 0.686 887 | +0.670 | -0.00187 0.308 0.0010 ® Ty/Ty 1.485 0.296
6 |638 0.153 0 34.1 | +0.936 | =0.00188 0.134 0 ® y{+) +1.90 +0.96
a=1.085 | b=0.873 |c=0.309 ¥ -1.30 -0.96
1
a+b+c= M =1.607 @] == F"‘:"% -1711 -956
() n .,g-) -3351 -918
D n yi‘) +3224 +918
@3 |al*)= @ (axtal)+ @) (arag) | -4,169
’ @3 [8(-)= @ faxtal) +@) (drag) +3,148
©) ® ® ® ® ) () 3 © ©
Etation| st x by | &) xby | Fi¥) = | F{-) = | Bonding | Bemaing [al*)ya,| al-)yqy | 2{*) = [2{-) = |az{t) = Tar{-) = | Tota1 |70t
moment moment torgque torque
e X @ ~ox X @ poeil:ive negj:t‘ive T @ T X ' 8 X @ o X @ poz?tive neéﬁtive
maximun | maximum maximum |maximum
position| position position |[position
0 +336 -346 -9300 | +7010 [-3,940,000|+83,985,000[ © 0 - , -1,092,150| +815,602
1 +139 -97 -8100 | +1581 [-3,719,000|+3,060,000| +3.508 -2.64 | -399,000| +816,300 | -+82,600| 62,100 | -875,750| +661,508
2 -196 +148 +1033 -781 [-1,769,000]+1,340,000| +5.68 -5,04 -8,600| 46,490 -867,150| +655,012
.3 -685 +516 +6260 | -4730 | -844,000] +638,500| +7.64 -5.76 | -471,000| +356,000 | -389,500 [+394,000 -6,650| 5,012
4 -1560 | +1179 +1520 | -1148 | -356,000| +369,000{ +7.72 -5.82 -4,140| +3,120 -3,510| 41,892
5 -2800 | +3110 +1981 | =1450 -53,850]  +40,550| +7.81 -5.89 -2,248|  +1,690 -368 -+208
6 -3910 | +3950 +598 -451 0 0| +7.85 -5.92 -268 +303 0 0

TON WY YOVN
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TABLE 4

.

Mode number 3 Fi'equency f = B.46 cps
‘ h Landplane
[station me Sy I by ay my hkz Iy @y Bay by 8 Item Axial force Drag moment
ol ofas.s 0 o +0.0426 | O 0.0519 S ®Olr,, o x 88,853 1,829,000
1[133]16.3 -640 |85,234 | -0.0064 | -0.00213 | 0.000868 0.386 -0.0175 ® 3 0.841 0.841
2 |217] s.37 o 1,288 | -0.0710 | -0.00132 | 0.0266 0.00234 ® o (3 -0.0064 -0.00213
3307 | 9.15 | -569 {61,717 | =0.1350 | -0.00018 | 0.1430 0.003 -0.0356 ® 14 0.441 0.088
4 |428| 0,974 | 0| 536 | -0.0570 | -0.00014 | 0.0013 0.00001053 ® 75 0.118 0.118
5 |s48 | 0.686 0 287 | +0.3880 | -0.00010 | 0.104 0.000003 ® /75 3.74 0.745
6 {838 | 0.153 0 34.1{ +1.045 -0.00008 | 01167 0 @ 'Y(:) +1.73 +1.21
a=0.494 |b=0.390 c==0.0431 'yg') -0.83 -1.21
2a+b+0=0Ug=40.84 ® "o Fma;g"?‘ 675 463
) -1168 -560
@) n () +435 +560
® al+) = @(lxial) + (drag) -1788
@) (a7 = @ (axta1) + @ (arag) +985
O | ® ® ® ® Q) ® @ @ | @
Beading Bending @ [ Total Total
station [ al*) xby | al=) xn, F](‘*) s Fi") = Rty ey ("')xa.k al-) ay Ti” = '1'1((-) = AT’(:) = lar{-) = orgue ol
positive negative . positive |negative
@O mx @ | maima | s X Q| 1x® | s O (@) mezimn mestm
0 -73.6,| +42 +2100 -1198 +372,000 | -213,200 | © ) -  -143,535 | +117,587
1 +110.7 -6.3 | -1802 +102.9 487,900 | -49,850 | +3.68 -2.1 -314,000  |+179,000 +70,900 | -4,040| +100,576 | -57,373
2 +122.9 -70 -648 +369 -71,000 | +43,700 | +2.28 -1.30 -2,940 +1,672 +103,515 | -59,045
3 +216 -123.1 | -1977 +1139 -195,000 | +110,900 | +0.311 -0.1771 | -19,200 +10,950  |+122,900 |-70,100| -184.32 |+104.99
4 +63.9 _36.4 -62.2 +35.4 | -113,300 | +64,400 | +0.242 -0.138 -130 +74.1 ~54.32 | +30.89
5 -671 +383 +461 -263 -24,950 | 414,190 | +0.1728 | --0.0985 -49.6 +28.2 -4.72 | +2.69
8 -1809 +1030 +276.5 | -157.5 0 o | +0.1381 -0.0789 -4.72 +2.69 0 0

"ON HdY YOVN
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Inch-pounds

First mode - positive maXimum . . « o « o o « « o« « o« =3,940,000

Second mode - negative MaXiMUM v o o o « o o o o o ~-790,000
Third mode - megative MaXiMUM o « o o o o & o o = o ~212,000
Maxinum negative bending moment at the center line = =4,942,000

Similarly, for the maximum negative torsional moment at
the center line, the following are added:

Inch-pounds

First mode ~ positive maXimum . . , + + o o & « ¢ « » =1,092,150
Second mode = positive maximum .+ « o ¢« 4 o« e e e . e -7%,316
Third mode ~ pPositive maxXimum . & « o « « o » o 2 & o _. —142,5235

Maxinum negative torsional moment at the center line= -1,307,991

The frequency of the fourth mode is approximately 1350
cpm, and hence its contribution to the stress would be small.

Thisg is %true because of the tendency for ¢% to be reduced

to small values in the higher modes, and because of the in-
hibitive effect which the aerodynamic and structural danping
has upon the higher modes, I% is important to remember that
the stresses, shown here must be superposed upon the steady
stresses produced by the aerodynamic loads on the wing dur-
ing landing,.

12, ILLUSTRATIVE NUMERICAL EXAMPLE FOR SEAPLANE WING

The principles discussed for the seaplane are illus-
trated by a numerical example., In this example, the four-
engine land type patrol bomber of reference 5 is considered
as heing a flving beat in order that the same mode shapes
and frequencies may be used. The bending and torsional mo-
ments are computed at seven wing stations for a vertical
load factor of 1, and the effect of the drag force 1s neg-
lected, The first three deformation modes of the free wing
are congldered, and the computations are carried out by
means of table. 1. The vertical force on the hull is assumed
perpendicular to the wing chord during impact.
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Mode number 1

TABLE S5

Frequency f = 3.365 cps

Flying boat
Station | my 8 I, b Xy m by ? Iy ‘Zkz 2a, b, 8 Item Vertical force
o| olas.s 0 o | -0.078 0 (I8 L¢3 N [ — €)) Fuax 23,600
1[133 [16.3 | -640 | 85,334 | -0.031 | -0.00084 0.0157 0.0601 |  =0.0333 ® M, 1.607
z|a7 | s.27 0 | 1,388 | 40.047 | -0.0016 o.o1160|  0.0033 ® o) -0.078
3|307 | 9.15 | -s69 | 61,717 +0.164 -0.00183 0.246 0.2065 +0.342 ® 1 0.200
4438 | 0.974 0 536 +0.374 -0.00185 0.1361 0.00184 ® T, 0.297
5| 548 | 0.686 287 +0.670 -0.00187 0.308 0.0010 (e /15 0.674
6|63 | 0.153 34.1 | 40.936 | <0.00188 0.134 0 ©O) y{* +1.72
a=1.03 [b=0.373 |c= 0,309 yi-) -1.57
v Prax PF
a+b+c=M =1.607 = _max -1.14%
+ ¥y @ n M1 1,1
e+ -1,973
(<) 1,801
'WX'Y:L N +1,
Station|m X7§_+) Xby|n x-y(l.) X by Fl(c+) = |r(=) Bending Bending “XY§+)xa n )('y(')xcz.k Tg("') = T%{') = ATE:) = AT&‘) = [Total Total
k moment moment k 1 torque torque
- x@|-m x(@) in in -Ig X(D| -1 x@®)| -sg xOfsx X@)|  in in
positive negativae positive | negative
) maximum maximum maximum maximum
position | position poeition | position
0 +154 -140.9 | -4390 | +4010 |-1,870,000|+1,709,000 0 0 -516,305 | +471,779
1 +61.2 -55.9 -999 +911 |-1,288,000 41,172,000  +1.66 -1.51 |-141,700 |+128,900 | +39,200 | -35,800 |-413,805 | +378,679
2 -93.9 +84.6 +489 -446 | -B36,400| +264,000 +3.16 -2.88 -4,080 +3,705 -409,745 | +374,974
3 ,-324 +396 +8962 | -3705| -398,800| +4364,400 +3.61 -3.30 |-222,500 |+304,000 |-184,100 168,100 -3,145| +2,874
4 -739 +674 +720 -856 | -168,200| +153,700 +43.65 -3.34 -1,959 +1,791 -1,186 | 41,083
5 -1321 +1209 +908 -830 | -285,400| 423,200 +3.69 -3.37 -1,060 + 967 -1236 +116
6 -1850 +1690 +283 -258 0 d_ 3.7 -3.39 -126.5 +115.7 0 0
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TABLE 6
Deformation mode number 3 Frequency f = 4.61 cps
) Seaplane E
* gtation Comy % I, o |y my b2 ,a? 3a, b, § Ttem Vertical force
0 0 2.5 0 o -0.1337 0 - 0.438 e 0 © - 23,600
1 133 16.3 -640 85,834 -0.0693 +0.0057 0.0783 3.77 +0.505 |(®) My 11.437
8 817 5.87 0 ‘1,388 +0.0330 +0.0073 0.0058 0.0685 0 @ ¢ ;a) ~0.1837
3 307 9.15 -569 61,717 +0.2339 +0.0095 0.480 5.57 =3.48 ® Y ' 0.300
4 | 438 0.97¢ 0 536 +0.756 +0.00956 0.556 0.0491 o ® T3 0.2165
5 548 0.686 0 287 +1.741 +0.00964 2.085 0.0266 0 ® 1,/15 0.9233
6 638 0.183 0 34.1 | +3.883 +0.00968 1.873 0.0033 .0 Q yg") +1.75
a=4.914 b = 8.488 ¢ = -1.975 (-) -1.45
& +b+o= M= 11.487 @ =fmﬁt§_ -255.5
. @) 1(3*7 -447
@ n 1&') +370
O, ® ® ® ® ® @ ® @© @ Q @
Station | n x'yg*) xhe|m x'yg‘) X hk Fi*) = F£°) = :g:t:lixltlg :g:g:.‘ltls nx ’Yg+)x ay|n X‘Yg')x ay ’1‘1({"') = Tl(:-) = AT’(‘*') = AT§"> = Eg;al Total
X @ | -m X @ in in I X@D | -1 x® |-, x @ |-8, x @ |
: Eaximun: | magimm | Parimn |mastmnm
position | poeition ’ position |position
0 +65.4 -45.8 | ~1580 +1305 -796,000 | +656 ,000 0 0 +448,893 | -372,208
1 +31.0 -35.6 | -505 +417 -589,000 | +485,000 | -3.55 +3.11 +217,500 | ~180,000| +19,880| -16,390 [+811,573 | -175,818
2 -14.8 +12.3 +78.1 -64.4 | -414,000 |+343,000| -3.26 +2.70 +4,190] -3,475 +207,383 | -172,343
3 -102.5 +84.8 | 4934 -776 -334,000 | +193,500 | -4.35 +3.58 +362,100 | -217,500| -56,400| +48,200| +3,683 | -3,043
4 -338 +2380 +329 -378 -105,900 | +87,300| -4.38 +3.54 +3,297| -1,900 +1,386 | -1,143
5 -780 +645 +635 -442 -17,910 | +14,810| -4.31 +3.56 +1,239| -1,021 +147 -122
6

-1291 +1069 +197 =163 0 4] —4.33 +3.58 +147- -133 [¢] Q

9¢



TABLE 7
Deformation mode number 3 Frequency f = 8.46 cps
Seaplane
Station o, Sy I, hy ay my hka Ikaka 8ay by 8 Item Vertical force
0 0 38.5 0 [ +0.0426 0 0.0818 | —ememem- .- 0 @O e 23,6800
1 133 16.3 -640 85,334 -0.0064 ~0.00313 0.000668 0.386 -0.0175 | {(® ¥z 0.841
3 217 5.37 0 1,388 -0.0710 ~0.00133 0.0366 0.00234 0 ® ¢ ;"” +0.0426
3 | 307 9.15 -569 61,717 -0.1250 ~0.00018 0.1430 0.003 -0.0256 | |{® T 0.800
4 428 0.974 0 536 -0.0370 ~0.00014 0.0013 0.0000106 0 ® 3 0.118
5 548 0.686 0 287 +0.3890 ~0.00010 0.104 0.000003 o ® 1/, 1.695
s | 638 0.153 0 34.1 +1.045 -0.00008 0.167 0 ) ®| «» +1.475
a=0.404 b= 0.390 ¢ = =0.0431 ) -0.735
Tnax @7
a+b+o=ly =084 n = - +1197
@ = 7:(5*) +1766
@] av? | e
® ® ® ® ® ® @ ® @ O @ @ ©@
Station |m x7(+) X by [ MX 'v(") X h F(+) = F ) Bending | Bending |nx -yg*') @y | M x-y(') a T(“) = =) = ar{+) = tar(-) = Total Total
3 k 3 k| 7k k moment moment Xk 8 x7k| Tk k k k tor
que torgue
o X@D| mX@)| 1n “in “Ipy X (@) |-Tg X -5 XQ | -8 x @ in in
positive | negative positive | negative
maximum | maximum maximum | maximum
position [ position position | position
o +76.4 -37 -2145 +1055 | -381,000 | +187,000 0 0 ———— — +210,869 | -103,851
1 -11.3 +5.56 +184 -80.5| -89,300 | +44,200| -3.78 +1.85 +320,500 |-157,900 | -7,840| 43,555| -103,691 | +50,494
2 -126.3 +61.8 +661 ~325 +78,400| -28,700 | -2.33 +1.145 +3,000 -1,474 -105,691 | +51,968
3 ~380.5 -108.3 +2020 ~993 | +198,800| -98,000 | -0.318 +0.156 +19,620 -9,640 |-135,500| 451,700 +189 -93
4 -65.4 -33.1 +63,6 | -31.2] +115,300| -57,000| -0.247 +0,131 +133 -65 +56 -a7
5 +686 -338 -47 +233 +35,400 | -13,530 | -0.177 +0.087 +61 -236 45 -3
8 41849 -907 -383 +138 0 ol -o0.141 +0.069 +4.81 -2,38 0 0

OTHY "ON ¥dY YOVN

L



Wing bending moment, millions of inch' pourds

NACA ARR Wo. 4H1O 38

L
L
. {0 - U
.;_—-‘.._.--—-—-——---"""‘\\‘/./"~
1
L""J
| Distance from £ , inches
U 160 200 300 400 500 600
T 1
N |
& \\ .
\\\ | First mode-negative maximun
\\f’// g
“\\ |
: e AR
N _ Second mode~negative maximum
i, - )
N i
s N
pa—. / \\
2 ~i | N i
s N \\ /
e \ - Third mode-negative maxinum
\_‘ . X } | |
el T —
e \‘>--=———~»~.‘. ~ -
Ruance e r_,,_a*""" - b T —
T~ P’/ ”/ ’ — "““’j\ ..
0 T~ AT T =;:;;::::::§a
r/ T — ~ . ,-,.—_;:_:;.‘:..;:—_.ﬂ:%
ey I T T
V,/ T P L',,/"r‘ =
. T b // ’ -
/// 2 = S = - f ‘
= P T / T~ Third nole-positive maxirmum
| o . ‘
'Lz / // " l l !
et | ' f L
- B R o
e ——4..Second mode~positive maximum
— / ! i | i

e / T T { ‘ H
e P i rgt mode-positive maximum

[
i

N

7

//
. 4

|
|
| .
|
!

/ Figure Z2.~ Bemplanewwing bending moment vs. wing station. First
N three mod_.es for 4G landing.




WACA ARR No. 4EH1O0 40

check. Damping has
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Coupling hetween the motion of the structure and the
sxternal force is neglected in this discussion; however, 6 this
assumption is also subject to experimental check.

The methods discussed here are not universally appli-
cable to all types of transient problems, and should be used
with discretion. TFor example, appendix III discusses the
case of a simple beam subjected to a unit impulse applied at
the center. In this case, the method is not applicabdble,
since reference to equations (III-11) and (III-13) shows
that the seriss describing the moment and shear does not
converge, Eowever, in practical problems, the applied forces
do not behave like the impulse type, but rather behave like
the step type. In this case, referencc to equations (III-10)
and (III-12) shows that the series describing the moment con-
verges, whereas the series describing the shear does not con-
vergse when maxinmum values are added regardless of sign. In
the case of the procedure discussed here, convergence of the
series describing the moment and ghear 1s dépendent upon di-
minishing values of ég) This is assured because of the
characteristic taper of the airplane wing from center line
to wing tip, and because ég) is measured at the inboard

gide of the wedge in its regilon of greatest mass per unit
length., Theee limitations regarding the convergencs of the
series apply eoven more so if one attempts to predict the
local accelerations in the structures. This aspect of the
problem becomes significant when evaluating ths dynamic
stresses on the attachments of small localigzed masscs. It
is not possible to formulate at this stage a general rule as
to how many modes should be taken, and each application of
the procedure will present a different prodblem depending
upon the mode shapes and frequenciss of the wing.

In the landplane case, the position of the landing gcar
leg has an important effect upon the wing dynamic loads dur-
ing impact. TFor exanmple, if the leg intersects a nodal line
for one of the modes, that particular mode 1s not excited.
The effect of various landing gear positions on the stresses
may be readily studied by these methods.

In studying the prescent day large aircraft with con-
ventional wings, it appears as though wing dynamic loads will
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&

produce torsional moments inboard of the nacelles which,
n.o‘.cr'rnvgfpﬁ 'hv the nvnrhgnzing engines; may be critical in
severe 1mpact The design of the nacelle carry through
structure in bending may be controlled by dynamic loads,
and the possibility of critical wing bending stresses is

not precluded in very large aircraft,

A comparison between the landplane and flying Ddoat ex-
amples given in sections 12 and 13 shows that the wing dy-
namiec loads in the flying boat are more severe than in the
case of the landplane. This is attributed to two causes:

(a) In the case of the second mode in the landplane
example, the drag force actually has a reliev-
ing effect on the stresses produced by the
vertical force.

(b) In the case of all modes ¢%) at the center lins
is greater than &g) at station 1 - that is,

the forces introduced at the landing gear are
applied nearer to the nodal lines than forces
introduced through the hull at the airplane
center line,.

The present work is of a preliminary nature and many
gusstions are left for Ffurther investigation. It is evident
that the methods here presented are not restricted to the
evaluation of landing loads, since it is possible at least
theoretically to handle in the same way dynaumic loads due to gun
recoil and "flak.® It must be remembered, however, that in
flight ths acrodynamic forces become of primary importance
and cannot be generally neglccted, This is esvecially true
in the determination of dynamic loads due to gusts in which
case the flutter characteristics of the airplane must have a
preponderant effect, It must also be kept in mind that the
possibility that the representation of the transient motion
ag a superposition of natural modes is not necesgsarily the
best procedure in all cases. Considering the dynamic stresses
from the standpoint of wave propagation in the elastic system
might turn out to be a more direct and significant viewpoint
in the case of high frequency transients, This viewpoint
also eliminates the convergence difficulties mentioned above
in connection with the determination of local accelerations.
Another case where natural modes lose their significance
is that of resonance between loosely coupled parts of the
structure, in whick case the vidrational energy at one loca-
tion is gradually transferred to another.
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Zxamples shown in the present work are limited to the
wing structure under the assumptions of a symmetric landing.
Such a landing condition is exceptional, For a landplane
the degree to which the unsymmetric modes are excited by an
unsymmetric landing depends a great deal on the time inter-
val between the instant at which the left and right wheel
enter in contact with the ground. Statistical data on this
time interval can only be obtained by flight testing. To
exanple hasgs been presented of an application of the proced-
ure to the evaluation of landing loads in the fuselage and
tail. However, the same methods are directly applicadle to
this case, provided the natural modes of the fuselage and
tail havc been determined. Data obtained during landing
tosts of flyingzg boats have shown that modes of the fuselage
and tall are excited and result in a "tail whip" effect
causing considerable dynamic overstress in the tail and aft
portion of fuselage.

Bureau of Aeronautics,
U, 8, NWavy Department,
Washington, D. C., August 10, 1944,
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APPENDIX I

GENERAL MATHEMATICAL THEORY OF TRANSIENTS IN AN

UNDAMPED ELASTIC STRUCTURE

The general transient theory of linear systems with
lumped or distributed parameters is well known and has been
extensively developed in the case of electrical network
theory (refercnces 2 and 3), The problem of transients in
airplance structures is idcentical in its mathematical form.
In an clastic system with distributed parameters there 1s a
spacc as well as a time variation in the variables, The
problem may be considercd with two viewpoints. The motion
may be considered to be made up of a series of traveling
waves, or 1t may be considered to be made up of a superposi-
tion of natural oscillations, in which case to be rigorous,
an infinite number is required. The airplane structures
problem 1s treated here from the standpoint of a superposi-
tion of natural oscillations.

In a transient problem of this type wherec maximum val-
ues occur very soon aftfer the motion starts, the effect of
damping may be justifiably neglected. The motion of an un-
damped elastlc system may be shown to be composed of a super-
position of normal modes which are orthogonal. The airplane
structure vibdbrates in a seriecs of normal modes when excited
by a random impulsc as is tho case of any elastic system.
These normal modces arce cach characterized by a certain mode
shape and a certain frequency. Tor the airplane they are
composed of coupled oscillations of the wing, fuselage, and
empennage system., These mode shapes and freguencies may be
caleculated by the methods of reference 5, or thcy may be ob~
tained from a ground vibration survey of the airplanc.

If each normal mode shape(ﬁ considered to Dbe repre-

sented by the space function ¢ the displacement of any
point on the structure at any time may be written as

n
. = ;—' ¢(1) a; (I-1)

i=o0
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If 8Wj is the virtual work produced whon all the ex-
ternal forces are allowed to move through displacements cor-
responding to a virtual displacement qu, then the gener-
aliged force Qj is defined by

:.w_j. —
45 = 1 (1-7)

The complete motion of the structure is then defined by a
gseries of differential equations of the form

o 2 = S
15+ 0y 9y = gy

where the form of the right-hand side is dependent upon the
character of the applied foreces,.

In general, the aerodynamic applied forces on an airplane
structure vary with deflection, velocity, and acceleration of
the structure, and the landing reactions vary with time in a
manner which is determined by experiment, In the case whsre
the external forces are landing reactions assumed to be given
furctions of time, the equations governing the response are

' ()
Elj + U)ja QJ = 3‘51';"‘“ (I"B)

This is the differential cquation for the undamped mo-
tion of a siwrplc oscillator of mass Mj and natural frequency

w3, which is under the influence of an arbitrary forcing
impulse Qj(t).

If Qj(t) is a unit step funection 1(t), the response
1 which is called the indicial admittance (references 3
and 4) is

A(t) = —2 (1 - cos ws t) 1(t) (1-9)
M. 2
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The response qj bto any arbitrary forcing impulse Qj(T)
may be written by the superposition theorem as

1

3 @3

t
a3 = JF Qj(T) sin wj(t - TY 4T (I-10)

[o]

M

T 1s a variable of integration.

When this integration with respect to T 1is carried out
between the limits C and ¢, a function of time results
which is the time history of the deformation of the Jjth mode.
The stress at any point in the structure in the jth mode 1is
vroportional to the deformation of the Jjth mode.

. s (5 £
3 L (9 g, = — ]f Q,(7) sin w, (¢t - T)aT (I-11)
J My 0y J J

When the constant A(j) is properly chosen, equation (I-11)
yields tho stress time history of some particular point in
the structure caused by the deformation of the Jjth mode.

The stress s(é) in the Jjth mode at the kth wing station
may be written as

(1.12)

The total stress at the kth wing station for n modes is
obtained by superposition as

[#]

\
= Sﬁ A(i' (1-13)

Fote on the Computation of Mj for the Wing

N B
MJ =f Ld)(‘j):’! dm

From equation (I-3)
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For the case of the wing, the mode shape is conveniently de-
scribed by considering the wing deformation to be made np of
a bending of the elastic axis, and a twisting about the
clastic axis. This scheme is discussed in referencc 5., Con-
sidering the wing to be divided into k spanwise stations,

.the normal function dcscribing any point on the chord of the
kth etation is (sce fig., I-1)

¢(£) = h(g) b ox a(g) (1-14)
O meuews @y

A o

f ot
i

Figure I~1

In figure I-1 positive bending deflections are downward and
pesitive pitching deflections are stalling.

Using equations (I-3) and (I-12), the following equa-
tions may be written

[ L(:1)]
2 r . 2
y { l(cd)] my -+ !-a,li‘])il I + Bh(‘]) (:(,1( ) Sk} (1-15)

fl

M

My

i

Note on the Computation of the Generalized Force Qj

From equation (I-7)
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If the external force F(t) 1is a landing reaction conside
ered to be applied at one point to the wing structure, the
virtual work may be written as

W = F(t) gszp

where zy 1s the value of z 1in the dircetion of the ap-

plied force evaluated at the point F, the point of appli-
cation of the landing force.

From equation (I.-1)

z = o) q, +0() g s L o(®) an

hence

(

(1) 2) (n)
8‘;’!:3‘(‘@){(;31 8q1+¢1,;1 8q_2+ .« . och sqx}

where ¢<§) is the normal function evaluated at the point

of application of the force ¥,

Then
. (3
qy = LY _ s g F(t) (I-16)
54 -

The factor ¢(§) is a measure of the contribution of

the external forece to the generalized force in the jth mode.
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Hence

(M + m) ao = F(t)
is the &ifferential equation defining the motion of the cen-
ter of gravity of the system,

The motion of the mass m relative to the center of
gravity of the system is determined next,

Multiplying equations (II-1) and (II-2) by m and M,
respectively, and subtracting, the following equation is ob-
tained

Mm(%, - %5) + k(M + m)(x; - x,;) = nF(t)
and substituting

Loz, - oxa)
= {x; - %
AETRE TR @

which represents the motion of m relative to the center of
gravity; the differential equation may be rewrittcen as

2
m 40 n + M I
- _—— = = F I
v (m + M) q, +1c< 0 > a, ” (t) (I1-4)
Let
My = % (m + M)
\a
m
9 (8) = 5 Flt)
and write
M, 3[1 + M; 0,2 g, = Q,l(t) (I1-5)

This is the differential egquation defining the motion of m
relative to the center of gravity of the system. It is also
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the differential equation for a simple osclllator. (See fig.
11-2.)

d et s 12 - q
=il w g U o (1)
/._..._.M._. RN e W VNI ! IVIl t‘ [ —— ‘1
S e e S

Figure 11-2

The actual displacements X; and X, may be derived by
solving for  x,, X5,

Trom the relations

(x, - £,) —1 = q
: M o+ m :

may be found

=i

X, = go + q:

Xz

1

do = Qa1

»

The motion may be congsidered as the superposition of two
configurations, one defined by qq, a rigid motion of the

system, the other defined by q, represents a configuration

in which the center of gravity remains fixed while the masses
M and =m move in opposite phase with amplitudes inversely
proportional to their masses., The equivalent system of fig-
ure II-2 represents the motion in the latter configuration,
It will be noted that the generalized mass M; may be derived
guite simply by considering the kinetic energy T 4in the
corresponding configuration

PRI BWEL P
2 1 2 M/ ?
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i
[av}

or

T

it

1 -
-—2- (m+M) q‘l

I
M

Tquating this to the kinetic energy of the equivalent oscil-
lation

o
—t
o=
(0]
1
(0]
e
W
L)
(&)
fur
o]
cu

M, =

) (mn + M)

10
M
Similarly Ql(t) may be derived by equating the work done by

F(t) in the corresponding configuration and the work done by
Q; in the equivalent system. '

Q. (t) qp = F(t) % a1
Hence
m
Ql(t) = 'I;I' F(t)

APPENDIX III

TRANSIENTS IN A PRISMATIC BZaM SIMPLY SUPPORTED AT THE EXDS

WITH 4 FORCE APPLIED AT THE CENTER
(F ()

MY

{
V..

[

Figure 111I-1
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The natural mode shapes and freguencies of a simply sup-
vorted beam with constant cross section may be shown to be:

o{1) - gin -1—71‘3‘- (111-1)
Wy = im /E , (I11-2)
pAl
where
B modulus of elasticity
I moment of inertia

mass per unit volume
A cross~-sectional area
1 length

From equation (I-1) of appendix I, the &isplacement of any
point on the beam may be written as

le o] (e~}
;= y o (1) 4y = y cin }_1%32 a3 (111-3)
i=o i=1

Trom equation (I-10) of appendix I, the generalized coordinate
q; 1s expressed by

t
1 .
U4 = T f Q (1) sinwy (¢t - T) a7 (I1I1-4)
“1 1%
whers 1
fe ()] i 1pA
M, = ¢ (] am = pa [ sin® 17X ax = 22 (111-5)
i . C 4 2

’ ‘O
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oo
2 //E in in imx Wy ¢ 111_11‘
1+ pA }: g 0 Sin. i ¢ )

The shear in the beam at any time after being subjected to a
unit step forece is,

o)
oM 2 U 1 im inx _
é_;; = '1; L -i- sin '—27- [oRoR ] «T-- (1 ~ COS8 0)1 t) (III—-].Z)
i=1

The shear in the beam at any time after being subjectasd to a
unit impulsc is,

12 p

& study of ecquations (III.l0), (III-11}), (III-12), and (III-13)
indicates the shortcomings of the procedure when adding con-
tributions of each of the modes to moment and shear for a
simple prismatic beam with a force at the center. This is
illustrated in table III~1, Limitationsof a similar nature

are encountered in all problems where the motion is described
as a superposition of modes,

(03}
=
L4V ]
o |

l
|

i sin in cos imx sin wy & (IT1I~13)

2 15

&)

bt
2 |

" \/18
B! X

(o)
"

i

TABLE III-}

UNI® STEP UNI§ IMPULSE
Percent of 1lst mode J' er cent of 1lst mode
Moment ‘ Moment
lst mode 100 lst mode 100
2nd mode 11.1 2nd mode -100
 &rd mode 4 3rd mode 100
4th modo 2.04 4th mode 100
Shear Shear
lst mode 100 . lat mode 100
2nd mode 33.3 2nd mode 300
3rd mede 20 3rd mode 500
4th mode 14 .3 4th mode 700
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1. IRTROLU

During lending the airplene structure performs translemt oscl.iations
vhich are exolted by the inlilal . anding impact. Recent experis.c, has
show:; that in the cuss of large alrerafh, thoee osgelllstlions may vruduce
oritical design corditlens Lor the struciurs. Herstolcrs, design ioeds
for the lunding conditlon have bosn baged wvpor coloulaiions wiioh aAnsume

the atru-turs to be rigld.

It appears that the problem of determining the Urauslent motiom oL an
airplane sbtruoetucs during landing may be approached in two different ways:

(a) In the case of the landpleno, the alrplene structure and ite alight-
ing gear are considered as a whola, and the actual forgce~displecement char-
acteristics of the landing are inirdduced into the theory. In this proge~
dure, the dynamic stresses result from the sudden application of moving ocon-
straints imposed on the airplane during landing. Simlilarly for the seaplane,
the elastic structure and the water surrounding the hull may be considered
as interacting bodies. While this method is not precluded in the investi-
gation of specific cases or for researoh purposes, it involves inherent
corplexities such as those resulting from the non-linear properties of the
alighting gear and the varlable mass effects of the water surrounding the
hull of a meaplane, which tend to make this type of approach less adequate
for deaign purposes.

(b) In the other procedure, in which stresses in the structure are con-
sidered to be caused by .a landing impact force applied directiy to the
structure, it is assumed that the time history of the impact force may be
investigated indcpendently of the elastic properties of the structure.

Ia this way the investigation involves two separate phases - a study of -
the landing forces, and a study of the impuct behavior of the structure
-under such forces. This procedure involves the assumption that a landing
impact force may be defined in such a way thdt its time history is for
all practical purposes independent of the elastic properties of the struc-
. ture. Since it is believed that the relative simplicity of the latter
approach overshadows the approximations involved, it has been adopted as
the basis for the present work. This procedure was desoribed previously
in reference (1) in connection with the problem of dynamic stresses in
buildings during an earthquake.

It is assumed that in first approximation, the demping and aerodynamic
forces may be neglected. The landing impact force is epplled directly to
the elastic structure as an external force of given time history. The re-
sponse of the atruoture is represented as a superposition f modes
excited by the landing impact. A first step in : :fore
to obtain the natural modes of the airplane stru ‘



An important feature of the designers approach to the landing loads
problem 1s the fact that he i3 not so much interested in the uctual time
history of the motion of the structure as he iz in the megnitude of the
highest attainable stresses. This viewpoint is introduced into the pro-
codure by using a statistical approach. The stress amplitudes of each mode
ere puperposed iriespective of phase, and the worat possible combination is
used az a basgla for ths deszipga. Furthormore, the stress time history inm
gach mode ls not notually computed, btut the stresz emplituds is oltained
by « simple procedurs using » gruph reprasenting what le designeted as a
dynemio respouse fuctor. This fector resulte from a statisticsl enalysis
of tho eff'ects of lorces ¢f varlous timo hishtorles ¢n a single deg-ee of
froadom oscililator, valag a sulliclent curber cf guch time hisg! o“iﬂs to
ropresgnt all possivle typos of lending condivione. Values of the dynamioc
resgponse factor are obteined by applyiag the force-time historiss to a
torslon pendulum {described in refersnce 1), ssd messuring the nerimum sm-
plitude of itg response. In thia way, when the netural modes of the air-
plene are known, the dynamic loads ere¢ readily obteined without the neces-
ity of integrating the differential equations whioch govern the behavior of
the struoture in the trensient ocondition.

2. EVALUATIUN OF T:»NSIENT MOTICN OF ELASTIC BODIES BY USE OF GHNERALIZED
COORDIKATES

As pointed out in the introduction, the thoory proceseds on the assump-
tion that the landing impact force is known. In this way, the theoretical
problem is reduced to the evaluation of the responss of an elastioc structure
to & foroe of given time his tory.

In order to outline the basis of the present theory, simplified illus-
trations are given. Detailed aocounts of the peneral mathematical theory
of transients in linear systems may be found in numerous references (e.g.
ref. 2).

A simple oscillator is illustrated in figure 1

k = 42 @ q

ANt M F(t)
el
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Pig. 1

Dencting by M the mass, and by w the natural frequency, the apring
constant is k = Mw?. The expresaion glving the displacement q of this
mass under- the action of a force F(t) of arbitrary time history is well
¥nown (ref. 2). It may be written as,

wzc-
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integral. According to thl formula, the oowyu&muw R of the displaau;ent q
at the instant ¢ requires the evaluation of e deiinlite Integrel betwsoen

the limits of intogration O and €, and the binme hislory of q is cbteined
by reppaving this prozoas for every veluwo of . Evon in the case of &
simple eystem, ths piocess of cumpubling the tremsient rw sonag ia quite
elaborate. Fortumabtely thils diificuliy moy Do evoldsd in wdapting tho
theory to practical probicag of design by o“ﬂ“’mﬂxinw oxly the maximum
velue of q instead of its complete time hintory.

Assume for the present that the complete time history of deformution
of the airplane structure is desired. Such a struoture differs {rom the
\r--ﬁnm Aaf Mouwva 1 o two ?nn'f'i o e

-] GJU Wh SbRQWi W & Wj WiTW &WEAWVWE Wy

{a) It is & freo body
(b) It is an elastic body with many degrees of freedom.

Instead of a single deformation mcde as in the case of the simple aystem,
there are sctually en infinits number. The displacement under the landing
impact foroe may be deacribed as a superposition of a ripgid body transia-
tion which represents the motion of the center of gravity, and deformations
of the structure in ell of its natural vibratory modes relative to the
center of gravity. If damping is neglected as is the cuso here, the modes

ara unnannlad The hahawlar A® anah Arms mdar $he Toamddne dmnant Pavna 4a
83V vuvVup AT A0 UGARTVLOL Ci fava OOV LGRS Lad AG0GIRE saEpabyv L0100 408

independent of the other. Each mode may be represented by en equivalent
single mass oscillator of the seme natural freguency, and exoited by a
goneralized forcé. As an example, take the case of a wing in pure bending.
There are an infinite number of bending modes, a few of which are represented
in figure 2. The motion of the center of gravity represented by the rigid
airplane with the generaliszed coordinete q, is referred to as the gero mode.

i)
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‘The amplitudes of the wing tips rslative to a center of gravity axis are
selected as genoraliszed coordinates and denoted by q; for the first mode,
q, for the second mode, eto. The corresponding generalized masses are de-
termined by the condition that the kinetic energy be the same for the mode
and its equivalent system. This ylelds the expressions, )

n°k = L .
< 2

1 = (e

My = ﬁ [m“z)\zx ato.

In these expressilons. q;J) represents the amplitude at statlion k relative
to a center of gr.vity axis when the wing 1s defleocted into the oconfigura-
tion of the jth mods with a unlt deflection at the wing tip. Similarly,
the gemeralized forces determinsd by the condition thet the work done by
F(t) be the same in the particular mods as the work done by Q(t) in the
equivalent syctem are,

(2)

) (3)
- ' (2) o
Q(t) = F(t)¢ p eto

The subsoript f refers to the station at which the landing impaot force 1a
applied.

3. THE LANDING IMPACT FORCE F(t)

In the preceding discussion, the time history F(t) of the externally
ayplied landing impact force is assumed to be known. A convenient source
of landing force data is a landing test with a recording accelerometer at
the center of gravity of the alrplane. A sketoh of a typlcal accelerometer
record is shown in figure 3.

a(t)

' Accelerometer
Record

Assumed a(t)
Curve




he dotted line shown in

The higher freguency oscillatlons are disregarded. T

‘ figuregs 18 considered as the acceleration of the center of gravity of the
airplane. The force applied to the airplane structure during landing is

assumsd to be given by,

F(t) = ua(t) (4)

4. THE LDYNABIC HESIONSE FACTOR 9.

It Lus been vhown that the behavior in cach moda roy ke deflined by
the rusponse of an equivalent simple oaoilliabtor acted upon by & peneralized
force Q(t). The motion of o simple osoillator under the action of an ar-
bitrary foroe Q(t) 1s given by Duhamel's integral as shown by equation (1).
Congider, for example, the responee of s simple osoillator under the in-
fluence of a foros-times impulse having the shape of an isoscoles trisngle.
The complete time historiee of the motion of the oscillator hive Leen
evaluated for the isosceles “riangle impulse for two ratios of TI/T, and
the rosults are plotted in figure 4. Ty is the period of the impulee.

T = 291/w is the matural period of the osoillator. The response of the
osoillator is expressed as a ratio of ‘its aotual displacement to its static
displacomont under Q. . This ratio is denoted by q/qy.

7
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9/§a°

rI/T~- 0,26

Figb 4

For eaoch period ratio TI/T, there is a maximum value of q/h, in the positive
" direction, and a maximum value in the negative direction.

5o



" These maximum values are desligraisd here as dynamic response factors, and
denoted by y . There are two values of y asgooisted with each period ratio
as shown by figure 4. A diegram mey be constructed showing the variation
of dynamic reaponse factor with periecd ratio. Such a dlagram for the iso-
sceles triangle impulse is showmn in figure B. ‘
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The determination of a dynamioc response factor disgram may be accomplished
for any arbitrary Q(t) veriation by a numerioal or analytical evaluation
of Duhamel’s integral. However, both processes are quite lengthy and re-
quire plotting a time history as shown by figure 4. A mechanical analyzer
oonsisting of a torsion pendulum hus been developed (reference 1) which
may be used to measure the dynemic response factor without recourse to an
evaluation of the complete time history of the motion. By such meana, a

dynamic response factor diagram similar to figure 5 may be evaluated in a
relatively short tims.

6. STATISTICAL APPROACH TO THE LANDING PROBLEM

The methods previocusly outlined are appliceble when the times hiatory
of the externally applied landing impaot force is accurately known. Ac-
tually the shepe.of the landing impact foroe~time curve may vary from one
landing to the next and with different operating conditions of the airplane.
For this reason, 1t ia not practical to design for a single mathematio °
landing, but instead it is desirable to employ a statlistical approach

6::



to the problem. In the previcus sectliom it wus shown that the extreme posi-
tions of osoillation of & simple occillator for sny one force~time configura-
tion may be conveniently reprasaemtod by monns of e dynamlc raesponse factor
diagram.- F%-is possible to comsidor a large pumbsr of shapes of lending
foroo-time curvos vary}n¢ frcz el to hersh landings, ard then ovaluste
thelr dynamie respopse factor diigromm.  Those diagrens mey be plotied on
the same graph, and an enwelros rue may be draen whilch bounds a1l of them.
This envelopo would xnp‘axﬁ“m coudiilons whaich ezoeed ir suverity every
type of landing which was ooizidered. Such a statistizel basis may be used
to establish deslipgn lmnding dynnmia response fuctor e¢nveloypss {or thu land~
plane and the sneaplens. Y3 neans of the onvelops, the marirt derlection
cf the structurs in esch node durlng the landing mey bs ovaluated gquite
sinply. Considering any single mode, it ias gnsumad that the structure is
restrained to doflect in that mode only, wills {he wexlmum velus of the
geroralized foreo is applied stetiocally. Tha deflootion mw; tao computed
under these conditions and then multiplisd by the dynamioc response factor

in order to determine ths maximum dynamlio defleotion during the landing.

o Ymany _L'IF“)max‘ég) (8)

q " vil .
Hmax) V3 j(-taf:io). M f Z M 3“’3

The phase relations between the modes aré lost whem an'epproach of this
kind is employed. However, this is not oonsidered serious since for de-
slgn purpoges it must be assumed that sometime during the life of the air-
plane the phasing of ths modes will be such as to produce the worst combina-
tion of etresses. For this reason, the maximum deflectiones ere superposed
without regard for phase in order to yield the most critiocal combination.

6. EVALUATION OF THE STRESSES

Baving determined the maximum deformation of the structure in each mode
during the landing, the stress may be obtauined in a straightforward manner.
It is convenlent to oonsider the total stress as resulting from the super-
position of the stressos in each mode. The zero mode which is a rigid body
motion does not contribute any stress. From a practiocal viewpoint it ias
important to note that tl:~ stresses in each mode may be conveniently calcu-
lated by using the inerti: forcea of the natural osoillations rather than
by caloulating the strain from the space curvature of the mode shapes.

-~



7. THE LANDPLARE

In the case of the landplane, the forces and moments are applied to
the airplane astructure through the slighting gear. During lending, &
force is applied axially along tlc :hwck strut, end a foroe ism applied
nermal t~ ko rhock ztrut. Jaigenuc.d, b former 1s the reaotion force

roquired o dostroy vhe sinkihg skusd of Uia wirplane, and the latior is
the {ricviun Torco roic.red ‘\:o ap;h 3. wlie vhewl. A dyneric respones
factor o&rmrow mvat b c\.draiinad 3;0; arel. ol these foroes.

Drop docbs wand $light tiste have shorn thas the slook strub exisl
force differs consldersbly with ;upi o eltitude ond wirking speed. A
group of eix foroce~time Godﬁgu}ptfom: a0 conuldered which would repro-
gont various typos of etrut. ohrac\-erlzuma and landing cemditione. These

......

are illustrated in figure 6. * '

* -

- ’ ) Figo 6

Dynamic response factor diagrsms similar to figure 6 have been determined
for each of these ocurves by means of the mechaniocal analyzer. The points
which define these ocurves have been plotted on one graph, and a smooth en-
velope ourve has been drawn which bounds all of them. This envelope is
illustratsd in figure 7. The conditions which the envelope shown in
figure 7 represents, sxceeds in severity the conditions of the six types
of landinges consldered. It is possible that, after ccnsidereticn of a
large number of shapes of force-time ocurves taken from flight test records,
an envelope of this type may well reprassent conditions which eiceed in se-
verity every probable landing which would be experienced during the normal
life of a land type airplanse.
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In order to apply the dynamlc response factor envelope of figure 7, the im-
pulse period must be knuwn. This has been determined by an empirical study.
Analysis of data of normal acceleration periods during the first impact of
landing shows that the impulse peried in seconds may be related to the air-
plane gross weight in poumds approximately by the empirical relation,

1 0.16

L J 0.26 O r———

1000

T
(6)

Analytical studies and instrumented flight tests have shown that the
wheel spin up force increases almoat linearly with time to a maximun velue
and then drops to gero when the peripheral wheel velocity roaches the air-
plane velocity parallel to the rumway. Such a force-time relation is illus~
trated by figure 8.

b(t) . T
. o
Y
B T L
Fig. 8



The dynamlo response factor diegrem for the force-~time relation shown by
Zigure 8 is 1llustrated by figure 9. Experimental duta have shown that
tho time required to spin up the whoel is of the order of cne fourth to
one fifth of the impulse period given by equation (6).
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Fig. 9

8. ILLUSTRATIVE EXAMPLE OF LANDPLANE WING

The principles previouely discussed are applied to an example in which
the transient wing gtresses during a symmetrical landing are computed for
& four-engine land type patrol bomber. The maximum value of the shock strut
axial force is arbitrarily selected to correspond to a 4g landing. The
maxirmum value of the wheel spin-up force is determined from the formule,

- v
Dpax * ";523“" (7)
ol

whera,

<
'

landing speed

]
L}

moment of inertia of wheel

-
]

offective rolling radlus of wheel

3
=
L]

period of wheel spin-up impulse
=10=



Formula (7) is derived on the assumption that the tire is slipping or on
the verge of alipping during the period of wheel spin up and the shock etrut
exial feroce is inoreasing linearly with time during the period of whesl

spin up. .

Figure 10 Gllusirates the coantribution of each of the [lirst three
nutural modes Lo wing oanding moment. The bending moment is plottoed for
easch of tho extromo positions of oscllletion in cach mode. Positive de-
flagtion scrresponds to downward deflecticn of the wing tin. Critlesl
values of bending moment for design are obtalnnd by adding corrsaponding
ordinates of the heniing moment ocurves on the gamo side of the saro axls.
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Symbols,
N~1 = Maximum negative deflection, first mode
P-1 = Maximum positive deflection, first mode
N-2 = Maximum negative deflection, second mods.
Etc.
Figure 10. Contribution of First Three Natural Mode
Bending MYoment. Four-er:
4g Landing.
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