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1. SUMMARY 

The application of transient theory to the rational 
determination of dynamic loads on airplane structures during 
initial landing impact is discussed. Simplified procedures 
are described by which the distribution of the maximum at- 
tainable value of the dynamic stresses in the structure may 
be obtained. Illustrations of the procedure are given by 
numerical examples for tbe case of airplane wings. This 
indicates approximate orders of magnitude to be expected in 
a typical problem. The v.alidity of the underlying simplifi- 
cations and assumptions is discussed. A brief outline of 
the general mathematical theory of transients in undamped 
elastic system is presented. 

2. INTRODUCTION 

During landing; the airplane structure undergoes 
transient oscillations which are excited by the inftial land- 
ing impact. Secent exyorience has shown that in the case of 
large airc raft these oscillations may produce critical design 
conditions for the structure; whereas heretofore design loads 
for the landing condition have been based upon calculations 
which assume the structure to be rigid. Since tho advent of 
larger aircra,ft has resulted in heavier and more fiexible 
structures, these calculations are considerably in error. 
This together with the fact that flight 1oe.C factors are re- 
duced in the case of large aircraft makes it necessary that 
methods be developed for predicting dynamic landing loads. 
The present theoretical. investigation of this problem is of a 
preliminary nature. It has the twofold purpose first of pre- 
senting methods by which the designer may predict the dynamic 
loads and second of serving as a guide in the experimental 
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investigation by defining the significant factors involved 
and determining the annroximate magnitude of the quantities _ .t. 
to be measured. 

It appears that the problem may be approached in two 
different ways: 

In the case of the landplane to consider the airplane 
structure and its landing gear as a whole, and to introduce 
the actual force displacement characteristics of the landing 
into the theory. In this procedure the dynamic stresses re- 
sult from the sudden application of moving constraints im- 
posed on the airplane during landing. Similarly for the 
seaplane the elastic structure and the water surrounding the 
hull may be considered as interacting bodies. While this 
method is not precluded. in tha investigation of specific 
cases or for research purposes, it involves inherent complex- 
ities, such as those resulting from the nonlinear properties 
of the landing gear and the variable-mass effects of the 
water surrounding the hull of a seaplane, which tends to make 
this ty?e of approach less adequate for design purpose, 

In the other procedure, in which stresses en tho struc- 
ture are considered to be caused by a landing impact force 
applied directly to the structure, it is assumed that the 
time history of the impact force may be investigated inde- 
pendently of the elastic properties of the structure. In 
this way the investigation involves two separate phasos - a 
study of the landing forces and a study of the dynamic be- 
havi or of the structure under such forces. This procecure 
involves the assumption that a landing impact force may be 
defined in such a way that its time history is for all prac- 
t.ical purposes independent of the elastic properties of the 
structure. Si3zce it is believed that the relativs simplicity 
of the latter approach overshadows tho approximations in- 
volved, It has been adopted as the basis for the present work. 
This procedure was described previously in reference 1 in 
connocti on with tho problem of dynamic stresses in buildings 
during an earthquake and the present work is essentially an 
ada+ptation to aircra,ft structures of the methods described 
in this reference. 

It is assumed that in first approximation the damping 
and the aerodynamic forces may be neglected. The landing 
im-pact force is applied directly to the elastic structure as 
an external force of given time history. The response of 
the structure Is represented as a supsrposltion of natural 
modes excZted by the landing impact. A first step in the 
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analysis is therefore to obt, -in tlie natural modes of the air- 
plane either by calculation or by a shake test. Calculation 
method.s have recently been developed by which natural modes 
of airplanes may be derived in a relatively simple way. 

An important feature of the designess annroach to the -. 
landing loads problem is the fact that he is not so much in- 
terested in the actual time history of the structure as he 
is in the ma(:nitude of the highest attainable stresses during. 
the operation of tho airplane. This viewpoint was introduced 
in tho procedure 3y using a statistical approach. The stress 
amplitudes of each mode are superposed with their positive or 
negative values irrespective of phase and the worst possible 
combination is used as a basis for design. Furthermore, the 
stress history in each mode is not actually compute& but the 
stress amplitude is obtained directly from a graph represent- 
ing Mhat is designate6 as a "dynamic response factor." This 
factor itself results from a statistical anaiysis of the ef- 
fect of forc&s of various time histories on a single degree 
of freedom oscillator, using a sufficient number of such time 
histories to represent all possible types of ianding condi- 
tions. Values of the dynamic response factors are obtained 
3y applying typical time history excitations to a torsional 
pendulum (described in reference 1) and measuring the maxi- 
.mum ampilitude of its response. Tn this way, when the natural 
modes of the airplane are known, the landing loads are read- 
ily obtained !:lithout the necessity of integrating the dif- 
ferential equations which govern the behavior of the elastic 
structura in the transient condition. 

The method. has its limitations and is not necessarily 
applicable to all types af transient problems. Some of 
these limitations are pointed out in t>e discussion,but the 
extont to which the methods aro valid for some particular 
class of problems will have to be determined experimentally. 
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period 

time variable 

dynamic response factor 

generalized. coordinate 

deformation displacement of any point on the wing 

normal function describing tho wing mode shape 

normal function doscribing tho modo shapa of twisting 
about the olsstic axis 

normal function describing tho mode shape of bending 
of the elastic axis 

momsnt of inortia 

static mass moment 

subscript denoting jth mode 

subscript denoting kth spanwise wing station 

mass per unit volane of prismatic beam 

cross- sectional area of prismatec beam 

modulus of elasticity 

vertical landing load fact or 

landing reaction 

shock strut axial force - time relation 

drag force - time relation cau.sed by wheel spin-up 

observed acceleration time history in a drop or 
landing test 

gross weight of airplane 

gross weight of air;3lane less landing gear weight 
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effective rolling radius of wheel 

landing speed 

coefficient of siiding friction of tire on runway 

stress 

moment of inertia of wheel and tire about axis of 
rotation 

period of shock strut axial impulse or seaplane 
vertical impulse 

period of drag impulse 

angular displacement of wheel 

4. TEE EVALUATIOX OF TRANSIENT IIOTION OP ELASTIC BODIES 

BP THE USE OF G31TXRALIZED COORDINATES 

As pointed out in the introduction,the theory proceeds 
on the assumption that the landing impact force is known. 
In this way the theoretical problem is reduced to the evalu- 
ation of the response of an elastic structure to a force of 
given time history. Methods for the determination of this 
landing impaot force from test data will be discussed later 
is' section 5. 

In order to introduce the fundamental concepts involved 
in the present theory, the simplest possible elastic system 
will first be considered. This system is illustrated in fig- 
ure 1 as a single mass oscillator. 

k = NW' 
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Denoting by M the mass and w the natural frequency of 
0sci11sti0n (W 
rsdians/scc), 

is the circular frequency expressed in 
the spring constant is k = M @, The expres- 

sion giving the displacement q of this mass under a force 
FW of arbitrary time history is well known (refcrenccs 2, 
3, and 4).. It may be written as: 

t 

r F(T) sin w(t - T)~T (1) 

%O 
where T is a variable of integration. It is usually desig- 
nated as Duhamel’s integral. According to this formula the 
computation of the displacement q at the instant t re- 
quires the evaluation of a definite integral between the 
limits of integration 0 and t, and the tfme history of q * 
is obtained by repeating this process for every value of t. 
It is noted that even in the simple case of a single-mass 
system the process of computing the transient response is 
quite elaborate. Fortunately, this difficulty may be avoided 
in adant$.nr the theory to practical problems of design by 
considering only the maximum value of q instead of its com- 
plete time history. 
later (sec. 7). 

Bow this is achieved will be explained 

Assume for the present tha t the complete time history 
of the deforma.tion in the airplane structure is desired. 
Such a structure differs from the simple system of figure 1 
by two features: 

(a) It is a free body. 

(b) It is an elastic body -crrith many degrees of freedom. 

In order to show how the ‘t\revious discussion may be ex- 
tended to include these fcaturks, consider a 
two mass06 K and m connoctcd by a spring 
as illustrated by figure 2. 

.& _.___ ,... x 
1 

free system of 
of constant X 

- -.--.- -x2 k s --. 
-.__- - 

“I 1 

Figure 2 
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The mass M is under the action of a force p(t) of arbi- 
trary time history. The straightforward way of describing 
the motion of this system is in terms of the displacements 

Xl and xs Of 8aCh mass. However, there is a more general 

approach. By an elementary analysis it is shown in appendix 
II that this motion may be described as the superposition of 
two configurations. One in which the two masses move to- 
gether as a rigid body (fig. 3a), the Other in which the cen- 
ter of gravity remains fixed with the masses moving in oppo- 
sit8 phase and with amplitudes inversely proportional to ths 
rospectivo masses (fig, 3b). 

$ixsd c.g 
'\ .f q1 __._..._+ ..;,, 

(a) Rigid J ’ configuration 
Figure3 

Each of these configurations has Only one degrce of freedom. 
The displacement in the first configuration is measured by 
the quantity q. and in the other by the quantity q.1 l The 

actual displacemsnts of the masses N and m in torms of 
the motion of each configuration are,respectively, 

x2 = 90 - 91 

These two configurations may be interpreted physically as 
representing the natural modes of oscillations of the system. 
From this viewpoint the rigid translation q. may be thought 

of as a mode of zero frequency or I1zero mode." The other 
configuration where the center of gravity remains fixed and 
the masses move in opposite phase represents a mode of fre- 
q,uency ~1. Since the coordinate qo of the zero mod8 rep- 

resents the motion of the center of gravity, it is determined 
by the motion of a single mass MO = M + m under the force 

F(t) (fig. 4a). As shown in appendix II, the motion in the 
mode defined by q1 may be determined from that of an equfv- 
alent system which is constituted of a single mass Nl 
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elastically rentrained and under the action of a’ force 
proportional to F(t) 

Q&j 
(fig. 4b). 

.+-__. _ 
90 -s&h-- q1 

1 &, - ~-!_.-_ .-F(t) 

r-T----y 
, .’ 

ia)’ ” ’ 
Figg_l.re 4 

The natural frequency of this equivalent system is the same 
w1 as the natural frequency of the mode which it represents 
in the actual physical system. Such coordinates as qa and 

q. 1 are called generalized coordinates. __I_..- .-._ _.-,-.- The mass Ml of the 
eo.uivalent system is referred to as the generalized mass of 
the corresponding mode and Q,(t) is referred to as the 
generalized force for this same mode. It is also shown (see -1 -._ 
a-onendfx II) that the value of this generalized mass is de- 
rived quite simply by expressing that the kinetic energy T 
in the equivalent system is the same as in the corresponding 
mode . 

T lM l 2 1 *2+lM@2(;12 =- 
2 

1 q1 =yq, 
5 

(3) 

where @ = i is the ratio of the amplitudes of the ma,sses m 

and M in the ql mode. 

Hence JJ!l = rn+N@a (4) 

Similarly the generalized force Q,(t) is derived by 

expressin.g that the work done by E’(t) on the actual system 
is eoual to the work done by El(t) on the equivalent sys- 
tern i that is, 

or 

@ q1 F(t) = Qdt) 91 

Q&j = cb a(t) 
(5) 

The problem of finding $ile transient motion of two masses 
connected elastically has thus been reduced to that of two 
independent single masses for which the motion may be ex- 
pressed by Duhamel Is integral (equation (1)). 
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Consider now a simplified airplane in which the wing is 
represented by two masses elastically connected to a rigid 
fuselage as illuetrated in figure 5a. 

!piiii~--_-___ --__- j’, -~~_.J-____-..._ Ip;fq 

(9 Zigure 5 

Obviously, for symmetric deformatfons this simplified 
structure is equivalent to the two-mass free system of fig- 
ure 2. The motion under the landing impact force may be 
described as the superposition of a rigid translation (fig. 
5b) which represents the motion of the center of gravity and 
a natural mode (fig. 5c) which represents the motion about 
the center of gravity. The equivalent single mass systems 
are the same as in figure 4. 

This procedure may be immediately generalized to a com- 
plex airplane structure. Instead of a single deformation 
mode as in the case of the simplified airplane discussed 
above, there are actually an infinite number. It can be 
shown that the deformation of the structure may be repre- 
sented by a superposition of these modes. If damping is 
neglected as is the case here, these modes are uncoupled. 
The behavior of each one under the landing impact force is 
independent of the other. The motion of each mode is repre- 
sented by that of an equivalent single mass oscillator of 
the same natural frequency and excited by a generalized 
force. As an example, take the case of a wing in Ture bend- 
ing. There are an infinite number of bending modes, a few 
of which are represented in figure 6. The motion of the 
center of gravity represented by the rigid airplane with the 
generalized coordinate q. is referred to in the present 
text as the “zero mode.n 
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Zero rllode 

L?ir s t GlOde 

Second 
mode 

Figure 6 

The amplitudes of the wing tip are usually selected as 
generalized coordinate and denoted by q1 for the first 
mode, qs for the second mode, and so forth. The correspond- 
ing generalized masses are determined by the condition that 
the kinetic energy be the same for the mode and its equivalent 
syst em. This yields the expression: 

k 

(6) ’ 

and so forth 

In these expressions, $)(3) 
k represents tho amplitude at 

station k of the mass mk of that station i.n the jth mode 
for a unit deflection of the wing tip. Similarly, the gen- 
eralized forces determined by the conditions that the work 
done by F’(t) be the same in the particular mode as the 
work done by Q(t) in the equivalent system are 

Q,(t) = i?(t) @(;) 

Q,(t) = 3’(t) Cb(G), and so forth 
(7) 

I 

The subscript F refers to the station at which the landing 
impulse force is applied. 
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5. ‘I’HE LABDING INPACT FORCE F(t) 

In the preceding discussfon, the time history F(t) of 
the externally applied landing impact force is assumed to be 
known. In the case of a landplane, the forces are applied 
to the wfng through an oleo strut. In the case of a flying 
boat, they are transmitted to the wing through a hull or 
pontoon. 

For the landplane, a convenient source of information 
of axial strut characteristics is the oleo drop test, In 
the drop test, a mass-oleo strut system is dropped in a jig, 
and the acceleration time history of the mass is measured. 
The mass corresponds to the zero mode mass. 

F(t) = M a(t) (8) 

An additional source of landing force data is from 
actual landings with accelerometers installed in the airplane 
which are capable of recording time history. This method 
provides the only present source of seaplane data. A sketch 
of such a record is shown in figure 7. 

4%) 

d-k_____ --.. oscillograph record 
- - .- .-. - . assuned a(t) curve 

Figure 7 

The high-frequency oscillations must be disregarded 
since they represent oscillations of the structure relative 
to its center of gravity. The average dotted line which is 
shown would be considered as a(t) in the computation of 
the applied landing force F(t) in equation (8). 

6. EVALUATIOX OP THE STRISSES 

Having derived the time history of the deformation of 
the structure, the time history of the stresses is obtained 
by a straightforward procedure. In this discussion, stress 
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is used as a general term which refers to shear or moment. 
It is convonicnt to consider the total stress as resulting 
from the superposition of the stresses due to the deformation 
in each mode. In this approach, the zero mode which is a 
rigid motion does not contribute any stress. Only the first 
mode* second mode, and so forth, have to be considered. 
From a practical viewpo$nt it is also important to note that 
the stresses in each mode are conveniently calculated by us- 
ing the inertia forces of tho natural oscillation rather 
than by trying to calculate the strain from the space curva- 
ture of the mode shapes. Consider, for example, a pure 
bending mode as represented in figure (8). 

L_ 

,I I i_ __ _._ -___ X 

I p (x)9’ 1 

“.__, it-..- -jql 

ri ‘- _. .- r _,.._.. -. 

Fi_gure 8 

The shape of this mode is represented by a function 

(W(x) such that if qt is the tip deflection C$(l)xq 1 

is the deflection at the location x. The bending moment 
in this mode is 

M is proportional to q1 and varies along the span as 

E I d2 @+x) Obviously the Frocess of computing the 
d x 2 l 

second derivative of @ (1; (x1 is elaborate and inaccurate . 
It is therefore preferable to derive the bending moment in 
each morZc djrectly from d’blembert’s principle by expressing 
the equilibrium condition which exists in the natural mode 
between the bending moment at station k and the fnertia 

forces ML2 mk a, k (I) a, due-to each mass mk located out- 

board from xI Similarly the shear in each mode may be ob- 
tained from the summation of all inertia forces. 
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It is seen that the stress in the jth mode at 

the kth wing station may be expressed as 

,(j) f A(j) q (10) 
k k j 

each of these stresses being proportional to the coordinate 

“5 of the corresponding mode. The total stress is obtained 

by superposition and is 

+ sk= 
A(j) 

k 93 
t111 

..-J 
1 

7. THE DYNAMIC RESPOWSE FACTOR Y 

It ha,s been shown that the response of each mode is de- 
fined by tho motion of an equivalent simple oscillator acted 
upon by a gcnsralizcd force Q(t). The motion of a simple 
oscillator undor tho action of an arbitrary force F(t) is 
given by an cvaluatfon of Duhamol’s integral as shown by 
equation (1). Consider, for example, the motion of a simple 
oscillator under the influence of the isosceles triangle 
force-time impulse shown in figure 9. 

Q ,‘: I __-_. ._ 
t I 

-- ‘- ‘-- I, 

/ !\ 

c- k = Yw2 
-e:.,. ..-.. _ _ q I i 

G)rnsx 
//I \ ‘11, 

\ 
Q(t) .,’ 

Q(t) . __. ._/+~\,,*p_._ ..-. 

.$_ ..~ _,:__” .T__7 _ ‘.,. ’ 1 { //.I’ 
_- i_ ‘1. 

i.!_.__. ____ .____ . _\ .,_. _. .._._..i_--., 
-=_ 9. 

/_ 

t 
2 -- 

’ _._..~_ 

Figure 9 

IJet (1, = static displacement caused by Q,,, 

T ‘- &T/O) P natural period of the oscillator ” 
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TI 
= period of the triangular impulse 

The complete timo historiss of the motion of the oscillator 
have boon cvaluatod for the isoscolos triangular impulso for 
two ratios of TI/T* and are plotted in figure 10. The re- 

sponse of tho oscillator is expressed as a ratio of its ac- 
tual displaccnont to its stat'ic displacement under Q,ai. 

Figure 16 

_ +_,_ ,__‘+_ ..__-I---.. 

2TI \ 3TI ’ 
x. I 

\ .-Y 
\ 

4 ’ -i 

For oath poriod ratio TI/T thoro is a maximum valuo of 

q/q, in tho positive direction, and a maximum value in tho 

negative direction. These maximum values are designated here 
as dynamic response factors and denoted by ‘Y with the proper 
sign affixed, There are two values of ?I associated with 
eaoh period ratio as shown by figure 10. Consequently a curve 
may be drawn showing the variation of dynamic response factor 
with period ratio. Such a curve for the isosceles triangular 
impulse is shown by figure 11, 
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E’ii;urc 11 
aP.3 Period of impulse 

Tj Feriod of oscillatOr 

The determination of a dynamic response factor-period ratio 
curve may be accomplished for any arbitrary Q(t) variation 
by a numerical or analytical evaluation of Duhamel’s integral. 
However, both processes are quite lengthy, and require plot- 
ting of the time history as shown by figure 10. A mechanical 
analyzer consisting of a torsional pendulum has been devel- 
oped (reference 1) which may be used to measure the dynamic 
response factor without recourse to an evaluation of the com- 
plete time history of the motion. By such means, a dynamic 
response factor diagram for any shape of Q(t) curve may be 
evaluated in a relatively short time. 

8. STATISTICAL APPROACH TO THE LANDING PROBLEM 

The methods outlined above are applicable when the time 
history of the externally applied landing impact forces are 
accurat oly known. Actually, the shape of the landing impact 
force-time curve is apt to vary considerably from one landing 
to the next, and with different operating conditions of the 
airplane. Burthermore, the responses of the various modes 
are ssnsltivc to small vari‘ations in the shape of the PW 
curve. For these reasons, it is not practical to design for 
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a singlo mathematical landing, but instead it is desirable 
to employ a statistical approach to the problem. In the 
previous section it was shown that the extreme pbsitions of 
oscillation of a simple oscillator for any one type of ap- 
plied force-time curve may be conveniently represented by 
means of a dynamic response factor-period ratio curve. It 
is possible to consider a large number of shapes of landing 
force-time curves varying from soft to harsh landings, and 
evaluate a dynamic response factor-period ratio curve for 
each of them. These curves may be plotted on the same graph, 
and an envelope curve may be dr’awn which bounds all of them. 
This envelope would represent conditions which exceed in 
severity every type of landing which was considered. Such a 
statistical basis may be used. to establish design landing 
dynamic response factor envelopes for the landplano and the 
seaplane. (For example, see fig. 13. ) By means of the dy- 
namic response factor envelope, tha maximum deflection of 
the structure in each *mode during the landing may be evalw 
atad q_uite simply. Considering any single mode, it is as- 
sumed that the structure is restrained to deflect in that 
mode only, while the maximum value of the generalized force 
is applied statically. The deflection may be computed under 
these conditions and then multiplied by the dynamic response 
factor in order to obtain the maximum dynamic deflection 
during the landing. 

‘j q.j(static) = 
y. ej(max2 

(3) 
“.j(max> X :z Y 

“(t)mqp * 

j 
..--.“_A_ 

j Mj “js Xj QJjs 
(12) 

It is apparent that the phase relations between the modes 
a.re lost when an approach of this type is employed. However, 
this is not serious since for design purposes it must be 
assumed that sometime during the life of the airplane the 
phasing between the modes will be such as to produce the 
worst combinatZon of stresses. For this reason, the maximum 
deflections are suTer_posed without regard. for phase in order 
to yield the most critical combination. 

9. THE LAlQPLAME WING 

In the case of the landplane, the forces and moments 
are applied to the a.irplane structure through the shock 
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strut-tire s.ystem. These consist of a force applied in an 
axial direction along the shock strut caused by the landing 
reaction com-ponent parallel to the strut, and a moment about 
the landing gear attachment point caused by the landing re- 
action component perpendicular to the strut. Two dynamic 
response factors must be determined. Ono for the axial strut 
force, ;~tnd_ one for the moment about the landing gear attach- 
ment point. 

The shock strut axial force.- A study of force-time I.--.-c-_--.. __II_- 
curves for ax;lal strut reactions-obtained from drop and 
flight test data shows that they differ considerably with 
pilot technique and landing attitude. A group of six types 
of force-time curves are considered which would represent 
various types of strut characteristics. 
figure 12. 

,,.,” 1, 
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/’ 

LY;..__ 
‘\ 
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I ‘\ -----A., __ .4. 
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( Drop test (b) 
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j \ 
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Figure 12 

Dynamic response factor curves similar to figure 11 have 
been determined for each of these six curves by means of the 
mechanical analyzer (reference 2). The points which define 
these curves have been plotted on one graph in figure 13, and 
a smooth envelope curve has been drawn which bounds all of 
them. Tho condition, which the envelope shown in figure 13 
represents9 cxcoods in severity the condition of the six 
types of landings considered. It is possible that after con- 
sideration of a la.rge number of shapes of axial shock strut 
force-time curves taken from drop and flight test records, an 
envelope of this tyr,e may well represent conditions which cx- 
cead in sovcrity every probable landing which would be exper- 
ienced during the normal operation of a land-type airplane. 



In order to apply the lzndplane dynamic response factor 
envelope, the impulse poriod must bc known. A plot of 
limited data availa3lc at the Bureau of gross weight against 
landing gear vertical im-pulsa period during the first impact 
of landing as dotormined by flight test is shown on log-log 
paper by figure 14. This graph has been determined from ac- 
celerometer records of various types of landings made by 11 
airplanes of various weights. Each point rcprosonts an av- 
oragc of several landings. The equati _ on which fits the 
curve drawn in figure 14 is 

(13) 

where 

'IX axi,& shock strut impulse period in seconds 

1f gross weight of airplane in pounds 

The wheel, drag force,- The characteristics of the drag 

force on the wheel are not as well known as those Of t?le 

axial strut force. The drag force is produced by the spin- 
ning up of the wheel when ground contact is made. If it is 

assumed that the tire is slipping or on the verge Of SliD- 
ping on the runway@ at all times during the wheel spin-u? 
time, and that the coefficient of sliding friction P is 
constant, the following differential equation may be written, 

IutegriAtii2.g once gives 

> 
I, 3 

Z--- 

re 
(14) 

Vt landing speed, feet per second 

IW 
moment of inertia of tqheel and tire, slug-feet square 

r 
c 

effoctivo rolling radius of wheel undor impact loading, 
feet 
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TID period of drag force impulse, seconds 

If the shock strut axial force is assumed to grow linearly 
with time during the wheel spin-up period, then equation 
(15) may be solved for the maximum value of the drag force 
in terms of the period of the drag force impulse. 

D 
2VJ I, 

max = (16) 

re "TID 

With the assumptions used to write equation (161, the drag 
force-time variation is of the type shown in figure 15, 

/+--- TID ------d t 

Figure 15 

The dynamic response factor curve for the force-time 
relation shown by figure 15 is given in figure 16. The 
wheel spin-up time is of the order of one-fourth to one- 
fifth of the axial strut impulse period, and the wheel is 
often up to speed before the axial strut force reaches its 
maximum valuo. 

In the case of modern large aircraft with retractable 
landing gears, the assumption that the landing gear leg is 
rigid in fore and aft bending may be considerably in error* 
Because of this lack of rigidity, there is an additfonal vi- 
bration mode to be considered which involves large wheel and 
strut amplitude and very little wing torsional motion. This 
lack of strut rigidity may be particularly troublesome if 
the fundamental fore and aft bending frequency of the land- 
ing gear is coincident with some other mode of the structure, 
and resonance is established. 

In a general consideration of the landplane landing .‘, 
problem, drift and one wheel landings which excite antisym- 
metric wing oscillations should be considered as well as SYm- 

. . 
metric landings. The principles discussed heretofore are 
quite general and apply oqualfy well in either case. 
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Dynamic response factor curve for 
landplane drag force impulse of 
the type show by fiWe 15, 
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10. THE FLYING BOAT WING 

In the flying boat problem, the forcing impulses are 
transmitted to the wing through the hull structure, and the 
problem may be assumed identical to the landplane problem 
except that the force and moment is applied at the center 
line of the airplane rather than outboard at a landing gear 
station. The problem of the impact of a flying boat hull in 
water is considerably more complex than the landplane impact 
problem. A limited amount of test data is available showing 
time histories of center of gravity vertical and drag ac- 
celerations, and pitching acceleration for flying boats. 
These records indicate that the time history of the landing 
reaction varies widely according to landing attitude, pilot 
technique, condition of seaway, and detailed characteristics 
of hull. Theory on the seaplane impact problem is extensive; 
however, its applicability to the complex hull shapes of 
modorn flying boats has not yet been demonstrated, and hence 
little attempt is made to use it for design purposes. Not 
onBy the force-time relations of the vertical and drag forces 
are necessary, but also their lines of action on the hull 
bottom must be known. Of these necessary items, the charac- 
teristics of the vertical force are more completely known 
than any of the others. Very LittXe general information is 
available concerning the drag force and how the exact line 

P action of the vertical and drag forces vary throughout 
:P, impac+ V period. l3eca%se of this lack of information, it 
is difficult to determine exactly how the impulses are ap- 
plied to the flying boat wing. Furthermore, the influence 
Of the moment on the wing vibration is undetermined unless 
the effect of fuselage and tail oscillations are considered. 
Such a consideration is bay0rla the scope of this discussion. 
A first approximation may be obtained by considering only 
the effect of the vertical force applied at the elastic axis 
of the free wing. In the absence of more complete test data 
it may be assumed that the vertical force on the seaplane 
hull, during the initial landing impact, varies as a half 
Cycle 02 a sine wltve. A dynamic response factor envelope 
has been determined for a half cycle of a sine wave impulse 
and is given in figure 17, The variation in the impulse 
period is an wide as the variation in the shape of the im- 
pulse curve, and hence it is not possible to derive an em- 
pirical relation for the imrJulse period from test data, as 
was the case with the land-plane, In order to apply the dy- 
namic response factor curve, an impulse period must be as- 
sumed, or a value taken from flight test data on an airplane 
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of similar size to the one being investigated. A conserva- 
tive procedure, in any case, would be to choose a period 
ratio TIlTj so as to yield the most critical combination 

of stresses. 

11. ILLUSTRATIVE NUMERICAL EXAMPLE FOR LAhrPPLANE WING 

The principles discussed in section 3 are illustrated 
by a numerical example in which the stresses due to landing 
in the four-engine land type bomber of reference 5 are oom- 
puted. Mode shapes and frequencies of the free wing of this 
airplane are computed in reference 5. The bending and tor- 
sional moments are computed at seven wing stations. In this 
example, the wing chord is assumed parallel to the ground 
during the landing, and the landing gear strut is assumed to 
be perpendicular to the wing chord line. The landing gear 
strut is assumed to be rigid and rigidly attached to the 
wing. Figure 18 shows the assumed conditions during the 
landing. 

,,. Elastic axis 

Angular dis- 

‘-““ torque 6 
placements and 

I 

/ 

j/ 

Linear disp&%cements 
and forces 

Figure 18 

In this particular example, the elastic axis passes di- 
rectly over the landing gear leg as is shown by figure 18. 
The computations may be carried out by table 1 which is self- 
explanatory when reference is made to appendix I. A table 
similar to table 1 is required for each wing mode. The mode 
shapes and frequencies of the free wing are taken from ref- 
erence 5 and tabulated in tables 2, 3, and 4, where the first 
three wing modes are considered. The following additional 
data are required to complete the tables,, 
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Gross weight, W .................................. 47,200 lb 
Gross weight less weight of landing gear, WI, ..... 44,426 1% 

Moment of inertia of wheel and tire, Iw ........ 28 slug-ft2 

Effective rolling radius, re ....................... 2.08 ft 

Landing speed, Vs ................................ 124.8 fps 

From equation (13), the period of the vertical impact 
force is, 

TIN = 0.25 ( h’ ]o*1475 = o 25 (p7200~"*1475 
QOOOJ l t [lOOOj 

= 0,441 second 

The maximum value of the vertical impact force is 

w max = 2 L WLn = $ X 44,426~~~ = 22,213n 

where n is the ultimate vertical load factor. In this ex- 
ample, it is assumed that n = 4. 

la max = (22,213)(4) = 88,852 pounds 

It is assumed that the period of the drag force is one-fifth 
that of the vertical force. 

TID = k TIIq = 0.441 5 = 0.0882 second 

From equation (16), the masimum value of the drag force is 

D = 
2v11W 

maX 
= (2)(124.8)(28) = 18,290 pounds 

"e 2TID (2,08)2(0.0882> 

From the data computed in columns 5, 6, 13, and 14 in 
tables 2, 3, and 4, wing bending and torsional moments are 
plotted in figures 19 and 20, respectively, for each mode in 
the first and second extreme positions of oscillation. Crit- 
ical values of bending moment and torsional moment at each 
station are obtained by adding corresponding ordinates of 
the three bending moment curves on the same side of the zero 
axis. For example, at the airplane center line, the criti- 
cal negative bending moment is obtained by adding: 
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TABLE 2 

liode number 1 Frequency f = 3.365 ope 2 
: 

Landplane 

a+b+c= M1=l. 

I Item 1 Axial force } Drag moment i 
I 

'0 Fmax or vlpu 88,853 1,889,OOO i 

i 

Ml 1.607 1.607 i 

-0.031 -0.00084~ 

@ 0.441 0.088 ! 

.@ :: 0.297 o.a97 

@- 'Q/T, 1.485 0.296 

e_ ,$+I +1.90 +0.96 

-1.30 

@ &?g? -1711 

@ ? ,!+I -3351 

0 n r!-' +3884 

@ a(+)=@ (axial)+@ (drag) 

-0.96 

-956 

-918 

4918 

-4,169 

-4,140 +3,130 -a, 510 +1,892 

-2 ,a42 +1,690 -a68 -+aoa 

-268 taoa 0 0 



, 
TABLE4 

Mode number 3 Frequency f = 8.46 cpe 

Landplaue 
Station 

4 
'k 'k hk 2 

=k mk hk2 'k ak 2% hk ‘k 

0 0 28.5 0 co +0.0426 0 0.0519 --____-_ 

1 133 16.3 -640 85,234 -0.0064 -0.00213 0.000668 0.386 -0.0175 

2 1217 1 5.27 1 0 1 1,288 1 -0.0710 I -0.00132 IO.0266 I 0.00224 l I 
3 307 9.15 -569 61,.717 -0.1250 -0.00018 0.1430 o.ooa -0.0256 

4 428 o.q74 0 536 -0.0370 -0.00014 0.0013 0.00001052 

5 548 0.686 0 287 +0.3890 -0.00010 0.104 0.000003 
1 I 

6 638 0.153 -0.00008 01167 0 

ar0.494 b=0.390 C'-9.0431 

a+b+c = Yn = +0.841 

Station 

Bending Bendina 

a!+) xhk a(-) xhk a(+)Xak 

-73.6, +42 i +2100 -1198 +372,OOCf 1 -&%2,200 0 

+110.7 -6.3 -1802 +ioa.Q +67/900 -49,850 +3.68 

+122.9 -70 -648 +369 -71,000 +43,?00 +2.28 

+216 -123.1 -1977 +1129 -195,000 +110,900 to.311 

t63.9 1 -36.4 -62.2 +35;4 i -113,200 +64,400 +0.242 -0.138 

-671 +383 +461 -263 -24,950 +14,190 +0.1728 --0.0985 

-1809 I+1030 1 +276.5 -157.5 0 0 M.1381 -0.0789 

at-lx ak 

Total Total 

,!+I = T;-) = nTp) = aTi- = "";:ue ""f:ue 

-1kX @ -1,X@ 
positive negative 
maximum maximum 
position position 

1 
0 I -----__-__ _-_______ I I 1 -142,525jt117,587[ 

-2.1 

-1.30 

-0,177l 

-1168 -560 

q r&-J +425 +560 

a(+) = @(axial) + @ (drqq) -&?a8 

Q .(-I 1 = @(ax&) + @ (drag) +985 

-314,000 '+17S,oOo +70,900 -4,040) +lOo,575 -57,373 

c -2,940 +1,673 +103,515 -59,045 

-19,200 +10,950 +122,900 -70,100 -184.32 t104.99 

-130 +74.1 -54.32 +30.89 

-49-6 +28.2 -4.72 +2.69 
w 

-4.72 +2.69 0 0 
0 
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First mode - positive maximum . 
Second mode - negative maximum 
Third mode - negative maximum . 

Maximum negative bending moment 

Similarly, for the maximum 

31 

Inch-pounds 

. ...* . . . . . . -,3,940* 000 

. . . . . . . . . . . -790,000 

. l . . . . . . . . . -212,000 

at the center line = -4 042,000 *J 

negative torsional moment at 
the center line, the following are added: 

Inch-2ounds 

First mode - positive maximum . . . . . . . . . , . . -1,092,150 
Second mode - positive maxim’~um . . . . . . . . . . . -73,316 
Third mode - positive maximum . . . . . . . . , . . . . -142,525 

Maximum -negative torsional moment at the center line- -1,307,991 

The frequency of the fourth mode is approximately 1350 
epm, and hence its contribution to the stress would be small. 

Thi 6 is true because of the tendency for +; to be reduced 

to small values in the higher modes, and because of the in- 
hibitive effect which the aerodynamic: and struotural damping 
has upon the higher modes. It is important to remember that 
the stresses, shown here must be superposed upon the steady 
stresses produced by the aerodynamic loads on the wing dur- 
ing landing. 

12! ILLUSTRATIVE NUMERICAL E_X.AMFL% E’OR SXAPLANE WIMG 

The principles discussed for the seaplane are illus- 
trated by a numerical example. In this example, the four- 
engine land type patrol bomber of reference 5 is considered 
as being a flying boat in order that the same mode shapes 
and frequencies may be used. The bending and torsional mO- 
ments are computed at seven wing stations for a vertical 
load factor Of 1, and the effect of the drag force is neg- 
lected. The first three deformation modes of the free wing 
are considered, and the computations are carried Out by 
means of table. 1, The vertical force on the hull is assumed 
perpendicular to the wing chord during impact, 
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TABLE 5 

Mode number 1 Frequency f = 3.365 cps 

Plying boat 

o 

l-t- Station q XT'+) Xh 1 k 

0 @ 0 

FL-1 Bending 

-mk X@ ;;zi;v, 

maximum 
position 

t4010 -1,870,OOO 

t911 -1,288,OOO 

-446 -836,400 

-2705 -398,800 

-656 -168,200 

-830 -25,400 

-268 0 

Bending 
moment 

rp = ,(-) = 
k 

'Ik x@ -Sk x@ Sk X@ 

Total 
torque 

in 
positive 
maximum 
position t I 

-140.9 1 -4390 
I I 

-516,305 _____ ____ , I 
I I 

t128,900 +39,200 -35,800 
I I 

-413,805 

-409,745 

3 ,-324 -3.30 l-222,500 -3,145 

p--j-x- -1,186 

-126 



TAErIE 6 

Deformation mode number 2 Ilequency 4 - 4.61 cpa 

8O~DlWl.3 

9tation Qk % IL hlr =I, 4 hk2 Ikaka ‘=k % % 

01 0 a8.5 0 I a0 -0.1937 0 0.436 __________ 0 

1 133 16.3 -640 05,a34 -0.0693 +0.0057 0.0783 a.77 +o .50E 

8 a17 5.a7 0 1,888 +0.0330 +0.0073 0.0056 0.0685 0 

I 3 1307 I 9.15 I -569 1 61,717 I +o.aa9 I +0.60@5 I 0.480 I 5.57 I -a.46 

4 488 0.974 0 536 +0.756 +0.00966 0.556 0.0491 0. 

5 548 0.686 0 187 +1.741 +o.oOs64 a.005 o.oass 0 

6 636 0.153 0 34.1 +a.06a +0.00968 1.a73 0.0033 0' 

a = 4.914 b= 0.468 0 = -1.971 

Station q xra+) x hk q xr~-’ x hk Fp) = FL-) = 
-m*x @ -mkX @ 

4 -338 

5 -780 

6 -1as1 

+a80 

t645 

t1069 

+32@ -378 

t535 -448 

+1@7 -163 

a + b + c = Ha = 11.487 

I Item Vertical force 

n x$,-)X=$ 

- 

LIT?) = L+-’ r 

-srxQ ‘SkX@ l----l- 
Total 
to'rque 

in c positive 
maximum 
position 

-589,000 1+485,0001 -a.55 1 +a.11 1 +217,5001 -180,0001 +1@,8aOl -16,390/+211,573 I-175,8181 

-414,000 ~+34a,ooo I -3.26 1 +a.70 I +4,1@0 I -3,475l I 1+207,383 l-172,3431 

-a34,000 I+193,500 1 -4.25 1 t3.52 1 t262.100 1 -217,500j -5s,4001 +48,2001 +3,683 1 -3,043\ 

-105,900 +07,200' -4.a0 t3.54 +2,297 -1,900 +1,386 -1,143 

-17,910 t14.810 -4.31 +3.56 t1.239 -1.021 I +147 -122 

01 01 -4.33 I +3.5e I +147, -1aa I I I 01 0 
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Deformation mode number 3 Frequency f = 8.46 cpe 

seaplane 

Station mk sk Ik hk ak mk hka ‘k%ta * aa hk *k 

0 0 a.5 0 Q) +Q.O4a8 0 0.0519 __--__-_-- 0 

1 133 18.3 -540 85,234 -0.0064 -o.oo313 0.ooo888 0.388 -0.0175 

a a17 5.a7 0 1,988 -0.0710 -0.00133 0.0386 0.00394 0 

3 307 9.15 -589 61,717 -0.125o -o.oool8 0.1430 O.OO2 -0.0258 

4 428 0.974 0 538 -0.0370 -o.ooo14 0.0013 0.ooo0105 0 

5 548 0.898 0 287 +0.3890 -0.00010 0.104 o.ooooo3 0 

I 
8 838 0.153 0 34.1 t1.045 -0.00008 0.187 -0 0 

&- 0.494 D - 0.390 c - -0.0431 

a t b t c = Y, = 0.841 

Item 

I UIU 

y3 

Vertical fort 

23,800 

0.941 

+o.o4a8 

0.200 

0.118 

1.695 

@a t1788 

@ 51 yi-1 -888 

0 t75.4 

1 -11.3 

a -135.3 

3 -280.5 

-37 -2145 t1055 -381,OOO +187,og8 0 0 ____----- +210,589 -103,851 

t5.55 t1s4 -80.5 -89,300 t44,lOO -3.78 +1.85 +330,5oo 7157,900 -?,a40 +3,555 -103,891 +50,494 

t81.8 t881 -325 +78,4oo -$8,7&l -a.33 +1.145 t3,ooo -1,474 -105,891 +51,988 

-108.3 +a020 -993 +198,8oo -98,Ooo -0.318 +0.158 +19,820 -9,840 -1a5.500 t81,700 +189 -9a 

4 765.4 -32.1 t53.8 -31.2 +115,3OO -5'1,000 -0.247 to.121 t133 -85 +58 -27 

5 t888 -338 -471 +232 +25,4OO -12,5ao -0.177 t6.087 i.51 -25 t5 -2 

8 t1849 -907 -283 t139 0 0 -0.141' to.089 t4.sl -2,38 0 0 2 \ 

.,, . ._,_. ..-- 
-^“_.‘x,._I .~_ ._ ,_ 

,, ,, ,, ,, ,, ,, 

,_ 
,, 
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200 300 400 

$igQre, 22.3 Saaplkua~wing herding nonent 
tl?ree nodse for 4G Lmding. 

vs. wing station. First 
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check. 1)amplng has the effect of reducing the amplitudes 
and coupling the modes. 

Couplin:g between the motion of the structure and the 
e.xt ernal force is neglected in this discussion; however,this 
assumption is also subject to experfmental chock. 

The methods discussed here are not universally ap?li- 
cable to all types of transient problems, and should be used 
with discretion. Por example, appendix III discusses the 
case of a simple beam subjected to a unit impulse applied at 
the center . In this case, the method is not applicable, 
since reference to equations (111-11) and (III--13) shows 
that ,the series describing the moment and shear does not 
converge. Eowever, in practical problems, the applied forces 
d.o not behave like the impulse type, but rather behave like 
the step ty e. 

P 
In this case, reference to equations (111-10) 

and (III-12 shows that the series describing the moment con- 
verges, whereas the series describing the shear does not con- 
ver;;e whan maximum values are added regardless of sign. In 
the case of the proced.ure discussed here, convergence of the 
series describing the moment and shear is dependent upon di- 

mini shing value 6 of !j) This is assured 
%?’ 

because of the 

characteristic ta?er of the airplane wing from center line 

t 0 wing tip, and because i 
j) ~~ is measured at the inboard 

sid.e of the xedge in its region of greatest mass per unit 
I. en t?t h -3 l 

-These limitations regarding the convergence of the 
serias al;ply even more so if one attempts to predict t,he 
local accelerations in the structures. This aspect of the 
problem becomes significant when evaluating the dynamic 
stresses on the attachments of small localized masses. It 
is not possible to formulate at this stage a general rule as 
to how many modes should be taken, and each ap-olication of .,. 
the procedure will present a different Froblem depending 
upon th.e mode sha,pes and freq_uencies of the wing. 

In the landplane case, the position of the landing gear 
log has an im$ortant effect upon the wing dynamic loads dur- 
ini: impact. T 0.7 example, ff the leg intersects a nodal line 
for one of the modes, that particular mode is not excited. 
The effec.t of various ianding gear aositio8s on the stresses 
may be readsly studied by these methods. 

In studying the present day large aircraft with con- 
vent i onal wings, it appears as though wing dynamic loads will 
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produce torsional moments inboard of the nacelles which, 
aggravated by the overh.anging engines, may be critical in 
severe impact. The design of the nacelle carry through 
structure in bend_ing may be controlled by dynamic loads, 
and the possibility of critical wing bending stresses is 
not preclud.ed in very large aircraft. 

A comparison between the landplane and flying boat ex- 
amples given in sections 12 and 13 shows that the wing dy; 
namic loads in the flying boat a,re more severe than in the 
case of the landplane. This is attributed to two causes: 

(a) In the case of the second mode in the landplane 
example, the drag force actually has a reliev- 
ing effect on the stresses produced by the 
vertical force. 

(b) In the case of all modes $41 at the center lina 

is greater than (6’” ) 
I? 

at station 1 - that is, 

the forces introduced at the landing gear are 
applied. nearor to the nodal lines than forces 
introduced through the hull at the airplane 
center lfne . 

The present work is of a preliminary nature and many 
qutistions are left for further investigation. It is evident 
that the methods here presented are not restricted to the 
evaluat i o’n of larding loads, since it is possible at least 
t h e o r e t i c a 1 2 ::’ to handle in the same way d.ynalai c loads due to gun 
recoil and “flak If . It must be remombered, howcvclr, that in , 
flight tha aerodynamic forces become of primary importance 
and cannot be generally neglcctod, This is especially true 
in the determination of d.ynnmic loads due to gusts in which 
case the flutter characteristics of the airplane must have a 
preponderant effect, It must also be kept in mind that the 
possibility that the representation of the transien.t motion 
as a superposition of natural modes is not necessarily the 
host procedure in all ‘cases. Considering the d.ynamic stresses 
from the standpoint of wa.ve propagation in the elastic system 
might turn out to be a more direct and significant viewpoint 
in the case of high freq_uency transients. This viewpoint 
also eliminates the convergence difficulties mentioned. above 
in connectTon with the determination of local accelerations. 
Another case where natural modes lose their significance 
is that of resonance between loosely coupled. parts of the 
structure,in which case the vibrational energy at one loca- 
tion is gradually transferred to another. 



XACA BRR No. 4RlO 42 

Examvles shown in the present work are limited to the 
wing structure under the assumptions of a symmetric landing. 
Such a landing condition is exceptional. For a landplane 
the degree to which the unsymmetric modes are excited by an 
unsymmetric landing depends a great deal on the time inter- 
val between the instant at which the left and right wheel 
enter in contact with the ground. Statistical data on this 
time interval can only be obtained by flight testing. 1; o 
example has been presented of an application of the proced- 
ure to the eval_uation of landing loads in the fuselage and 
tail. However, the same methods are directly applicable to 
this case, provided the natural modes of the fuselage and 
tail havo bocn determined. Data obtain.ed during landing 
tosts of flying boats have shown that modes of the fuselage 
nnd. tail are excited and result in a “tail whip” effect 
causing considerable dynamic overstress in the tail a,nd aft 
portion of fuselage. 

Bureau of Aeronautics, 
U, s. Kavy Gepnr t ment , 

Washington, II. C., August lG, 1944. 
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OF:MERAL MATHEMATICAL THEORY OF TRANSIENTS IN AN 

UNDAMPED ELASTIC STRUCTURE 

The general transient theory of linear systems with 
lumped or distributed parameters is well known and has been 
extensively developed in the case of electrical network 
theory (references 2 and 3). The problem of transients in 
airplane structures is identical in its mathematical form. 
In an elastic system with distributed parametors there is a 
space as ~~11 as a time variation in the variables. The 
problem may bc considerad with two viewpoints. The motion 
may be considered to be made up of a series of traveling 
wcftve s, 0: It may be considered to be made up of a superposi- 
tion of natural oscillations, in which case to be rigorous, 
an infinite number is required. The airplane structures 
problem fs treated here from the standpoint of a superposi- 
tion of natural oscillations. 

In n transient problem of this type whera maximum val- 
ues occur very soon after the motion starts, the effect of 
damping may be justifiably neglected. The mot2on of an un- 
damped elastic system may be shown to be composed of a super- 
position of normal modes which are orthogonal. The airplane 

. T structure vlsratos in a series of normal modes when excited 
by a random impulse as is tho case of any elastic system. 
These normal modes aro each characterized by a certain mod-0 
shape and a certain frequency. For the airplane they are 
composed of coupled oscillat%ons of the wing, fuselage, and 
empennage system. These mode shapes and frequencies may be 
calculated by tho methods of reference 5, or they may be ob- 
tainad from a ground vibration survey of the airplane. 

If each normal mode shape 
($7 

considered to be repre- 
sented by the space function C$ the displacement of any 
point on the structure at any time may be written as 

n 

2 S y p 
qi (I-1) 

ilo 
i, 
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If swj is the virtual work produced when all the ex- 

ternal forces are allowed to move through displacements cor- 
responding to a. virtual displacement ssj, then the gener- 

alized force Qj is defined by 

Qj = $- (I-7) 

The comglete motion of the structure is then defined by a 
series of differential equations of the form 

;ij + Wj 2 qj = !3 

Mj / 

where the form of the right-hand side is dependent upon the 
character of the applied forces. 

In general, the aerodynamic applied forces on an airplane 
structure vary with deflection, velocity, and acceleration of 
the structure, and the landing reaotions vary with time in a 
manner which is determined by experiment. In the case where 
the external forces are landing reactions assumed to be given 
functions of time, the cq_uations governing the response are 

(I-8) 

This is the differential cq_uation for the undampod mo- 
tion of a siuzplc oscillator of mass Mj and natural fr'eq_aency 

wj* which is under the influence of an arbitrary forcing 

impulse Qj'\t). 

If Qj'Ct! is a unit step function 1(t), the response 

9; which is called the indicial admittance (references 3 

aid 4) is 

Act ) 1 = (1 
Mj uj2 

- CO9 Wj t ) 1 (t ) (I-9) 
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The response qj to any arbitrary forcing impulse 

may be written by the superposition theorem as 

t 
1 

qj = r 
Mj 03 30 Qj (7) sin Wj (t - 7) a7 

46 

Qj( 7) 

(I-10) 

7 is a variable of integration. 

When this integration with respect to 7 is carried out 
between the limit e G and t, a function of time results 
which is the time history of the deformation of the jth TllOd$. 

The stress at any point in the structure in the jth mode is 
proportional to the deformation of the jth mod.e. 

,W Q,(T) sin Oj (t - T)d7 (I-11) 

When the constant A(j) is properly chosen, equation (I-11) 
yields the stress time history of some particular point in 
the structure caused by the deformation of the 

The stress ,(i) in the jth mode at the kth 

may be written as 

The total stress at the kth wing station for 
obtained by superposition as 

jth mode. 

wing station 

(I-12) 

n modes is 

(I-13) 

Mote on the Computation of Mj for the Wing 
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For the case of the wing, the mode shape is conveniently de- 
scribed by considering the wing deformation to be made up of 
a bending of the elastic axis, and a twisting about the 
elastic axis. This scheme is discussed in reference 5. Con- 

sid::.risg the wing to bc divided into k spanwise stations, 
the normal function describing any point on tho chord of the 
kth station is (see fig. I-1) 

(I-14) 

Figure I-l 

In figure I-l positive bending deflections are downward and 
positive pitching deflections are stalling. 

Using equations (I-3) and (I-121, the folloving equa- 
tions may be written 

Mj = .[ [$jjladm 

Mj = 2 {[h&j']2 mk+ j&j']' Ik + 2&j) C&&j' Sk} (I-15) 

Nate on the Computation of the Generalized Force Qj 

From equation (I-7) 
I 

Qj = fs;'J 

6 4 j 
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If the external force y(t) is a landing reaction consid- 
ered to be applied at one point to the wing structxre, the 
virtual :i;ork nay be written as 

1%~ h e r e z p is the value of z in the direction of the: ap- 
plied force evaluated at the qoi?lt F, the point of appli- 
cation of the landing force. 

From equation (I-1) 

2 = Q(l) g, + Qfa) 92 + . . . acn) qn 

hence 

where is the normal function evaluated at the point 

of application of the force y . 

Then 

(I-16) 

The fact or is a mcjasure of the contribution of 

the external force to the gener,alized force in the j t h mode. 
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(M + m) ;i, = F(t) 

is the affferential equation defining th6 motion of the cen- 
t or 0 f gra&.tJ~ of the system. 

The motion of the mass ~1 relative to tha cent9.r of 
gravity of the system is determined next. 

Mu1 t iplying eq.uations (II-l) and (11-Z) by m and M, 
respect i.vely, and subtracting, the following equation is ob- 
tained 

Mm& - Z2) + k(M + m)(:x, - -x2) = mF(t) 

and substituting 

M ( 9.1 = -- 
M-i-m x1 - ‘x2 1 

which represents the motion of m relative to the center of 
gravity; the differential oquation may be rctwrli.ttcn as 

(II-4) 

Lot 

and write 

Ml ;il -I- M,o,2 ql = Qdt) (X1-5) 

This is the differential equation defining; the motion of m 
relative to the center of gravity of th.e system. It is also 
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the differential equation for a simple oscillator. (See fig. 
X1-2.) 

I Figure II-2 

The actual displacement s X1 and X, may 3e derived by 

solving for X,, f,. 

From .the relations 

mx2 + Mx, = (M f m) q. 

(z, - %2) M = 
M+m 

91 

may be found 

The motion may be considered as the superposition of two 
configurations, one defined by qo, a rigid motion of the 

system, the other defined by q1 represents a configuration 

in which the center of gravity remains fixed while the masses 
M and m move in opposite phase with amplitudes inversely 
proportional to their masses. The equivalent system of fig- 
ure II-2 represents the motion in the latter configuration. 
It will be noted that the generalized mass M, may be derived 
quite simply by oonsidaring the kinetic energy T in the 
corresponding configuration 

T Z mh,’ -t--M _ z 
1. (my... 2 

2 2 \M/ q1 
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or 

52 

T = Lg(rn + M) iI2 
2M 

Equating this to the kinetic energy of the equivalent oscil- 
lation 

there is found 

Id1 = ; (rn + M) 

Similarly Q,(t) may be derived by equating the work Aone by 

F(t) in the corresponding configuration and the work dono by 
Ql in the equivalent system. 

Q&d q1 = F(t) ; 91 

Henc t3 

Q,(t) = ; F(t) 

APPENDIX III 

TRANSIENTS IN A PRISMATIC BEsM SIMPLY SrJPlORTED AT THE ENDS 

WITH A 3'ORCE APPLIED AT THE CEBTER 

jF(d 

Figure III-I 
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The natural mode shapes and frequencies of a simply sup- 
norted benm with constant cross section may be shown to be: 

(p) iVX = sin - 
2 

-.- 
2 2 

@i J XI =in .- 
pAZ4 

(11X-l) 

(111-Z) 

where 

Y& mor2ulus of elasticity 

I moment of inertia 

P mass per unit volume 

A cross- sectional area 

1 length 

From equation (1-l) of appendix I, the displacement of any 
point on the beam may be written as 

co aa 

Y = 7 q (i> 
qj. - 

.‘_ 1 sin iE q_i 
2 

i=o i L‘ 1 

(X11-3) 

Yrom equatior?_ (I-1G) of append.ix I, the generalized coordinate 
q,i is expressed. by 

Qi(T) sin @i (t - T) dT (III-4) 

whore 



NACA ARR No, 4HlO 

The shear in the beam at any time after being subjected to a 
unit step force is, 

The shear in the beam at any time after being subject54 to a 
unit impulse is, 

co 

i sin fn inx 
COS - sin O)i t (111-13) 

2 2 

b study of equations (IIIcloj, (III-llj, (IIIc12), and (III-LB) 
indicates the shortcomings of the procedure when adding con- 
tributions of each of the modes to moment and shear for a 
simple prismatic beam with a force at the center. This is 
illustrated in table IfI1l. Limitations of a similar nature 
are encountered in all proble'ms whore the motion is described 
as a superposition of modes. 

TABLE III-1 

r- 

__.._______ - -.._ _. 

Moment 

1st mode 
2nd mode 
3rd modo 
4th modo 

Shear 

1st mode 
2nd mode 
3rd made 
4th mode 
~.---_---__ 

T 

L 

UNI!J STEP 

Percent of 1st mode 
._-___r_._ll. 

100 
11.1 
4 
2.04 

100 . 
33.3 
20 
14.3 

_--._..._ _ 

_- __--_A__- 

.-___-- ..-._-_._ I 

Moment 

1st mode 
2nd mode 
3rd mode 
4th mode 

Shear 

1st mode 
2nd mode 
3rd mode 
4th mode 

- 

I 
_i_ 

ugrg IPCPULSG 
____I.__-____l_l___W- 

p,ercent of 1st mode 

100 
100 
100 
100 

100 
300 
500 
700 
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1 . . 

performo trtw5ient osa.i..:.Z.kxtiom3 

It; n~penra t?xit the prab?.m Q!: tla?;erminkng the tr~aiont motion of' an 
airpiano skXuhL*E c1urfn;r ?~~.ndisng LUY be a;>proaohed in two differeAt wayst 

(a) In t;ha aase of the lr,zCpl;:co, .;;ZX aSrpl.rirre structure and ita alfght- 
ing gear are oonsidered es a whoLo, and the aokr~,l foraa-displacement char- 
aoteristias of the landing are iutxdduaed -into P;ho, theory, In this prooa- 
dure, the dynmio strsssotl result from the suddsn applketion of ncving eon- 
strainte imposed on the airplane during landing. Similarly for the seaplane, 
the slastia structure and the water surrounding the hull may be considered 
aa interaatiag bodies. While this method is not preoluded in the inveeti- 
gation of spaoific aasas or for raaaareh purposes, it involves inherent 
ooxplexities suoh as those reaulti.ng from tho non-linear properties of the 
alighting gear and the variable mass effeata of the water surrounding the 
hull of a seaplane, whioh tend to make this type of approaoh lass adequate 
for design purpasearr 

(b) In the other prooedure, in which etressea in the struoture are con- 
sidered to be caused byla landing impaot force applied directly to the 
6truoture, it la assumed that the time history of the impact force may be 
investigated independently of the slastio properties of the struotureO 
In this way the investigation involves two separate phasws - a study of 
the landing foraes O and a study of the imptlct behavior of the structure 
under such forces. This prooedure involves the assumption that a landing 
impaot foroe may be defined in euoh a way th$t ita time history ie for 
all praotioel purposea independent of the elastio properties of the struc- 
ture. Since it ie believed that the relative simplioity of the lattar 
approaoh overshadows the approximations involved, it has been adopted as 
the basis for the prcaent work. This procedure was desoribed previously 
in referenoe (1) in connection with tho problem of dynamio stresses in 
buildings during an earthquake. 

It is assumed that in first approximation, the damping and aerodynamic 
foraar may be neglected. The landing impact force is applied directly to 
the elastio structure as an external foroe of given time history. The re- 
sponse of the struoture is represented ae a superposition F modes 
axaited by the landing impaot- A first step in ?fOr-a 
to obtain the natural mode8 of the airplane etru 



h.n important feature of the daaignsr'o qqmm5h to ths landing loads 
problem is the faot tha$ hcq is not so much intorastsd in the fxtual time 
history of the motion of thg atructilro as he is in tihe magnitude of tha 
highest atta5.nabl.a atro3a0so Thi@ viespoint io introduced into the pro- 
cedura by uePng a statirrtion1 approsoh. Tha stress amplitudes of twah rroda 
em7 superposed ir~Wvpecti.vs of phase, md. the worst possible oozM.nation ia 
*used as a basis for the dssigi\. &xt!:!:~-~~ora, the u-tress tima kis%ory in 
aaoh moda is nat uotualiy oo%ptltod, htk %ho atrbst e.mglitude in obtainad 
by LF, simple procedure uohg a I;PU$I ro;x*ocanting &iat is desigmted as &e 
dymm%o respoune %&or. This faatar roal~lba Erarr a c%atiaticnl aslulysis 
Of the efi'eCt6l Of' ~;"oZ-M!Ki CJ- vu~ious tin0 hist,orisa on a slingle dE?g::eCI of 
freedom OnciuQttor, wfsg rD. wfricisra"v z.wx?mr cf gwh. time hin=+ri$s to 
Pe~rc;nent all pOtN3ibh tG~&V.Ul 5f i&%_Tldi.~~ CXXXii-t+fOW. Ifdues of tl;o fQwEi.0 
rwpon~~e .%&or WC obt;oinad by ag~lyl.zg t;ho zlora~ticms historSos to a 
torsion pendulum (daooriiied in rafasrsncs 1) p a_%d mehsuring t>e ~~~.imum am- 
Bli%udo of its respomsa: In WLs ::'ay> when thu natural modso of the air- 
plane are inown, the, dynamic loads M-O readily obtained without ths necks- 
sity of integrating the differential equations whioh govern the behavior of 
the struoture in the transient oondition. 

2, EVALUATIuN OF TwJWENT MOTION OF ELASTIC BODIES BY USE OF C1WRALIZED 
COOHXWATE6 

AU pointed out in the introduction, $he theory prooseds on the assump- 
tion that the, landing impact foroe is known. In this way, the theorotioal 
problem is reduoad to the evaluation of the rassonae of an elastio -structure 
to a foros of given time history. 

In order to outline the basis of the present theory, simplified illus- 
trations are given. Detailed aooounts of the general mathematioal theory 
of transients in linear systems may be found in numerous ref'erencea (e.g* 
ref. 2). 

A simple osoillator ia illustrated in figure 1 

Fig. 1 

Denoting by M the mass 
constant is k pp Mw2 e 

p and by &the natural frequency, the spring 
The expression giving the displaoement q of this 

mass under-the action of a force F(t) of arbitrary time history is well 
known (r-of. 2). It may be written aa, 



Aeewne for the psrsont that the complcto time biotory of defomr~%ion 
of the airphuae structure ips desired. Such sr rst;ruotura diffa-p1 fromtha 
simple ay&3m of figure 1 by two featurear 

(a)'% is a free body 

(b) It ie an elastic body with many degreoo of freedom. 

Instead of a single doformation mcde as in the ease of the eimplo aystemr 
there are aotually an infinite number* The displaoemeni under the landing 
impact force may'be described as a superpoeition of a rigid body traneba- 
tion whioh represents the motion of the oenter of gravity, and deforzatione 
of the struoture in all of its natural vibratory modes relative to the 
oenter of gravity. If damping iS neglected as is the ~60 here, the InOd 
are uncoupled. The behavior of eaoh one under ths landing impact foroe is 
independent of tha other. Each node may be represented by an equivalent 
single mass osoillator of the same natural frequenoy, and exoited by a 
generaliaed foroe. As an exa@e, take the ease of a wing in pure bending. 
There are an infiaZte number of bending modes , a few of whiuh are represented 
in figure 2. The motion of the oent;er of gravity represented by the rigid 
airplane with the generalited coordinate q. is referred to as the eero mode. 

-qc 

QO c 5 Zero Woda 1 Nt) 

F(t) 

91 4 -);;""L 

. I- 1 F(t) 

-F 1 et j&ode QlW 

,2”‘~‘Qdt) 

Fig. 2 

-3 ij 



The amplitudes of the wing tips relative to a canter of gravity ~x3.a are 
selected as generalised coordinates and denoted by ~1 for the first mode* 
q2 for the seoond n:ode, eta. The oorrespoading generalized massea are ds- 
termfned by the oondition that the kinetic energy be the sszne for the mode 
and its equivalent system. This fields the eacpressions, 

In these expresaionr, 9‘ k represents %ho am?lituds at station k relative ;'j> . 

to, a center of gr‘.vity axis when the wing is defleoted into the oornf%gura- 
tion of the jth mods tith a unit dsfloction at the wing tip- Similarly, 
the generalized foroes determined by the oondition that the work done by 
F(t) be the same in the parWxhr mode as the work done by Q(t) in the 
equivalent wystem arep 

. 

The subsoript f refers to the statton at which the landing impaot foroa ia 
applied. 

3, TRE LANDSNO IMPACT FORCE F(t) 

In the preoediug ditaoussion, the time history F(t) of the exbernally 
aLplied landing impaot Soroe irr aseuxned to, be known. A oonvenisnt source 
of landing Soroe data is a landing test with a recording aooelerometer at 
the oenter of gravity of the airplane. A sketch of a typioal aocaleroxneter 
rsoord is shown in figure 3. 

Aooelarometer 
Reoord 
$:Lyd a(t) 

Figo 3 



The higher frsquemy oeoiI.lationrr are disregarded. The dotted line shown in 
tigum 3 ia considered ~8 the acceleration of tha oenter of gravity Of the 
airplane. The f'orco applied Go the airplans struature during landlng ia 
aaeumed_to be given by, 

(4) 

at 1;:*6 “:tiaa Lllzo)vi;l th a_ au tb bekvlor ti each rsda ~:ay ba &$lrt,-d by 
the ;w~pnnm of aa squW&Mi simj9.a 1)a~o5lYiatcw aoted uport 5y n. Gejlarafited 
forae Q(t). The motloa of a 'aimp3.e oaaillator under the action of ~fl ar- 
bitrary foroo Q(t) ie glv?n by Duhsm~l*rp integral aa lrhtnm by equation (I). ’ 
Coxeidar, for example, the reeponlxs of a wimplo osoilletor under the In- 
fluence of a foroa-time impula;et having the ehap~ of an ieosoek3a triangle.. 
The complete time historiee of the motion of the oecillator h~;ve been 
evaluated for the iaoaoelee trfnngla impulrio for two ratior of TX/T& end 
the roeultrr are plotted in figure 4. TX is the period of the lmpulea. 
T - 2:& ie the natural period of the osoillator, The response of the 
oaailletor ie exptiesead aa (L rat10 of-its aotual dieplaoement to its statio 
displacement under Q&. Thie ratio Is donoted by q/q,,. 

Figb 4 

For eaoh period ratio TI/TP there is a Magi= value of Q/9* 3s the Po@itive 

direotiua, and a maximum value in the negative direction. 

0 & 



%ham maximum valuea"are dos::l,g:zaYsd here as dynamio response factors, and 
denoi;ed by Y . -There are.two values of y asaoo.iated with eaoh period ratio 
as ehown by figure 43 A diagram may be oonstruetod showing the variation 
of dynamio response faotor with pariod ratio. Suoh a diagram for the iso- 

ocelee triangle jTKipU160 is skewn in flgxre 6. 

Y 

+1 

,.. r 

., 

0 

"1 

A 4 

Figa 6 

The determination of a dynamio responee faotor diagram may be aooomplished 
for any arbitrary Q(t) variation by a numerioab or analytioal evaluation 
of Duhamel*~ integral. EIoweverfi both proceesee are quite lengthy and re- 
quire plotting a time history a6 shown by figura.,rL. A meohanioal analyzer 
ooneisting of a torsion pendulum has been developed (ieferenoa 1) uhioh 
may be used to measure the dynamio reaponsa faotor without recourse to an 
evaluation of the oomplete time history of the motion. By auoh means, a 
dynamio response faotor diagram similar to figure S may be evaluated in a 
relatively short timen 

6. STATISTICAL APPROACH TO TIE LANDING PROBLEM 

The method6 previously outlined are applicable when the time history 
of the externally applied landing impaot force is accurately known. Ac- 
tually the ehape.of the landing impact foroe-time ourve may vary from one 
landing to the next and with different operating conditions of the airplane* 
For this mason, it ia not praotioal to design for a single mathematio T 
landing, but instead it i6 desirable to employ a statistioal approaoh 



The phase relations between the modes are lost when an:apprdach of this 
kind is employed. However, th3.s is not oonsldered serious sinae for de-' 
sign purposes it must be assumed that sometime during the life of the air- 
plaaa tho phasing of the modes will be suoh aa to,produoa the worst oombina- 
tiorr of stre8Bos. For thi8 reason, the xnaacimum deflections are superpoeed 
without regard for phase in order to yield the most oritioal'oombination. 

6. EVALUATIOW OF ThE STdESSti 

Bavfng detorminad the maxlsaua dofonnatioq of 
during the landing, the atroea mcq be dbtained In 

the atruoture in eaohmode 
a straightforward manner. 

It is convenient to oonaider tha toter1 stress 68 roaulting from the supor- 
position of the streaaan in eaoh mode. 
motion does not oontribi\to away stress4 

The sero mode whioh is a rigid body 
FFom a practical viewpoint it is 

important to note that tf*q stresses in each modo may be conveniently oalou- 
lated by using the inortlia foroos of the natural osoillations rather than 
by oaloulating the strain from the spaoa curvature of tho mode shapea. 

c 
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_ Fig. 6 

Dynamio raspome faator diagrams similar to figure 6 have been determined 
for each of these ourvo~ by meana of the mechmioal analyzer. The points 
which define these ourvee have been plotted on one graph, and a smooth tm- 
velope ourve has bee? drawn whloh bounds all of then. This envelope is 
illustrat'ad in figure 7. The oonditionrr which the envelope shown in 
figure 7 reprsaents , exoeeda in severity the oonditiona of the eix types 
of landings oonaidered. It is poaslble that,afTter oc~af.de~~t-ian of a 
large umber of shapes of forae-time ourves taken from flight test recorda, 
an envelope of this type may well represent aonditiom whioh el.oosd in no- 
verity every probable landing whioh would be ex~erisnoed duriq; the normal 
life of a land type airplane. 
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Figo 7 

In order to apply 
pulse period muat 
Analysis of data 

the dymmlc reeponee factor envelope of figure 7, the im- 
be kmmnb Thilr has been determined by an empirioal. study. 
of normal acceleration periods during tho flr8t lmpaot of 

landing showa that the impulse period in seoonde may be related to the air- 
plane grose Oroight'Ln pound8 arpproximataly by the empirical relation, 

R I I 0.16 

Ts m 0.26 - 
1000 . 

6) 

Analytic%l studio8 and fnetrumented flight te8t8 have shown thqt the 
wheel spin up foroe increasea almoet linearly with time to a maximu+ value 
and then drop8 to t.ero when the peripheral wheel velocity roaohee the air- 
plane,velocity parallel to the runway. Such a force-time relation S8 illua- 
trated by figure 8. 

'Y&g. 8 



The dynenmia re~lp~nndp fastor diagrerm for the Soroo-time rslstion shown by 
figure 8 is illustrnted by figure 9. E;xpcrimen.taa. data have, shown that 
the tima required to erin up the whoah is of the order of one fourth to 
on6 fifth of the impulse period gfvsn by equation (6). 

. . 

Fig. 9 

8. ILLWSTRATIVEEXAMPI*E OFLANDPUDEWIN@ 

The prinoiples previously dltscusesd are applied to an example in which 
the transient wing BereaaerP during BI symmetricsal landing are oomputed for 

. a four-engine land type patrol bomber. Tho max5mum value of the ehook strut 
axial foroe iu arbitrarily s&otezd to oorrespond to a 4g landing. The 
mtxxsjmrm value of the wheel spin-up force is determined from the formula, 

where, 

inertia of wheel 

V, - landing speed 

Iw - moment of 

re - effectin 

TI = period of 

rolling radiue of wheel 

wheel spin-up tipuloe 

-100 ’ 

(7) 

4 



Formula (7) ia dorived ou the txXSWqJt%On that P,ha tlro ia alippiag or on 
the verge of slip&sag during ths period of wheel spin up and the nhook strut 
axial fosos ier inurcasis~ lizmsly with time dwiag ths period of wham1 
spin up. 

-ll- 



Symbola, 
?&1 a Baximumnegative deflection, first mode 
P-l = Maximum positive deflection, first mode 
N-2 - Maximum negative defleotion, seoond mods. 

Etc. 
Figure 10. Contribution of P3.rst Three Natural Mode "L.ag 

fkrnding Moment. FOUTaeri 
4g Landing. 
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