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Low-Speed Flutter and Its Physical

Interpretation

M. A. BIOT* axp LEE ARNOLD

Brown University and Aeronautical Consultant

ABSTRACT

The phenomenon of low-speed flutter of an oscillating airfoil
is investigated. The problem resolves itself into the study of two
phenomena: that of zero air-speed classic flutter and that of an
oscillating airfoil with no vortex shed. It is scen that
both cases involve oscillation of the airfoil about a nodal line
located three-quarters of the chord aft of the leading edge.
The study is based on the fundamental theory developed by
Theodorsen.

The relationship between the parameters required for zero-
speed flutter for the general case is developed, and the physical
interpretation of this phenomenon, i is discussed.

For the latter case, the solution of the equations of motion,
based on noncirculatory flow, and the equations resulting from
the Kutta condition result in a relationship between the inertia
and elastic parameters for which the airfoil will flutter (i.e., main-
tain oscillations at constant amplitude) for all air speeds.
physical interpretation and the mechanism of this phenomenon
are discussed.

Practical implications, such as the importance of nodal-line
location and the effect of the physical parameters of the airfoil
on nodal line location, are discussed,

The possibility of a new approach to the flutter problem is sug-
gested—that of employing the ground vibration modes of the
airplane to study the existence of a low flutter speed and as a de-
sign guide to raise the flutter speed.

Conclusions are also drawn regarding the influence of aspect
ratio and the relative importance of theoretical aerodynamic
coefficients against values of these quantities measured in the
wind tunnel,

Norarion
h = downward displacement of airfoil at elastic
) axis

o = pitch of airfoil (nose upward)

14 = air speed

w = flutter frequency (rad. per sec.)

' == moment of inertia of airfoil about elastic axis

M = mass of airfoil

Sa = static moment of airfoil about the elastic axis

Tu = Jo ¥ wph*(1/s + a®) = moment of inertia of
airfoil including apparent mass effect

i1 = M < 7wph? = mass of airfoil plus apparent
mass

S = Sa — awpb?® = static moment including appar-
ent mass effect

wh = natural frequency in /7 degree of freedom

We = natural frequency in a degree of freedom

b = semichord

ab = ¢lastic wani= location aft of mid.chord

k ’ = wh 1" = reduced frequency

) = air density
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The

real and imaginary parts of aerodynamic coef-
ficients, not including apparent mass effects
structural damping

Raa, Iaa, ete. =

INTRODUC'I‘iON

MUCH 1AS BEEN DONE to improve the methods of
flutter'analysis during the last few years, but no
tools have been devised which can be applied with reli-
ance during the early stages of design. Various “tricks
of the trade” are resorted to (such as the set rule of
moving the center of gravity forward), but the re-

minder that there have been exceptions to these rules

compels one to search further for more reliable guides.

With regard to flutter, the only controls the designer
has are those that pertain to mass and elasticity distri-
bution. However, the two are interdependent and the
influence of the change of one on the other and the
joint effect on the flutter characteristics are too complex
to allow for the determination of suitable design guides
begotten from intuition alone.

By examining the basic two- dunensmnal flutter
theory of Theodorsen,! one becomes aware of a feature
of the aircraft which incorporates both the inertia and
elastic characteristics. This feature, the so-called
nodal-line location, is shown to be the primary factor
in the occurrence of low-speed flutter. In fact, it is
shown that for an idealized airfoil the location of the
nodal line at the three-quarter chord results in a zero
flutter speed.

Nopar, LINE ¢

If an external vibratory load is applied to the wing of
an airplane on the ground, at each of certain frequencies
of excitation maximum amplitudes of wing response
would be induced. It would be seen that at each of
these frequencies every point of the system would move
in phase with every other point and that the motion of
any section, say B of Fig. 1, would be essentially the ro-
tation of the section about a point that remains sta-
tionary in space.  The locus of tlxese nodal points is
the nodal line,

Let us examine the behavior of one of these wing sec-
tions (Fig. 230 We assume that the section is free to
oscitlate in only two degrees of freedom. The first
resonant condition will involve ‘oscillations about a
nodal point a large distance forward of the airfoil; the
sccond will imvolve escillations about a nodal point on
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| ZERO AIR-SPEED FLUTTER

Let us consider the effect of an air stream flowing
over the airfoil of Fig. 2. At any air speed below the

? critical flutter speed, any small disturbance of the air-
e foil from its static equilibrium position will result in an
4 oscillatory motion that will damp out with time. As
Nodal the flutter speed is approached, the rate of decay di-
Line minishes until at the critical flutter speed there is no de-

cay and the airfoil maintains a constant amplitude os-
cillation. At this critical speed there is no exchange
of energy between the mechanical system and the
stream. At any speed above that of flutter, the me-
chanical system absorbs energy resulting in oscillations
whose amplitude builds up with time.

Consider now the airfoil of Fig. 2 in still air. If we
neglect the structural and air friction, any displace-
ment from equilibrium will result in constant amplitude
oscillations. However, this phenomenon will be a
. limiting case of flutter for only special distributions of

Fio 20 Tsolated section of the wing. mass and elasticity of the system. It will now be
shown that the necessary “and suflicient condition for
zero adr-speed flutter is that the mass and elasticity of

or near the airfoil. It is the latter point that is im-  the system be such as to result in a node at the three-
portant in the occurrence of low-speed wing tutter. quarter chord aft of the leading edge.

e an s v et
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The equations of motion of an airfoil oscillating in a uniform stream are’
‘——ia(w:‘ - waz)ﬂ - ‘-'J?Sah = '“pr*wz[(Raa -+ i[aa)a + (Rah + '[ah)(h/b)] (1)
—wiSea = T = @b = —mpb%*[(Rea + iea)a + (R + 1) (B/D)] @

where w, and w, are the natural frequencies of the system in still air, the former for pure bending and the latter for
pure torsion.  [., S., and M are the moment of inertia and static moment about the elastic axis, and mass, re-
spectively, all including apparent mass contributions. In nondimensional form, Egs. (1) and (2) become

id u: . S(l . h
[- Y (1 - Ei:) + (Ruu + Ilau):] a + [_ TR + (Rah + "Iah)] .= 0 (3)
wpbt w? wpb? b
S , I 2 Lk
[— =+ (Rm + llca)] a + [— s ( 1 - o + (Rch + 1[ch) - =0 (4)
wpb? wpb? w? db
The stability determinant becomes ' .
| I ( wa? .1 } [ Sa S
- T 1 - =5 aa " Ian, - T “, T 4a !
:[ wpb! w'~’>+R +Lk 1rpb3+R"+tk1h__ .
| S 1 17 2 1 -0 ®)
13 . 4 wh- .
- Ty ca ca’ - T 1 — — ¢ 1 ¢ !
“: 1rpb3+R +zk1‘][ wpb"’( w">+Rn+lk1h] {
where [,, = }lélaa’, ete. )
Separating into real and imaginary parts,
ia < wa2 :] Sﬂ ] ’ ’
|:~ rﬁb" 1 - w_z) + R,'m [_ rpb3 + Ran 1 Iaa Iah )
=0 (6)
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I. Wo? ,;
’ ["' pr4 (1 - w2> + Raa] Iah
+

1
k S, ,
, ['— ;r;;; + Rca] 1, ch

) 5.
Iaa [" pra + Rah:l

Ical ['— i{‘; (1 - 89;) + Rch]
wpb? w?

i
|
! =0 7}
|
|

The factor 1/k of Eq. (7), put equal to zero combined
with Eq. (6), is the condition for steady-state oscilla-
tions at zero air speed but not the condition for flutter.
It is the simultaneous vanishing of Eq. (6) and the sec-
ond factor of Eq. (7) which gives the flutter solution.
At zero air speed

]/k = Rm. == R,,,, = Rra = RM = 0
and
[aa’ = (l//Z - 0)2, Iah’ = '—(1/‘-’ + d)

Imx’ = 3,-‘/2 - a, Ith’ =1

Substituting, Eqs. (6) and (7) become,

’ ja ( l (‘)(l‘l) . fg‘fx |
| wpbt w? pb? (

l - =0 (8
l ..§.“ _“[4 <1 (ﬂ"f !
| wpb? wpb? w? /!
and
I, ( wo* ’
1 - — (11/2 - )|
wob? , w"’) ) !
C
Sa |
Saaho AR D
wph? ;
b S.. ?
(e = oa)? o
wpb
: ) C= 0 ()
' : M 0y 2
NG N ( [ M.\‘)
; wob? w?®

Eq. (8) is the usual zero air-speed frequency equa
tion. The inportant equation is Eq. (M. Expanding
it, we obtain

2 2 . .
. - a) b i (1 - Em.‘) + 1, (1 _ 9‘{;) +
2 ? w?
(20 — 1bSa + grpb‘ =0 (10)

which is the equation governing the oscillating motion
of an airfoil elastically restrained at the elastic axis but
constrained by a node at the three-quarter chord point

-as shown in Fig. 3.

The total restoring moment for the system of Fig. 3
about the three-quarter chord is

Mg = [(b*(*/2 — a)’0*M + wol.]a (11)

The moment of the inertia {orces about the three-
quarter chord is

My = [Ia+ J(/: — )% + 2b(@ — /2)Sala (12)

The aerodynamic moment about the three-quarter
chord point when 1/k = 0 is

Ma = —(y)wpb? (13)
We have the dynamical equation
A[[{ + 11[1 = .1[,;

For harmonic motion this equation becomes

2 o 9
G) - a) 521 (1 —~ ‘L”) + 1. (1 ~ “"2> +
- w* w

3
e — 1DbS. + < wpbt =0

which is identical with Eq. (10), the condition for zero-
speed flutter.

We see then that the condition for zero air-speed
flutter is that the nodal line is at the three-quarter
chord.

The importance of the nodal-line location in flutter
is then apparent.  One should therefore investigate the
variation of flutter speed with nodal-line location as one
of the puarameters. This has been done for various
combinations of parameter values. When the struc-
tural damping g is not; zero, the flutter speed does not
vanish for a node location at the three-yuarter chord;
however, it reaches a minimum in the viehmty of thut
location.,  The variation of flutter specd with nodal-
line location is illustrated in Fig. 4 {or two values of the
structural damping.

VORTEX-FREE FLUTTER

There is a case of occurrence of zero air-speed flutter
in a two-thmensional airfoil for which flutter occurs
also at all other speeds. This type of flutter is as-

b

Fr6. 3. Mechanical and geometric parameters,
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Flutter speed versus nodal line location (node location
in chord lengths).

Fic. 4.

s.ociated with the vanishing of the circulation about the
airfoil. The aerodynamic force and moment experi-
enced by an oscillating airfoil is made up of two parts—
a noncirculatory and a circulatory.. If the latter,
which also is associated with the shedding of vorticity
from the trailing edge of the arfoil, 15 assumed to’
vanish, the cquations of motion become

2)]=0

wb

(14)

" e i
iy + awala + Suh + wpbiw? [— b (—Z +
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X = (I/wpb*) [1 — (wa?/w?)]
Y = (M/wpb?) [1 — (wa?/wb)]
Z = S./=pb®
Eq. (20) becomes
YIX + (/D)) = [22+ (1/R)] =0 (22)
while Eq. (21) becomes: '
(/:—~a)Y - Z =0
oo n 2 2o #)

Eqgs. (23) are identically satisfied for all values of 1/k if

V=1
T - of @4
Substituting Eq. (24) into the determinant, Eq. (20),
X = (l/z - 0)2 (25)
as the condition for flutter. Since Eq. (25) is inde-
pendent of 1/k, it is seen that this type of instability
will persist at all air speeds—i.e., flutter will occur at
any speed from 0 to @,

From Eq. (19) it is seen that, when 1/ = 0 (V = 0),

IS A N (R %

- 1Y/ 4
R 4 B2 AT 4 S+ oxplie’ ‘:(;a-}(ﬁ}} =15
oo w

For harmonic motion, in nondimensional form,
Egs. (14) and (15) become )

&
S,

(17)

Since there is no circulation about the airfoil, the
Kutta condition becomes

Va4 b+ b(t/s — ada = 0 (18)
In nondimensional form
[ =i (%)]w my=0 (9
From Egs. (16) and (17),
+ [X + (1/kY)) [Z +i(1/B)] ] _
(Z - i(1/B)] Y = 0 (20
and from Eqs. (17) and (19)

[(Z - 3(1/k)] v

where

which is the condition that the nodal point be at the
three-quarter chord. A further examination of the
Kutta condition, Eq. (18), reveals that the motion of the
airfoil during this vortexless flutter is one of sinusoidal
gliding at the three-quarter chord point as portrayed in

.Fig. 5.
We have then the following conditions for vortexless
flutter:
I, o 1
X =~ ( - w;) = (— — a>’ (1)
wobt /@? 2
4‘—[ (d,‘z
Y = - 1 -] =1 i
mpb? ( wz) (&)
Sa S& l e
Z = 'n';b‘ = 1rpb3 -~ a = é—- a. (m)
Node at three-quarter chord (iv)

However, conditions (iv) and (iii) imply Egs. (i) and
(ii); therefore, the necessary and sufficient conditions
for vortex-free fluttereare, from Eqs. (iii) and (iv), that

haank Y
N ==
\\

-

Fic, 5. Motion of the wing in vortex-free flutter,




236

the node is at the three-quarter chord point and that
the static moment about the elastic axis is a small value
determined by

Sa = 1/ampb? 27)

The frequency of flutter w is independent of the veloc-
ity, and the frequency ratio w,/wq is near unity. There-
fore, when, in addition to a three-quarter chord loca-
tion of the nodal line, the frequency ratio is near unity,
the flutter speed will be extremely sensitive to changes
in the frequency ratio.

THREE-DMENSIONAL CONSIDERATIONS

We must realize that a wing may be assumed to be
composed of a continuous distribution of two-dimen-
sional sections of the type we have been describing.
Each of these sections would have its own flutter char-
acteristics if it were separated from the rest of the wing
and placed in a two-dimensional strtium. - For example,
section A of Fig. 1, whose nodal line is at 10 per cent
of the chord, would have a high flutter speed, but sec-
tion B, whose nodal line is close to the three-quarter
chord, would have a low flutterspeed.  Atagivenspeed,
section A would be dissipating cnergy to the stream,
while section B would be absorbing energy from the
stream. At the air speed at which the amount of en-
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pendent of aspect ratio. It is to be expected that cer-
tain types of flutter occur at or near the vortex-free
régime. In this case, correction of three-dimensiong|
aerodynamic effects will have little influence on the
flutter speed.

It should also be noted that vortex-free flutter in.
volves only perfect fluid theory and does not introduce
the action of viscosity since no circulation is produced,
This is probably a contributing factor to the remark-
able experimental verification of the theory which has
been frequently observed. It may well be that the
substitution of expertmental aerodynamic coefficients
measured on oscillating models can lead to less reliable
predictions of flutter in certain cases.

CONCLUSIONS

(1) It is recommended that a study of locations of

nodal lines be employed to ensure against the occurrence

of flutter.
(b) The designer should attempt to locate the nodal
line as far from the three-quarter chord as is practic-
able.
(&) A limiting case of flutter without vorticity may
occur.  This may account for the small effect that as-
pect ratio corrections have had on flutter in magw==_

studied. e -

N

ergy lost by such sections as A cquals thatgbhsurbed ba
———— . . .

'ﬁ? Such as E, fMutter occurs.  The obvious guide 15

to design the wing so that the nodal line is as far from

the three-quarter chord as is practicable at all spunwise
stations of the wing.

During the early stages of design, the nodal line and -

the effect of various design changes on its location can
be determined analytically.

Another important consequence of the present point
of view is the tendency of vortex-free flutter to be inde-

() The importance of the theoreticul aerodynamic
coeflicients should be emphasized, since it is entirely
possible that in certain types of flutter they may lead
to more rchable predictions of the flutter speed than
the experimental coetlicients.
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