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Loads on a Supersonic Wing Striking a 
Sharp-Edged Gust 
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ABSTRACT 

This is a calculation of the chordwise lift distribution, total lift, 
and moment on a two-dimensional wing striking a sharp-edged 
gust at supersonic speed. A direct solution is established by 
considering a distribution of sources in a fluid at rest. An alter- 

nate method using Busemann’s conical flow is also shown to be 
applicable. The time history of the total lift and mid-chord 
moment is discussed. It is shown that the total lift increases 
with time and reaches a maximum that corresponds to the steady- 
state phase of the flow. The mid-chord moment goes through a 

maximum independent of the Mach Number if the latter value is 
larger than 4/r, while this maximum can become infinite for a 
range of Mach Numbers between 4/r and 1. 

(1) INTRODUCTION 

C 
ONSIDERABLE ATTENTION has been given lately to 
nonstationary flow problems of wings flying at 

supersonic speeds. Most of the work, however, has 
been concerned with the aerodynamic forces on an 
oscillating airfoil from the standpoint of flutter analysis. 
The problem of the wing hitting a sharp-edged gust is of 
a different nature and turns out to be actually much 
simpler than the oscillating airfoil problems. 

It is shown in section 2 that it may be treated by a 
distribution of sources of a simple type along the chord 
and that the pressure distribution may be derived by 
elementary methods. The procedure does not intro- 
duce a moving fluid but considers a fluid at rest in 
which nonstationary sources are distributed in a layer of 
variable extent. This point of view, which is closer to 
acoustics than to aerodynamics, is somewhat novel and 
seems to present advantages of simplicity and closeness 
to physical reality in certain categories of problems. 
The pressure distribution derived by this method is 
applied to the calculation of the time history of lift and 
moment on the wing in section 3. Particular attention 
is given to the value of the mid-chord moment, which 
starts from zero, rises to a maximum, and goes back to 
zero. The value of this maximum and related data is 
evaluated in section 4. These results are of particular 
interest to the designer. 

The derivation of the pressure as given in section 1 
is only one of the methods that may be used in this 
problem. As an independent check and as an illustra- 
tion of the application of Busemann’s method of fonical 
flow-to a nonstationary problem, an alternate derivation 
is given for the pressure distribution in section 4. 
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In a paper by Schwarzl procedures used in oscillating 
airfoil theory are extended to the problem of a wing 
striking a sharp-edged gust at supersonic speed. Re- 
sults for an oscillating down-wash lead to the gust prob- 
lem by a Fourier integral representation. This method 
constitutes a considerable detour and introduces inter- 
mediate results of a transcendental nature which are 
actually not needed and are more complicated than the 
result. It may be verified that the expression derived 
in the present paper for the pressure distribution is 
equivalent to that derived by Schwarz. He does not, 
however, discuss the physical aspects of the problem or 
derive expressions for lift and moment. 

(2) DERIVATION OF THE PRESSURE DISTRIBUTION 

The wing of chord 1 enters a uniform gust of upward 
velocity v. at the supersonic velocity I’ (Fig. 1). The 
velocity component normal to the wing must remain 
zero, and this condition is equivalent to the generation 
of a velocity normal to the wing which cancels-the gust 
velocity (Fig. 2). This may also be considered as a 
“reflection” of the gust on the wing. Because the 
velocity is supersonic, the pressure distribution on one 
side does not influence the pressure on the other, and 
therefore we need only consider the bottom side. The 
pressure distribution on top will be the same except for a 
reversal of sign. For the same reason the pressure dis- 
tribution is not influenced by the trailing’ edge, and 
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‘sr 

Fi~re 3 

Limits of Intepatlon for Integral (2.6) 

everything is the same as if the wing were of infinite 
chord. The problem is then reduced to finding the 
pressure in a fluid, originally at rest, due to the presence 
of a uniform distribution of normal velocity vo along the 
chord from a point 0, corresponding to the edge of the 
gust, to the leading edge A. If the wing enters the 
gust at time zero the length OA = Vi. 

Now, such a distribution of normal velocity may be 
represented by a distribution of source singularities 
generated continuously at the leading edge and remain- 
ing constant thereafter. The velocity potential of such 
a source appearing suddenly with a constant intensity 
at time tl and location xl, is 

C#+ogr-~log c(t-jtl)+4 
1 

cyt - t# - t2 1 (2.1) 
with 

r2= (x--CQ+y2 

This expression satisfies the wave equation 

where c = velocity of sound. Moreover, for sufficiently 
small values of r with respect to c(t - ti), it represents a 
velocity field 

9 = @o/s) log r (2.3) 

identical with that of a steady source in the incompres- 
sible flow. Hence, by analogy, it may be concludedthat 
the uniform distribution of such sources will produce a 
uniform normal velocity component vo. 

The pressure generated by this source along the x axis 
(y = 0) is 

a+ 
p = -p z = n4c2(t _ jy_ ($$ _ xl)” (2.4) 

where p = fluid density. Note that the source located 
at xi suddenly appears when the leading edge reaches 
that point, i.e., at a time tl = - (xi/V). 

The local lift 29 at a point x and time t, due to the 
uniform distribution of such sources from xi = - Vt to 
x1 = 0, is given by 

2p = ; Pcvo 1 
0 dxl 

-rQ &[t + (x1/V)12 - (x - Xl)” 

(2.5) 

or with the change of variables 

x/et = 4, x1lct = h, c/V = sin p 

1 
M=---- 

sin P 
= Mach Number 

2p = 5 pcvo 1 
0 

-l/sinr d(l + .$isindji2 - (.$ - &)2 

(2.6) 
In integrating this expression special attention must be 
given to the limits of integration. The function under 
the integral sign must be taken as vanishing when- 
ever the radical is imaginary. The range of integration 
is therefore limited between the two roots of the equa- 
tion, 

(1 + EI sin pj2 - (5 - [Jz = 0 

These roots are 

p = E-1 ,5(2) = 
E+l 

l+sinr’ 1 - sin p 
(2.7) 

These quantities, plotted as functions of E, are repre- 
sented by two straight lines (Fig. 3) which intersect at a 
point of abscissa 

and ordinate 
4 = - (l/sin p) 

51 = - (l/sin /*) 

The interval of integration is thus limited to the shaded 
area bordered by the two straight lines [Eq. (2.7) ] and 
the axis (& = 0). We must therefore distinguish be- 
tween two ranges of values of [: for - (l/sin) < 5 < - 1 

2p = z pcvlj 1 
w 

x 
El(‘) 

2/<1 + &2,)2 - (5 - 4;)2 
= 2pcuo (2.3) 

cos /.L 

Hence, for this interval of $--i.e., between the leading 
edge and the abscissa x = - ct-the lift distribution is 
uniform and independent of x. It may be verified that 
it is identical with the lift on a wing in steady flow with 
an angle of attack vo/V. This could have been con- 
cluded immediately, since that portion of the wing can- 
not beinfluenced by the presence of the gust edge be- 
cause of the finite velocity of propagation of a signal 
originating at this edge. 

The other range of integration -1 < .$ < 1 corre- 
sponds to points located at distances smaller than ct. 
from the gust edge. 
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2p = ; pcvo s 0 
41 

w d( 1 + .$I sin EL)~ - (5 - &)” 
I (2.9) 

= 2pczr, cos-l (;;F;;J 

lr cos p 

) 

In this region the lift distribution depends on the time. 
Substituting ,$ = x/d, 

2 pcvo 2p = - cos _-l 

?r cos /A ( 

x + ct sin K 

ct + x sin p 
(2.10) 

The cos-l branch is between zero and ?r. It will be 
observed that the lift distribution depends only on 
x/et-i.e., there is a similarity law and we may draw a 
one parameter family of lift distribution curves with the 
variable x/d and the Mach Number as a parameter. 
The appearance of the lift distribution is shown in Fig. 
4. We see that the production of lift is not limited to 
the region of the gust. The lift propagates ahead of the 
edge of the g&t with the velocity of sound. The lift 

distribution for various Mach Numbers within the re- 
gion affected by the gust edge is shown qualitatively in 
Fig. 5. 

More often we are interested in the stalling moment 
Ml,2 about the mid-chord. We find, after integration, 

I 

(3) LIFT AND MOMENT 

It is useful for practical purposes to obtain the values 
of total lift and moment as functions of time for a gust 
acting on a wing of chord 1. Because of similarity 
properties, such quantities may be expressed by means 
of nondimensional functions of Vt/l only. In com- 

puting the time history of lift and moment, we must 
distinguish between three phases. 

Phase 1 .-Where the trailing edge is still outside the 
region where lift is produced, ( V + c)t < 1. 

Phase Z.-Where the trailing edge is in the region 
influenced by the gust edge, (V + c)t > I > (V - c)t. 

Phase 3.-Where the entire wing is outside the region 
influenced by the gust edge, 1 < (V - c)t. 

Phase 1 

We integrate the lift distribution 2~ over the chord 1 
and split the integration into two intervals, one in 
which the lift distribution is uniform and the other in 
which it is not. Thus the total lift is - Cl 

L=2 s pdx+2 
--‘Vt s +ct 

P dx (3.1) 
- cl 

or 

-i = 2ct s _~,l;np~ 4 + 24Elf: - 

2ct s +l dp 
_-l E d4.4 (3.2) 

This form is readily integrable. We find 

L = 2pcvoZ( vt/q (3.3) 

Similarly, the pitching.moment about the leading edge 
ML is 

--cf +cr 
ML=2 

s 
(Vt+x)pdx+2 

-vt s 
(Vt + x)pdx 

- Cl 
(3.4) 

or 

ML = 2(# 

M,,, = ; IL - ML = p~o12 ; 
( ) 

1 - 7 (3.6) 

Phase 2 

Similarly, the lift and moment during Phase 2 are 

s 

--cl 

s 

1 - VI 
L=2 pdx+2 P dx (3.7) 

-W --d 

--d 2 - vt 
ML=2 

s -vt 
(Vt+x)pdx+2 _-cl (Vt+x)pdx 

s 
(3.8) 

or 
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s -1 

L = 2ct P & + 2ct[fiEl”_, - 
Ml/2 

-I/sin II 
-=7(1-7)i[sin-l(%)+;]+ 
PmP 

The second phase originates at T = l/(1 + sin p) and 
terminates at T = l/(1 - sin p). It is found that in 
this range the moment Ml12 may go through another 
maximum and that this maximum may be larger than 
its value in the first phase. Value of this maximum and 
the value of T at which it occurs are given in Table 1 for 
various Mach Numbers. 

with z = (l/sin p) [(Z/ Vt) - 11. We find 
TABLE 1 

Mach Number [M1/2!,oz. 
pcvol~ 

&I 
0.281 

with L, = 2pcv01/cos p. The sin-’ branch is taken be- 
tween - (r/2) and + (s/2). The stalling moment 
about the mid-chord Ml,2 is given by 

%=$(I - y){sin-l[($j - 1)-&--l+:}+ 

i (T)2dw (3.12) 

At the end of Phase 2,l = (V - c)t, and we may verify 
that the above formulas yield L = L, = 2pcv~l/cos ,u 
and Ml,2 = 0. 

1.25 1.10 0.255 

‘VT 1.00 ‘/4 

The maximum of Ml,2 in the second phase is greater 
than the maximum M112 = (1/4)pcQ in the first 
phase, if (l/ sin p) < (4/7r) = 1.27. The value of the 
absolute maximum of the mid-chord moment is plotted 
against the Mach Number in Fig. 6. This maximum 
is independent of the Mach Number if this Mach 
Number is greater than 1.27. 

(5) ALTERNATE DERIVATION OF THE PRESSURE 

DISTRIBUTION BY THE METHOD OF CONICAL FLOW 

Phase 3 The above results may be derived by an entirely 

In this phase the lift and moment remain independent 
different procedure. We may compute the velocity 

of time. We find Ml,2 = 0 and L = L, = 2pcv~/cos p, 
field due to the gust reflection on the wing. Because 

which is the lift in steady-state flight of a wing of angle 
of attack v,/V. The lift increases all through Phases 1 
and 2 and reaches its maximum in Phase 3.- The time 
history of the mid-chord moment requires special atten- 
tion, as shown in the next section. 

&SO 

(4) MAXIMUM VALUE OF THE MID-CHORD MOMENT 

With a nondimensional time-variable T = Vt/l, the 

mid-chord moment during Phase 1 is [cf. Eq. (3.6) ] 

Ml/z = pcvoZ27(1 - T) (4. l) 0.25 

This curve is a parabola with a maximum at T = l/z. 

The value of the maximum is 

i 

[M1/2l,m. = (I/~)PGQ (4.2) 

It is interesting to note that during the ‘first phase 

the mid-chord moment is independent of the Mach 

Number. 

During Phase 2 the mid-chord moment is as given by 

Eq. (3.12) 
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we deal with a supersonic wing velocity, the effect of the 
gust is the same as if the chord were infinite. There- 
fore, the principle of similarity applies, and the velocity 
field is similar at all instants except for a scale factor pro- 
portional with time. In other words, the velocity field 
depends only on the variables A x 

5 = x/d, 9 = ylct (5.1) 

The velocity field is disturbed by the reflection on the 
wing in a region bounded by the straight lines AFF’ and 
the circle FEF’ centered at the gust edge 0 (Fig. 7). 
In the shaded area AFDF’ the field is uniform and 
corresponds to the steady-state motion of a wing with 
constant angle of attack. The transient field where the 
effect of the gust edge is being felt is inside a circle 
of radius ct centered at 0. The field inside this 
circle may be computed by Busemann’s conical flow 
method. 

By the transformation 

‘f = x cos 8, 11 = X sin 8, x = 2s-/l + s”) 
x = s cos 8, Y = s sin % > 

(5.2) 

The wave equation [Eq. (2.2)] is transformed to La- 
place’s equation in the X, Y, plane 

(@#+X2) + (W#J/dY2) = 0 (5.3) 

Consider now the components of the velocity field 

u = b+/bx, v = @J/by 

They also satisfy Eq. (5.3). It is convenient to intro- 
duce the complex variable 2 = X + iY. Let us in- 
vestigate the velocity field on the bottom side of the 
wing. The v component of the velocity field is 

v = Re ‘: [log (2 - Zi) + log (2 - Zz) - log Z] 

(5.4) 

where Re = real part of; 21 = ie”; Zz = ---iem”“; sin 
p = c/V. This exIjression satisfies Eq. (5.3) and the 
boundary value of v on the circle and the wing-i.e., 
v = -‘uo on ODF’ and 21 = 0 on F’EO. In terms of real 
quantities, I 

v= -erotan-1 

{ 

[s - (l/s)] sin % 

> 
(5.5) ?r [s+(l/s)]cos%+2sinp 

Now we are interested in the pressure distribution on 
the wing. This pressure distribution for v = 0 may be 
derived from the above expression for v by making use 
of the equations of motion and continuity 

p (dupt) = - (h#/bx) 

(5.6) 

By elimination of u and transformation of variables, 
we find that, on the x axis, cos 8 = + 1. This implies 

This may be written 

By integration 

* = pm - cos-l (,:+;?J 
?r cos ,u 

(5.9) 

which coincides with expression (2.9) above. 

CONCLUSIONS 

It has been shown that the pressure distribution on a 
supersonic wing striking a sharp-edged gust may be ex- 
pressed by a simple formula. This pressure distribu- 
tion is obtained by direct integration of a variable dis- 
tribution of sources in a fluid at rest. It is also shown 
that the same result is obtainable from Busemann’s 
method of conical flow. From the time history of total 
lift and moment it is concluded that the largest value of 
the total lift is reached in the last phase-i.e., when a 
steady flow has been established-while for the mid- 
chord moment a maximum value [J&1/2]_ = (1/4)pcv,J2 
is reached if the Mach Number is larger than 4/?r. 
This maximum moment is independent of the Mach 
Number. However, for Mach Numbers between 4/7r 
and 1, the maximum mid-chord moment varies with the 
Mach Number and becomes infinite at Mach Number 1. 
These conclusions are, of course, subject to the usual 
limitations of the linearized small perturbation theory. 
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