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It is known from the linear theory that the steady state drag of a body at the speed
of sound is infinite. The occurrence of this infinite value may be interpreted as due to
a resonance phenomenon and the accumulation of disturbances over an infinite interval
of time. In non-steady motion, however, this resonance does not, occur, and a finite
value must be expected for the drag, which becomes smaller as the acceleration increases.
The investigation of this phenomenon is the object of the present paper. An investiga-
tion of the drag of an accelerated body was made by F. J. Frankl.' His method however
is approximate and does not apply at the speed of sound.

We consider a two-dimensional symmetriec wedge of vertex angle 2« moving along
the z-axis. The wedge is uniformly accelerated with an acceleration v. The coordinate
of the vertex O as a function of time ¢ is (Fig. 1).
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“We shall simulate the motion of the solid wedge by distributing variable sources along
the z-axis in such a way that the velocity component normal to z is the same as that

*Received Dec. 13, 1948. Presented at the 7th International Congress of Applied Mechanics,
London, 1948.

1F. J. Frankl, Influence of the acceleration of oblong bodies of revolution wpon the resistance of the gas,
Inst. of Mech., Acad. Sci. USSR Appl. Math. Mech., Vol. X, 1946.
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due to the wedge motion. We assume that the wedge angle is small and introduce the
usual assumption of the linearized perturbation theory. The velocity potential ¢ of the
perturbation satisfies the acoustic equation
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where ¢ is the sound velocity. The basic solution from which all following expressions

are derived is
¢ 2R 12
o= Llog| 24 =) 3

o= (xZ + y2)1/2,

which represents a source appearing suddenly at the origin at ¢ = 0. The velocity field
becomes identical with that of a source in an incompressible fluid for sufficiently small
values of r. Therefore, if we distribute sources along the z-axis with intensities per unit
length corresponding to expressions (3), the normal velocity generated by these sources
will be a constant v appearing suddenly at ¢ = 0. What we are interested in is the pressure
associated with the potential . This pressure is

) pue 1
P=ry = CEZ A7 €
This may be generalized to cover the case of the accelerated wedge. The normal velocity
at any point along x due to the wedge motion acquires a sudden value v, when the
nose of the wedge hits that point, and then continues to increase linearly following
v = vy + avyt. The pressure field of such a source is derived from (4) by superposition.
Assuming this source to be located at the origin and starting at { = 0 the pressure is

_ P J 1 dv
T o (C £ — 1/2 + o f &t — T) P12 dr dr . (5)
with dv/dr = &
By integration this may be written

N p’l)oc 1 pa‘y ct (2t2 _ TZ)]/E
o b B g [ ¢4 CO= T, ©

Actually this source is gencrated by the wedge at point £ We must distinguish between
positive and negative values of £ For ¢ < 0 all sources originate at an instant ¢, = 0
and the initial normal velocity is vo = 0. For £ > 0 the sources originate at the instant
= (2¢/v)"* when the nose of the wedge reaches that point and the initial normal
velocity is vo = &, = (2&y)"°. With a step function 1(§) :

1(¢) = 0for ¢ <0,

1(g) = 1for & > 0,
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we may write the general expressions

u= (e,

vo = (28)°1(9),

valid for the complete £-axis.
This particular source produces at point z and time ¢ a pressure

_ s (269)°1()
e T R T e U

Y

pery 1 e[t — 26/ 1@] + (Tt — /)" 1Q1° — (@ — &}
+ log ~ .
T | 2 "—f |
In order to obtain the pressure due to the motion of the wedge we must remember
that expression (7) represents the pressure due to a seurce per unit length at point &.

Hence the total pressure is obtained by multiplying expression (7) by d¢ and integrat-
ing with respect to £.

p 0 = [ ol 4,9 de. ®

This represents the pressure distribution along the z-axis at any time ¢ In performing
this integration we must remember that the integrand is to vanish whenever the radical
becomes imaginary or whenever ¢ < (2&/v)/*1(£). The range of integration therefore
only covers intervals of £ such that

cz[t - (3—5)1/21(5)]2 —@x—-920

and ,
1/2 .
- (E) w20 ©
Consider the (z, ct) plane.
“"The parametric equation
25 1/2
ct = 0<7—) 1(®), (10)
r=¢E

‘represents a curve AOB (Fig. 2) constituted by a straight line and a parabola.

Now consider the two straight lines of slope =1 which issue downward from a point
.P with coordinates (x, ct). They intersect the line AOB at points £, , &, & , & . It may
be verified that for this point P the expressions (9) are positive only for & < & < &
.and & < £ < £ . Hence these intervals constitute the intervals of integration for (8).
Depending on the location of P there may be two or four points of intersection.

The problem of determining the pressure distribution along the wedge at any partic-
.ular instant ¢ is thus solved.
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¢°t P (x,ct)
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We shall not write explicitly the integrals in’fthe general case but will focus our
attention on the pressure distribution when the wedge reaches the speed of sound. In
that case points &, and &; disappear. Expression (8) becomes

p@) = pi + D2 + Po ’ ‘ (11)
2 0 21/2
_ e 2+ 4—-(-N7]
p1—27r ‘/;‘ZdAIOg la__}\’ s
- @ch f[-1+(3+a)‘/=|= )\1/2 d\
=l (@~ 27"~ @— N7
2 pl-1+(3+a)1/2]3 172 1/2y2 2y1/2
apd® 2 — A 4 (@~ A — (o — N
P = "or J, ax log la = | ’

where 2/, = a and £/x, = A are non-dimensional coordinates and z, = ¢°/2y is the
distance traveled by the wedge when it reaches the speed of sound. It is also assumed
here that the coordinate z > —ct.

The value a = 1 corresponds to the nose. Note that for this value of a, p, and ps
are finite, while p, becomes infinite. Hence p, is the preponderant contribution to the
pressure for points near the nose. Because of the scale factor z; , this is also equivalent
to saying that p, is preponderant when the acceleration is small. We shall, therefore,
assume that p, represents the pressure and evaluate the corresponding integrals in the
vieinity of @ = 1. By the change of variable

1= A2 =21 - @)

and for small values of (1 — a) it is possible to show that the integral for p, tends toward
the value ‘
4.78 2

P2 = 1r(1 - a)”“ ‘/l; [(22 + 1)211/2 - (1 — a)1/4 apC (12)
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If we denote by z, the distance from the nose,

= 9.56 & (xl/xz)l“ (13)
The drag for a length [ is
D=2 ' pa dy = 25.50(z,/ )" o, (14)
The drag coefficient is
| co = 25.50%(x,/D)* = 25.547(c/2vy)"*. © o (15)

The drag depends on the ratio of the length of the body to the distance traveled from
rest to reach the speed of sound. The presence of an acceleration causes a finite drag
at the speed of sound in contrast to the infinite value in the steady case. As the value
of the acceleration decreases the drag tends to infinity as the inverse fourth root of

" the acceleration. Another difference with the steady case is the concentration of infinite

pressure at the nose. In this connection it may be concluded that the lift distribution
on an accelerated wing will introduce a stalling moment in going through the speed of
sound. It may be seen from formula (15) that extremely high values of the acceleration
are needed for usual body sizes before the effect becomes appreciable.

It must be added that the methods presented in this paper are not restricted to the
acceleration of a wedge. By superposition of positive and negative wedges the method
solves the problem for a symmetric body of arbitrary shapes with constant acceleration.
Furthermore, it will be noted that expressions (6), (7) and (8) may easily be generalized
to cover not only the symmetric body of arbitrary shape but also the case of completely
arbitrary motion. The present paper indicates how the pressure distribution in such
cases may be completely expressed by quadratures.
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