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THE INTERACTION OF RAYLEIGH AND STONELEY WAVES IN 
THE OCEAN BOTTOM* 

By M. A. BIOT 

ABSTRACT 
A theory is developed for the propagation of two-dimensional unattenuated waves in a system 
consisting of a liquid layer overlying an infinitely thick solid. Special attention is given to the 
interaction between the Stoneley type of wave and the Rayleigh wave. It is shown that the type 
of wave discussed corresponds to a dispersion branch for which the velocity varies continuously 
from a value lower than the velocity of sound in the liquid to that of the Rayleigh waves. The 
possible importance of this fact is pointed out in connection with the interpretation of the T phase 
of shallow-focus submarine earthquakes. The physical nature of these waves is illustrated by 
showing that they exist at the interface of a massless solid and an incompressible fluid. 

Introduction. The problem of the propagation of elastic waves in the ocean when the 
elasticity of the ocean bottom is taken into account has been treated previously. 
Pekerisl developed a very thorough mathematical theory which assumed the ocean 
bottom to be an elastic liquid. Stoneley2 had already considered the effect of an 
elastic bottom, but with special reference to the correction necessitated by the 
effect of the ocean on the propagation of Rayleigh waves; that is, for the case when 
the wave length is large as compared with the ocean depth. Press and Ewing3 
treated the general problem of fluid and solid bottom interaction. However, they 
did not derive the existence of waves which belong to the general category known as 
Stoneley waves and which propagate with a phase velocity lower than that of sound 
in the water. 

These waves appear at small wave lengths, and it is shown further on that their 
velocity increases continuously with the wave length, finally corresponding to that 
of Rayleigh waves for large wave lengths. When the dispersion curve for the phase 
velocity is plotted, there is a point at which these waves reach the velocity of sound 
in water, but which does not correspond to any singular property of the propaga- 
tion. It is also pointed out that there are an infinite number of branches for the dis- 
persion curves. In the present paper, the branch of lowest velocity is the one which 
is studied in most detail and which shows the continuous transition between Stoneley 
waves and Rayleigh waves. 

In the following numbered sections the problem of wave propagation in a liquid 
layer overlying an infinitely deep elastic solid is treated for the case of two-dimen- 
sional unattenuated waves. Section 1 studies waves in the fluid independently of 
the bottom, and section 2 considers waves in the bottom independently of the over- 
lying fluid. In section 3, the two systems are coupled together by equating the ratio 
of normal stress to displacement at the interface for both media. This procedure has 

* Manuscript received for publication October 3, 1950. The work was done by the author in 
the capacity of consultant with the Exploration and Research Laboratory of the Shell Oil Company 
in Houston, Texas. 

1 C. L. Pekeris, “Theory of Propagation of Explosive Sound in Shallow Water,” in “Sound 
Transmission in the Ocean,” Geol. Sot. Am., Memoir 27 (1948). 

2 R. Stoneley, “The Effect of the Ocean on Rayleigh Waves,” Mm. Not. Roy. A&on. Sot., 
Geophys. Suppl., 1: 349-356 (1946). 

3 E. Press and M. Ewing, “A Theory of Microseisms, with Geologic Applications,” Trans. Am. 
Geophys. Union, 29: 163-174 (1948). 
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the advantage of bringing out more clearly certain physical aspects of the phenome- 
non, Phase and group velocity dispersion curves are computed for a number of 
typical values of the physical constants. In section 4 it is shown that Stoneley waves 
exist at the interface of a massless solid and an incompressible fluid, demonstrating 
that they are by nature independent of the existence of body waves. While the phase 
velocities of the Stoneley waves are found to be only slightly lower than the velocity 
of sound in water, the importance of this fact arises from the possibility that they 
may be strongly coupled with waves having the same velocity in the SOFAR 
channel as explained in section 5. 

--- - - - -- 
//// / / / /// 

VY 
Fig. 1. 

1. Motion and pressure in the fluid. Consider an ocean of finite depth h (fig. 1). 
The displacement components of the fluid are written as 

(U’, V’) = grad +, , (1.1) 

where 6 satisfies the equation 

v2+ = $ g, (1.2) 

c is the velocity of sound in the ocean, and t is the time variable. Equation (1.2) is 
verified by the solutions 

A 
cp= sin y (for: > Z2) (1.3) 

or 

A 
cp= sinh y 

Al---- 
Z2 - f cos (kc - d) (for $ < Z2) . (1 -4) 

A is a constant with the dimension of a length. 
The pressure in the fluid is 
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where p is the fluid mass density. The pressures at the bottom y = h corresponding 
to solutions (1.3) and (1.4) are, respectively 

P= 
A pCY2 

siny 
a2 J--- -g - 12 

p= by2 sinh y 

Al--- 
12 - f 

J- 
l2 - $ cos (1~ - cz!t) - 

(1.5) 

(1.6) 

The particular solutions (1.3) and (1.4) are chosen in such a way that they satisfy 
the boundary condition p = 0 at the surface (y = 0) of the ocean. 

The vertical displacement component at the bottom is 

V’ = $ for y = h ; 

hence for each solution (1.3) and (1.4), respectively, 

V’ = Aces (lhds) cos(Zx - at) 

V’= Acosh (lh&$) cos(Zx -at) . 

(1.7) 

w-9 

For the purpose of the present theory we shall need the ratio of the pressure to the 
displacement at the bottom. Putting I = cr/cl, we may write 

P = a2p 
V’ ~ 

tan (Zh &” - 1) 
I&-” - 1 

(r > 1) (1.9) 

tanh (Zhdl - r2) (I < 1) * (1.10) 

We shall make use of these expressions in section 3 below. 
The interest in the ratio p/V’ lies in its nature of a mechanical impedance. As 

such, it adds physical significance to the boundary conditions at the fluid-solid 
interface which can be fulfilled by a process of “impedance matching.” 

2. Motion and stresses in the solid. We consider now the motion of the solid 
bottom. We take the x axis along the solid boundary with the y axis directed down- 
ward (fig. 2). The displacement components of the solid are written 

~=C!LQ!% 
ax ay 

~&%__!S 

ay ax f 

(2.1) 



a4 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

where rp and $ satisfy the equations 

v2q5 +g 

V2# = r !?A! 

2),2 at2 - 

(2.2) 

vc = velocity of dilatational waves. 
vr = velocity of rotational waves. 

---_-- ----- 
_----- 

----- 

///II 
JIY 

Fig. 2. 

The stress components fly and 7 are given in terms of 4 and # by the expressions 

(2.3) 

with b = v/(1 - v), v = Poisson ratio of the solid, and pl = solid density. Solutions 
of equations (2.2) are 

0 = ($$-“’ cos (k - at) 

1c/ = &e+sin (k - at) 

where +, and J/,, are constants to be determined and 

m= 

We introduce the notation 

hence 

(2.5) 

m = 141 - j-z2 , k = 1 dl - p12 . (2.6) 

(2.4) 
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We note that in the expressions we must have rl < 1 and cz < 1 in order for the 
solutions (2.4) to vanish at y = 03 in the solid. The boundary condition that the 
shear stress 7 vanish at the water-solid interface is expressed by substituting solu- 
tions (2.4) in the second equation (2.3) and putting 7 = 0 for y = 0. This leads 
to the following relation between $0 and $0 

!h?_ = _ 1 (2 - r13 . 
$0 

2 41 - f22 

(2.7) 

The vertical displacement V of the solid at the boundary y = 0 is 

v = - (m$AJ + &) cos (1% - cd) . (2.8) 

Using relation (2.7), this may be simplified to 

v = -s z*os;2 cos (ZLZ - at> . (2.9) 

The vertical stress component a, at y = 0 is given by the first relation (2.3) 

alI -= 
Plv*2 II - $j QO + 2m240 + 2kZ*o] COS (h - at) . 

The expression which is finally needed in the present theory is the ratio of the stress 
cy to the displacement V at the boundary. From (2.9) and (2.10), by substituting 
the value (2.7) for the ratio +o/#o, we derive 

UY -= - 
P1v,2zv 

@1-J;) + 6 2/l - 122 (2 - r12) - +A - r12. (2.11) 

22 

One may eliminate the parameter b by expressing it in terms of II and 3i. We 
note that the relation between the dilatational and rotational wave velocities is 

(L?)” = (g2 = &-2) = $(I - b) ; 

hence 

0 
2 

b=l--2; , 

and we may write 

a, l 
p1v,2zv = ;12 

1 

(2 - [I”)” _ 4.& _ p12 . 

___ 
d1 - f22 1 

(2.12) 

(2.13) 

This last expression will be used in the following section. It represents the ratio of 
normal stress to displacement and corresponds to a mechanical impedance similar 
to expressions (1.9) and (1.10) for the fluid. 
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3. The propagation of waves in the coupled fluid-solid system. We now consider 
the interaction of the fluid and the solid by introducing the boundary condition at 
the interface 

-p = ug 

-or 

(3.1) 

It. should be noted that (3.1) is a sufficient boundary condition since it implies 
that if V = 8’ we also have -p = fly. On the other hand, V = V’ does not have to 
be introduced explicitly since the amplitude of the solutions obtained above con- 
tains the arbitrary factors A and $0. The condition (3.1) corresponds to an “imped- 
ance matching.” 

Using expressions (1.9), (l.lO), and (2.13) for these ratios, we have the equations 

4 dw - (2 - ‘l”)” = !!- ‘I4 tan [Zhdm] for { > 1 (3.2) 
2/l - f22 p1 d{” - 1 

42/l - {12 - ~ (2 - r12)” = p 11’ 
tanh Elh 41 - 12] for s‘ < 1 . (3.3) 

4 - 522 p1 1/l - {2 

These equations yield the phase velocity 

Since CI = (c/u,)!: 
parameters and plot 

and S’Z = (c/vJ~, we may consider p/pI, c/v*, c/vC as given 

+; 

as a function of the variable 

lh = 2~; . 

The variable X/h is the nondimensional ratio of the wave length X (in the x direc- 
tion) to the ocean depth h. 

The curves below are all plotted with lh or X/h as the independent variable. 
Similar curves are also obtained in terms of the frequency CY by following a repre- 
sentative point on the curve and using (v/c)Zh = ah/c as the independent variable. 

We shall first discuss the nature of the dispersion curve for the particular case 

PC1 V. 1 
*=-. 

PI 
f - = 1.5 , 

c 2 

This case corresponds to vC = 00, that is, an incompressible solid. For these values of 
the parameters we solve equations (3.2) and (3.3) and plot c = v/c as a function of 



RAYLEIG’H AND STONELEY WAVES IN THE OCRAN BOTTOM 87 

X/h. The curves are made up of an infinite number of branches. Three of these 
branches, marked (l), (Z), (3), are shown in figure 3. The lowest branch (1) cor- 
responds to the interacting Rayleigh and Stoneley waves. 

Let us discuss the nature of the lowest branch (1) of figure 3. For infinitely small 
wave lengths it starts at the ordinate { = 0.956. That portion of the lowest branch 
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Fig. 3. 

represents pure Stoneley waves. The amplitudes for such waves are concentrated 
near the water-solid interface and decrease exponentially with the distance from the 
interface in both water and solid. The rate of decrease of the amplitude with the 
distance from the interface is larger the smaller the wave length. 

These waves are practically not influenced by the free surface of the water. As the 
wave length increases, the phase velocity increases, and for X/h = 2.21 it reaches 
the speed of sound in water (5 = 1). At this point the pressure distribution in the 
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water is linear starting from zero at the free surface and reaching a maximum at the 
bottom (fig. 4). This may be verified by putting (a”/~“) - Z2 = 0 in expressions (1.5) 
and (1.6). We find p = ply2yei(zr-at) . 

(3.4) 

For further increase in the wave length the phase velocity continues to increase. For 
large wave lengths the influence of the water body tends to disappear and the ve- 
locity tends toward an asymptotic value 

This may also be written 

{ = 3 = 1.432 . 

v = 0.955 21, ) 

which is the velocity of a pure Rayleigh wave in an incompressible solid (v = s/2>. 

Fig. 4. 

It will be noted that this lowest branch of the dispersion curve goes right through 
the speed of sound in the fluid without any singular behavior at that point. There are 
no cut-off properties associated with this point. This is a consequence of the mathe- 
matical fact that the function 

tan dl - z2 

dl-22 

which appears in equation (3.2) is regular at the point z = 1. 
As mentioned above, there are also an infinite number of other dispersion branches 

which correspond to modes of higher order. Two of these branches are shown as 
dotted lines in figure 3. Phase velocities for these branches are always higher than 
the speed of sound in water. These branches exhibit a cut-off for phase velocities 
equal to the rotational wave velocity v, in the bottom; in this case, for { = 1.5. 

Other values of the parameters have also been considered, and the lowest branch 
dispersion curves have been plotted. Figure 3 shows the effect of the Poisson ratio v 
on the lowest branch of the phase-velocity dispersion. This branch is plotted for 

P 
--_=I V, 

- = 1.5 
PI c 



RAYLEIQH AND STONELEY WAVES IN THE OCEAN BOTTOM 

1.5 

t 

1.4 9lu GROUP VELOCITY 

1.3 

.9 

.8 

89 

.7 
0 I 2 3 4 5 6 

Fig. 5. 

and three values of the Poisson ratio: 

v = 0, 0.25, 0.50 . 

The corresponding group velocities for the lowest branch and the same values of 
the parameters have been plotted in figure 5. The group velocity v, is given by the 
derivative 

oh 
“@=z-* 

This may be written 

VO 404 -=- 
c d(Zh) ’ 

(3.5) 

(3.6) 

where the right-hand side represents the derivative of {lh considered as a function 
of lh = 2?r(h/A). The value of v,/c is plotted in figure 5 as a function of lh. 
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The lowest branch of the phase velocity is also plotted, in figure 6, for 

P - = 0.4 Y = 0.25 
Pl 

and two values of vs/c 

- = 1.5 and 2. 
C 

This affords an estimate of the influence of the parameter v,/c and, by comparison 
with figure 3, an estimate of the influence of p/pi. 

In figure 7 are plotted the group velocity curves corresponding to the phase 
velocities of figure 6. 

4. Waves at the interface of a massless solid and an incompressible fluid. It 
should be pointed out that the propagation of waves at the interface of two media 
is not essentially related to the existence of body waves in each medium. This is 
illustrated by the following idealized case of two semi-infinite media, one being an 
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incompressible liquid and the other a massless elastic solid. It will be shown that 
surface waves still propagate at the interface. 

This result could be derived by introducing the limiting values for c = p1 = 0 
and hl = 03 in the final formula (3.3). However, in order to give a better under- 
standing of the physicil nature of the phenomenon, we shall repeat the steps fol- 
lowed in the preceding analysis and apply them to the limiting case. 

Let us first consider the massless solid. A sinusoidally distributed load on the sur- 
face produces a sinusoidal deflection proportional to the load and independent of 
the frequency. This deflection can be derived from the theory of elasticity, or, what 
amounts to the same thing, by using the wave theory and then introducing the 
limiting value zero for the density. This can be done by considering expression 
(2.13), obtained previously. 

We note that 

1 - 2V 
b22 = 2(1 _ V> r12 

(4.1) 

plva2 = G . (4.2) 
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The case PI = 0 corresponds to {I+ 0 and ~2 + 0. Expanding the right-hand side 
of (2.13), taking (4.1) and (4.2) into account, yields 

o”=_-_---. Gl 
V l-v (4.3) 

Hence, the surface acquires a deflection V proportional to the load uy and independ- 
ent of the frequency in analogy with a distribution layer of massless springs. 

We now direct our attention to the fluid. Since it is incompressible, the displace- 
ment potential cp as defined in section 1 now satisfies Laplace’s equation 

V$o = 0. (4.4) 

This equation has a solution 

cp = Aezv cos (k - at) . (4.5) 

We take. y = 0 to correspond to the interface and assume the fluid to be semi- 
infinite. Hence (4.5) is the expression required, since it vanishes for y = - 03, that 
is, at an infinite distance from the interface. The pressure in the fluid is given as 
before by 

p = -p ?$ = Aa2pezg cos (Ix - at) . (4.6) 

The vertical displacement is 

V’ = 2 = Ale'u cos (Ix - at) . 

The ratio of pressure to vertical displacement at the interface y = 0 is 

(4.7) 

At this interface we also have the boundary condition of continuity between fluid 
and solid, p = -uy, V = V’. Hence 

“=-F- V’ (4.9) 

Introducing (4.3) and (4.9, this condition becomes 

Gl azp 
l-v=-j-’ (4.10) 

This is the condition under which waves propagate at the interface with the phase 
velocity 

(4.11) 
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We see that the expression for the phase velocity of these waves depends on the 
ratio of the elastic constant G of the solid and the density p of the fluid. They are 
waves truly characteristic of the interface and do not depend on the existence of 
body waves in either medium. One can imagine as a physical model for such waves 
an interface of mercury and cork material. 

It is also interesting to note that, as the wave propagates, the energy at one par- 
ticular location travels alternately across the interface, being in the form of kinetic 
energy in the fluid at one instant and of potential energy in the solid during the next. 

5. Coupling between Stoneley waves and SOFAR waves. A short-period arrival 
traveling with approximately the speed of sound in water has been observed on a 
large number of seismograms of earthquakes occurring at sea. This arrival has been 
designated as the T phase. In an analysis of this phenomenon it was suggested by 
I. Tolstoy and M. Ewing4 that the T phase could be due to waves traveling either 
as SOFAR waves or as waves in the complete water-solid system, or both. The 
SOFAR channel is a layer of minimum sound velocity at a depth of approximately 
700 fathoms. In such a layer the dispersion curve for the phase velocity must be 
such that this velocity increases for increasing wave length with values of this ve- 
locity slightly lower than the velocity of sound in the water near the bottom. If 
we direct our attention to the dispersion curve obtained in figure 6 for the phase 
velocity of the Stoneley wave at short wave lengths, we see that this curve is close 
to the type of dispersion curve that can be expected in the SOFAR channel. The 
results obtained in the present report therefore suggest the possibility that strong 
coupling could at times arise between the SOFAR waves and the Stoneley waves 
with the familiar features of coupled waves such as an alternating transfer of energy 
from one type of wave to the other. 

4 I. Tolstoy and M. 
Am., 40: 25-51 (1950). 

Ewing, “The T Phase of Shallow-Focus Earthquakes,” Bull. Sezkm. Xoc. 
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