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The author’s previous theory of elasticity and consolidation for isotropic materials m. Appl. Phys. 12, 
15.5-164 (1941)] is extended to the general case of anisotropy. The method of derivation is also different 
and more direct. The particular cases of transverse isotropy and complete isotropy are discussed. 

1. INTRODUCTION 

T HE theory of consolidation deals with the settle- 
ment under loading of a porous deformable solid 

containing a viscous fluid. In a previous publication’ 
a consolidation theory was developed for isotropic 
materials. The purpose of the present paper is to extend 
the theory to the most general case of anisotropy. The 
method by which the theory is derived is also more 
general and direct. The same physical assumption is 
introduced, that the skeleton is purely elastic and con- 
tains a compressible viscous fluid. The theory may 
therefore also be considered as a generalization of the 
theory of elasticity to porous materials. It is applicable 
to the prediction of the time history of stress and strain 
in a porous solid in which fluid seepage occurs. The 
general equations derived in Sec. 2 are applied to the 
case of transverse isotropy in Sec. 3. This is a case of 
particular interest in the application of the theory to 
soils and natural rock formations, since transverse iso- 
tropic is the type of symmetry usually acquired by 
rock under the influence of gravity. For an isotropic 
material the equations reduce to a simple form given 
in Sec. 4. They are shown to coincide with the equa- 
tions derived in reference 1. Application of the theory 
to specific cases was made previously,2-4 and it was 
shown that the operational calculus offers a very power- 
ful tool for the solution of consolidation problems in 
which a load is applied to the material at a given 
instant and the time history of the settlement is to be 
calculated. These methods are directly applicable to the 
more general nonisotropic case. More general solutions 
of the equations have been developed and will be pre- 
sented in a forthcoming publication. 

2. GENERAL EQUATIONS FOR THE 
ANISOTROPIC CASE 

Let us consider an elastic skeleton with a statistical 
distribution of interconnected pores. This porosity is 
usually denoted by 

f= v,/ T/b, (2.1) 

where V, is the volume of the pores contained in a 
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sample of bulk volume vb. It is understood that the 
term “porosity” refers as is customary to the effective 
porosity, namely, that encompassing only the inter- 
communicating void spaces as opposed to those pores 
which are sealed off. In the following, the word “pore” 
will refer to the effective pores while the sealed pores 
will be considered as part of the solid. It will be noted 
that a property of the porosity f is that it represents 
also a ratio of areas 

f =WSa, (2.2) 
i.e., the fraction S, occupied by the pores in any cross- 
sectional area Sb of the bulk material. It must be- 
assumed, of course, that the pores are randomly dis- 
tributed in location but not necessarily in direction. 
That this relation holds may be ascertained by in- 
tegrating S$Sb over a length of unity in a direction 
normal to the cross section Sb, The value of this integral 
then represents the fraction f of the volume occupied 
by the pores. It is seen that the ratio SP/Sb is also inde- 
pendent of the direction of the cross section. 

The stress tensor in the porous material is 

i 

UZ,-tU C,Y UZS 
“¶I2 auv+u UYZ 7 

I 
(2.3) 

UZZ UZY o,,+u 

with the symmetry property aij= a+ 
The partial components of this tensor do not have 

the conventional significance. If we consider a cube of 
unit size of the bulk material, u represents the total 
normal tension force applied to the fluid part of the 
faces of the cube. Denoting by p the hydrostatic pres- 
sure of the fluid in the pores we may write 

u=-fp. (2.4) 

The remaining components uZZ, uZy, etc., of the tensor 
are the forces applied to that portion of the cube faces 
occupied by the solid. 

We shall now call our attention to this system of fluid 
and solid as a general elastic system with conservation 
properties. The solid skeleton is considered’to have com- 
pressibility and shearing rigidity, and the*.fluid may be 
compressible. The deformation of a unit cube is as- 
sumed to be completely reversible. By deformation is 
meant here that determined by both strain tensors in 
the solid and the fluid which will now be defined. The 
average displacement components of the solid is desig- 
nated by uZ, uy, u,, and that of the fluid by U,, U,, U,. 

182 



183 THEORY OF CONSOLIDATION FOR ANISOTROPIC MATERIALS 

The strain components for the solid and the fluid, 
respectively, are 

By a generalization of the procedure followed in the 
classical theory of elasticity (5) we may write for the 
elastic potential energy V the expression 

If we assume that the seven stress components are 
linear functions of the seven strain components the 
expression 2V is a homogeneous quadratic function of 
the strain. This function is a positive definite form with 
twenty-eight distinct coefficients. The stress com- 
ponents are given by the partial derivatives of V as 
follows : 

dV/aezx=uZz aV/f3e,,=ucv, etc., 

av/ae=u. 
(2.7) 

This is written 

~11~12~13~14~16~16~17 ezz 
> 

~22~23~24~26~20~27 euu 

C33C34G36C36C31 erz 

= C44C46C46C47 euz . (2.8) 

kxak7 erz 

Cd37 ezy 

_J c77, .e , 

Because the matrix of coefficients is that of a quadratic 
form we have the symmetry property 

Cij= Cji. (2.9) 

The total stress field (2.3) of the bulk material satisfies 
the equilibrium equations 

$(,,,+u)+~+~+px=o; 

~+$(uuu+u)+~+pY=o; (2.10) 

%+ ~+~G*,+3fpz=o. 

where p is the mass density of the bulk material and 
X, Y, 2, the body force per unit mass. Substituting in 
(2.10) the stress components as functions of the strains 
from (2.8) we obtain three equations for the six un- 
known displacement 21%. . . U,. . . . Three further equa- 

tions between these unknowns are obtained by intro- 
ducing the law governing the flow of a fluid in a porous 
material. 

We introduce here a generalized form of Darcy’s 

where pf is the mass density of the fluid. The matrix kij 
constitutes a generalization of Darcy’s constant if we 
include in it the viscosity coefficient. The average 
velocities of the fluid and solid are denoted by 
j-j,. . .&. . . I 

The symmetry of the coefficients 

kij= kji (2.12) 

results from the existence of a dissipation function 
such that the rate of dissipation of the energy in the 
porous material at rest is expressed by the positive 
definite quadratic form 

. 

20~ 2 kijLi;Oj. (2.13) 

If we multiply Eq. (2.11) by f and take (2.4) into ac- 
count we obtain 

with pl= Pff= the mass of fluid per unit volume of bulk 
material. The three equations obtained by combining 
(2.10) and (2.8) in addition to the three Eqs. (2.14) 
determine the six unknown displacement components 
for the fluid and the solid. 

3. THE CASE OF TRANSVERSELISOTROPY 

The above equations are valid for the most general 
case of a symmetry. In practice, however, materials 
will be either isotropic or exhibit a high degree of sym- 
metry which greatly simplifies the equations. Let us 
consider first the case of a material which is axially 
symmetric about the z axis. This type of symmetry is 
referred to by Love6 as transverse isotropy (page 160). 
The expression for the strain energy in this case is 

2V= (A+2nT)(ezz+eUy)2+Ce.Z2+2F(eyy+ezz)ezz 

+L(e,,2+e,22)+N(e,,2_4e,,e,,) 

+2M(e,,+e,,)~+2Qe,,E+R3. (3.1) 

This expression is invariant under a rotation arounll the 
z axis. It is written in such a way as to bring out expres- 
sions such as eZy2-4e,,e,, and eZZ+eyv which are in- 
variant under a rotation about the z axis. The coefficient 
A+2N is written this way for reasons of conformity. 

6A. E. H. Love, A Treatise On the Mathematical Theory of 
Elasticity (Dover Publications, New York, 194.4). 
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Since A does not appear in any other term, the quan- 
tity A+2N is an independent coefficient which could 
have been written as P [see (4.5)]. The stress-strain 
relations derived from (2.7) and (3.1) are 

uzz= 2Ne,,+A(e,,+e,,)+Fe,,+Me; 

u yy= 2Ne,,+A (ez,+e,,)+Fez,+Me; 

ur~=Ce~r+F(ez.+eyy)+Qe; 

uYz= Le,,; (3.2) 

uzz= Le,,; 

u zy= Ne,,; 

u=~(eZZ+e,,)+Qe,,+Re. 

There are therefore in this case eight elastic coefficients. 
The equations of flow contain two coefficients of 

permeability, one in the z direction, the other in the 
x, y plane, and may be written 

aa/dx+plX=b,,(~j,--Q,); 

au/ay+pJ=bzz(O,---iL,) ; (3.3) 

du/ldz+plZ=b,,(O,--Q,). 

These equations along with the stress-strain relation 
(3.2) and the equilibrium relations (2.10) yield six 
equations for the six displacement components in the 
case of transverse isotropy. 

4. THE CASE OF ISOTROPY 

In the case of complete isotropy the strain energy 
function (3.1) becomes 

2V= (A+2N)(ezl+euu+e2 
+N(eyP+e,,2+e,,z-4e,,e,, 
- 4e,,e,,-- 4e,,e,,) 

+2Q(e,,+e,,+e..)E+Re2. (4.1) 
We put 

e=e,,+e,,+e,,. (4.2) 

The stress-strain relations derived from (2.7) are 

uzx= 2Ne,,+Ae+Qe; 

u yy= ZVe,,+Ae+Qc; 

uzz= 2Ne,,+Ae+Qe; 

uy2- -Ne,,; (4.3) 

U =%= Ne,,; 

zy = Nezy ; 
\ 

U 

u= Qe+Rc. 

There are in this case four elastic constants, and this 
checks with the result obtained in reference 1. The 
equations of flow contain a single coefficient b. They are 
written 

au/&+p,X=b(&-ti,); 

du/c3y+pd’= b(&-t&J ; (4.4) 

au/az+,d=b(ti,-tiz). 

We shall assume that there is no body force and put 
X= Y=Z=O. Substitution of expression (4.3) into 
the equilibrium Eq. (2.10) for the stresses and the flow 
Eq. (4.4) yield the six equations 

NV%+(P-N+Q) grade+(Q+R) grade=0 

(4.5) 
grad(Qe+Re)=b(a/%)(o-G). 

We have put P= A+2N. 
Taking the divergence of the second equation we 

may also write 

NV%+ (P-N+Q) grade+ (Q+R) grade=0 

Q02e+RV%=b(d/dt)(c-e). 
(4.6) 

In the previous theory (1) we had obtained these 
equations by a different method and in a different form. 
To show their equivalence we write the stress-strain 
relations by eliminating r from Eqs. (4.3) 

U ..=2Ne,,+ 

u,,=2Ne,,+ 

uzz=2Ne,,+ (4.7) 

ullr= Ne,,; 

U zz= Ne,,; 

U zy= Nesy. 

Substituting these in the equilibrium relation (2.10) 
we find 

NV%+[P-N-Q2/R] grade 

+ (Q+R)/R gradu= 0. (4.8) 

We also derive from (4.4) 

v&b?(c_e)=b?-bQ+R?_ (4.9) 
at R at R at 

Equations (4.8) and (4.9) are in the form obtained in 
reference 1. We note that the significance of u in that 
reference is equivalent to -u/j in our present notation. 

Consider now the case of an incompressible material. 
This corresponds to the condition 

e(l-f)+je=O. (4.10) 

Since this must be satisfied for all values of u we derive 
from the last relation (4.3) that both R and Q are 
infinite with the condition 

Q/R=U-ff)l_f. (4.11) 

Since A-Q2/R=S must remain finite the stress strain 
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law becomes 
l-f 

u,== 2Ne,,+Se+---a. 
f ’ 

1-f 
guy= 2Ne,,+Se+-a; 

f 

1-f 
usr= 2Ne,,+Se+--a; 

f 
u y.= Ne,,; 

uZ.=Ne,,; 

uoy= Nezy. 

(4.12) 

Substituting these expressions in the equilibrium rela- 
tions (2.10) we derive 

NV%+ (N+S) grade+ (l/f) grada= 0 (4.13) 

and from (4.9) 

b ae 
Q2a=---_. 

f at 

Taking the divergence of (4.13) 

(2N+S)V2e+yg=0. 

Hence (4.14) may be written 

(4.14) 

(4.15) 

f’(2N+S)Q2e=$. (4.16) 

This is the equation of heat conduction. Equations 
(4.13) and (4.16) coincide with those obtained in 
reference 1 for the incompressible case. 
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