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General differential equations are derived for the time history of a thermodynamic system undergoing 
irreversible transformations. This is done by using Onsager’s principle, and introducing generalized concepts 
of free energy and thermodynamic potentials. From these equations it is shown that the instantaneous 
evolution of the system satisfies a principle of minimum rate of entropy production. It is also shown how 
Prigogine’s theorem for the stationary state fits into the present theory. Another variational principle is 
established for the case where certain variables are ignored in analogy with the methods of virtual work 
in mechanics. This principle which applies to complex physical-chemical systems is developed more specifi- 
cally for viscoelastic phenomena, and as an example the differential equations for the deflection of a visco- 
elastic plate is derived. 

1. INTRODUCTION 

I T has long been known that a physical system 
undergoing transformation has a tendency to move 

in a direction of increasing entropy. This is usually 
expressed from a statistical viewpoint by stating that 
the evolution is toward a more probable state or more 
disorder. This principle is formulated mathematically 
in classical thermodynamics by the property that the 
Helmholtz thermodynamic potential is a minimum at 
equilibrium. This field of thermodynamics which deals 
with equilibrium problems could more justifiably be 
called thermostatics. 

There has recently been growing a new body of 
knowledge which deals essentially with nonequilibrium 
or irreversible phenomena and which more properly 
deserves the appellation of thermodynamics. Great 
impetus was given to this development from a unified 
standpoint by Onsager’s theorem which is essentially a 
reciprocity law of coupled irreversible phenomena. The 
question of the existence and formulation of variational 
principles dealing with such irreversible phenomena is 
the object of the present paper. It will be shown, for 
instance, that it is quite a general property that a system 
tends toward the most disordered state but that this 
occurs with a minimum rate of production of this 
disorder or entropy. 

A first step in this direction was made by Prigogine’ 
who formulated a theorem of minimum production of 
entropy for a thermodynamic system which is in a 
stationary state, i.e., in a steady state of flow. Such a 
system for instance is one which is traversed by a steady 
flow of heat. We are concerned here with principles 
which are of a more general nature and which do not 
require steady flow. 

Section 2 develops the basic differential equations for 
‘irreversible phenomena by the application of Onsager’s 
principle. A quite general formulation is obtained for a 
perturbed system by the artifice of adjoining to the 
system considered a large heat reservoir at constant 

* Consultant. 
’ See S. R. De Groot, Thermodynamics of Irreversible Processes 

(Interscience Publishers, Inc., New York, 1952). 

temperature. The entropy of the total system gives a 
generalization of the concept of thermodynamic poten- 
tial for the case of nonuniform temperatures. Several 
solutions of the basic equations are presented in Sec. 3 
based on results obtained by the writer in a previous 
publication.2 Equations for a perturbed system were 
also derived by statistical methods by Onsager and 
Machlup? 

A principle of minimum production of entropy is 
established in Sec. 4. It deals with the instantaneous 
direction of evolution of the systems under any non- 
equilibrium conditions. Section 5 deals with relaxation 
modes and leads to a new viewpoint in formulating the 
variational principles for stationary flow. 

The case of a system for which certain coordinates 
are hidden is taken up in Sec. 6. The variational prin- 
ciple developed in this connection constitutes a powerful 
tool for the calculation of a wide variety of phenomena, 
involving, e.g., chemical reactions and heat transfer 
in complicated systems. It is also of particular usefulness 
in viscoelasticity. How this is done in general is shown 
by introducing the operational tensor for the stress- 
strain relations.2 As an example in Sec. 7 it is applied 
to the derivation of the integro-differential equations 
for the deflection of a viscoelastic plate. 

2. BASIC THERMODYNAMIC RELATIONS 

We consider a system I defined by n thermodynamic 
state variables. These state variables are taken here to 
be of quite general nature and may represent such varied 
physical quantities as a strain tensor, electric charges, 
local temperatures, concentrations, etc. The entropy of 
such a system is defined by subdividing it into cells and 
summing the entropy for each of these cells. This 
assumes, of course, that each cell is in a state of quasi 
equilibrium so that its entropy may be defined as if it 
were in equilibrium. The legitimacy of this definition 
was investigated by Prigogine.’ It could also be com- 
puted directly, of course, by means of Boltzmann’s 
relation expressing the entropy directly in terms of 

* M. A. Biot, J. Appl. Phys. 25, 1385 (1954). 
a L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953). 
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certain statistical or disorder parameters as done in 
problems of second-order transitions. 

From (2.4) we also derive that under the forces Qi, 
the entropy S of the system I+11 is given by 

The system is characterized by n variables pi which 
are defined as the departure from a certain reference 
state taken as origin and for which qi=O. Only small 
departures from the reference state are considered and 
it is assumed that in this range of variation the system 
remains linear. This will generally be true if the system 
is in the vicinity of an equilibrium state. 

In order to apply the principles of irreversible ther- 
modynamics we must consider an isolated system. We 
therefore adjoin to system I a system II which is a 
large reservoir at constant temperature T. The total 
system I+11 is now assumed to be isolated and its 
entropy is expressed as the sum of the entropies of 
each system : 

TS= - V+Ci Qiqi. (2.7) 

The factor T, which is the constant temperature of the 
reservoir II, is introduced as a factor for convenience. 

If the system is displaced from the zero level by 
applying the external forces very slowly and reversibly, 
the system follows a succession of equilibrium states 
given by the condition that the entropy is a maximum, 
i.e., by the n equations: 

s=sI+sII. (2.0 

Let us now find an expression for the entropy S. We 
consider the heat dh absorbed by System I from the 
reservoir II. Conservation of energy requires: 

dh=dlJI-Ci Qdqi, (2.2) 

where Ur is the internal energy of System I and Qi is a 
generalized “external force” conjugate to the state 
variable qi. This equation may be considered to define 
the external force as a perturbation acting upon the 
system in a very general sense. It can be for instance a 
stress or an electromotive force or can be proportional 
to a chemical affinity as defined by De Donder. The 
external forces may be considered part of the isolated 
system by adding corresponding large energy reservoirs. 
The increment of entropy acquired by the reservoir II 
is therefore : 

aS/aqi= - dV/dqi+Qi=O. (2.8) 

We now consider irreversible processes for which the 
partial derivatives of the entropy do not vanish. 
Onsager’s principle’ may be applied to this case. It may 
be stated in the following form, which is formally dif- 
ferent from the usual one but may be seen to be 
equivalent : 

T&S’/dqi= Cj bij@j; (2.9) 

namely, the derivatives of the entropy are linear func- 
tions of the time rates of change @j of the state variables 
and the matrix of coefficients is symmetric, 

bij= bji. (2.10) 

It should be noted in applying Onsager’s relations 
(2.10) to arbitrary perturbations that because of linear- 
ity the principle of superposition is valid and that the 
system responds as a succession of relaxations under 
successive applications of constant force increments. 

We introduce the quadratic form 

D= 3 C bij@&j. 
ij 

(2.11) 

and the increment of entropy of the total system will be 

dS= d&+d&r, 

dS= dSr_7-l-f: $@i* 

(2.4) 

We now define the reference state or zero state for 
which all coordinates pi= 0 as that for which all external 
forces Q; are zero and in which the system is in equi- 
librium at uniform temperature T. The entropy S’ of 
the system I+11 when Qi=O, derived from (2.4), is 
given by 

TS’= TSr - UI= - 3 C aijqiqi. 
ii 

(2.5) 

Since we are dealing with an equilibrium state, the 
entropy S’ is a maximum and the quadratic form 

V=+ C aijqiqj (2.6) 
ij 

is positive-definite, 

From (2.9) we derive 

The quadratic form D is positive-definite since it is 
proportional to the time rate of production of entropy. 

From Eqs. (2.7) and (2.9), we derive the basic rela- 
tions of irreversible processes : 

(2.13) 

By using the quadratic expressions V and D, they may 
be written in the Lagrangian form: 

dV/dqi+dD/a&=Qi. (2.14) 

The invariant V plays the role of a potential energy 
and D that of a dissipation function. 

It is interesting to note the thermodynamic signi- 
ficance of V and S. From (2.4), we have 

TdS= TdSI-dUI+Ci Qidqi. (2.15) 

Now, suppose that the only external force acting on the 
system is a constant pressure P. The conjugate variable 
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is the volume -c?, and we may write general and is not restricted by any singularity of the 

xi Qidqi= - Pdv. (2.16) 
matrices or multiplicity of the roots. 

Integrating (2.1.9, If the forces Qi are constant and are suddenly applied 
at the instant t= 0, they may be represented in terms 

-TS= UI--T&+Pv. (2.17) of the unit step function l(t) as 

If the temperature .is uniform throughout system I, Qi=Qi*l(t), (3.3) 
this expression represents its Gibbs thermodynamic 
potential so that -TS may be considered as the ex- 

with constants Qi*. Substituting in (3.1), we make use 

tension of the concept of thermodynamic potential for of the operational relation 

the case of nonuniform temperature and any kind of 
external force Qi. Similarly, the expression (3.4) 

UI--TSI= V (2.18) 

may be considered an extension of Helmholtz’s free 
We first assume that none of the roots X, are zero. Hence 

energy concept. 
(3.1) may be written 

Equations (2.13) and (2.14) for a system in the 
vicinity of equilibrium apply to a large class of phe- 
nomena. They may involve, e.g., mechanical dissipation 
and elastic forces, heat transfer, chemical reactions, 
electric currents and charges, as well as the coupling We omit the factor l(t) in (3.4) and (3.5). If none of 

between these phenomena. It may be shown that an the roots are zero, we see that the system toward a set 

excess temperature applied to a boundary is an external of constant equilibrium values for the coordinates qi. 

force with the entropy flow as the conjugate coordinate. The variable part of the motion may be resolved into 

In problems which are open to treatment by either a sum of columns, each of which is characterized by a 

classical or quantum statistics, the expression for V certain exponential decay and which we may call modes 

may be obtained directly from the partition function. of relaxation. However, if some of the roots X, are zero, 

Equations (2.13) and (2.14) may also be represented then there is a term of the type Cij(*)/p in expression 

by a network of springs and dashpots or an RC net- (3.1) corresponding to the operational relation 

work. Such a network constitutes therefore an analog 
computer for the large class of phenomena included in 
the present theory.4 

A(t)=t, (3.6) 
P 

3. SOLUTION OF THE BASIC EQUATIONS AS 
RELAXATION MODES OR STATIONARY 

which yields in expression (3.5) an additional term of 

FLOW 
the type 

Consider a system to which constant forces Qi are qi= t e Cij'Qj*. (3.7) 
suddenly applied. The system will obviously tend j=l 

toward some sort of new equilibrium state. This equi- 
librium state will either be one of static equilibrium 

This corresponds to a stationary flow. We have thus 
established that the system tends toward a fixed devia- 

where all coordinates are constant, or one in which tion or a steady flow. With 
there is steady flow, i.e., in which all coordinates vary 
proportionally with time. Proof of this follows from pi*= 5 CiPQj*, (3.8) 
expression (4.10) in reference 2 which gives the general i=l 

solution of Eqs. (2.1) in the operational form: we may also write 
pi= qi*t (3.9) 

(3.1) and qi* represents the stationary state velocities. 

where p=d/dt and --X, are distinct roots of the deter- 
4. A GENERAL PRINCIPLE OF MINIMUM RATE 

ON ENTROPY PRODUCTION 
minant : 

det 1 aij+pbij 1 = 0 (3.2) 
In the previous section we have formulated the 

with p as unknown. We have shown2 that the values of 
general solutions of the system in its evolution toward 

X, are never negative and that the solution is completely 
equilibrium. A somewhat related question is the fol- 
lowing. In the configuration space of the state variables 

4 The possibility of extending the electric analog to phenomena qi, the thermodynamic state of a system is represented 
involving coupling between heat transfer and mechanical energy 
was pointed out by C. F. Kayan, “Electrical analogger appli- 

by a point of coordinates qi. When not in equilibrium 

cation to the heat pump process,” Heating Piping and Air Con- the system is subject to forces, both internal and ex- 
. . . . . _ . *,._a ditioning, July, IY3.5. ternal. which are exmessed bv O;--dV/aa; and which A 
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we shall call “dis-equilibrium forces.” These forces may Since 
be considered as proportional to the derivatives of the 
generalized thermodynamic potential. The instan- dD==T 3+x xiaqi, (4.8) 
taneous direction of evolution of the system in the con- t 2 

figuration space is represented by the velocity vector Qi. 
we derive 

The velocity components @ are also denoted by Ji in 
dD = C i QidXi. (4.9) 

the literature and are called fluxes. The question arises We therefore have the dual form of Eqs. (4.2) : 
whether the direction of this vector can be determined 
bv a variational Drinciple. 

*Let us first wiite the fundamental equation (2.14) 
in a somewhat different form. We denote the dis- 

We may state a dual minimum entropy production 
theorem identical with the above except that the vari- 

equilibrium forces by ables Xi and qi are interchanged. The minimizing vector 

Xi= Qi- aV/dqd. (4.1) 
Xi for D is then in the configuration space of the forces. 

It should be noted that the minimum theorems ex- 

aD/dXi= Qi. (4.10) 

The Lagrangian equations (2.14) are then written 

ao/aai=xi. (4.2) 

Consider now the quadratic form D as a function of the 
n velocity components, and the condition that D be an 
extremum when we consider all possible values of the 
vector pi under the constraint that the vector qi satisfy 
the relation 

Ci XiQi=const, (4.3) 

pressed here may be formulated in other mathematically 
equivalent forms. For instance, we may state that Eqs. 
(4.2) are equivalent to the statement that the quantity 

P= D-xi Xi& (4.11) 

is a minimum. Another equivalent statement is that 
under the restraint that the energy dissipated is a 
constant the power input is a maximum. Certain known 

5. MINIMUM PRINCIPLE FOR STATIONARY STATES 

minimum theorems on energy dissipation in electro- 

AND RELAXATION MODES 

dynamics and fluid mechanics are particular cases of 
the above.4 

with given values of the forces. This leads to the ab- 

(aD/a@-kX&Sqi=O, 

solute variational condition, 

(4.4) 

with an undetermined Lagrangian multiplier k. Except 
for this factor, the variational condition (4.4) is equiva- 
lent to the equation of motion (4.2). The variational 
principle therefore determines the direction of the 
velocity vector Qi. The undetermined magnitude of the 
vector may be fixed by the condition 

We have seen in Sec. 3 that if there are characteristic 
roots X, of the system which vanish, the system will 
tend toward a stationary state which is defined by (3.9) 
and for which all velocities are constant. This stationary 
state is such that for all coordinates q< in the direction 
of motion the ?estoring force” vanishes, i.e., 

aV/dqi= 0. (5.1) 

In that direction the system remains under constant 
dis-equilibrium forces : 

Xi=Qi. (5.2) 

The minimum theorem of the previous section applies 
to this case, but the condition of constant power input 
is now 

Cd Qiai=const. (5.3) 

A corresponding statement is of course valid for the 
dual form of the theorem. 

2D=C< X&i, (4.5) 

which expresses that the rate of energy dissipation is 
equal to the power input. 

Since D is a position-definite quadratic form, the 
extremum corresponds to a minimum. Moreover, D is 
proportional to the rate of entropy production associ- 
ated with the velocities Qi of the system. Hence, we 
state the following theorem: 

Considering a system which is not in equilibrium, its 
instantaneous velocity direction is such that the rate of 
entropy production is a minimum for all possible velocity 
vectors satisfying the condition that the power input of the 
dis-equilibrium forces is constant. 

A dual form of Eqs. (4.2) are obtained if we express 
D in terms of the forces Xi instead of &. From Euler’s 
theorem on homogeneous functions, we have 

The minimum principle considered until now deter- 
mines the instantaneous velocity of the system. There 
are, however, as we shall now proceed to show, different 
variational properties which refer to the long-range 
time history of the system. 

Let us evaluate the rate of entropy production during 
the evolution of the system toward equilibrium or a 

Hence, 

2D=T z!i=z QiXi. 
I t 

2dD=Ci QidXi+Ci Xidqi. 

stationary state. We have seen in reference 2 that the 
(4.6) general equations (2.14) may be written by using 

4 See, e.g., J. H. Jeans! The Mathematical Theory of Electricity 
and Maglzetkm (Cambndge University Press, London, 1933), 

(4.7) p. 321. 
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normal coordinates f8. The transformation is responding to the stationary velocities are kept constant. 

qi=cs CEs, (5.4) 
This latter property of the stationary state corresponds 
to a theorem already formulated by Prigogine’ but 

where &” is the modal column corresponding to the 
derived in a difIerent way. 

relaxation mode s. The corresponding normal forces are 
Another variational property refers to the modes of 

relaxation themselves. The modal column $i* satisfy 

Zs=Cj +/Qj. (5.5) the equations: 

The modal columns have the property of being orthog- Cj a&?-X8 Cj b&C=O, (5.15) 

onal, namely, which result from the variational condition that 

$ aiAjVi’=$ bij$jVc=O, s#r. (5.6) D= $b&&j (5.16) 

Normalization is in such a way that if X,# ~0, 

and if X8= co, 

(5.7) 

(5.8) 

With these coordinates, the functions V and D become 

v=; Es x,t?+$ Ck tk', D=3 c t”, (5.9) 

where the tk2 terms correspond to cases of infinite roots. 
Equations (2.14) become (p =d/dt) : 

($+h)&=%,, Ek=%k. (5.10) 

Solutions of the first equations are 

be an extremum under the constraint 

V= $Zi#@jj= const. (5.17) 

As a familiar example of a system tending toward a 
steady state, we might visualize the one-dimensional 
flow of heat across a wall, one side of which is suddenly 
brought to a constant higher temperature. The system 
tends to a steady state when the distribution of tem- 
perature is linear and the rate of entropy production 
is constant. The only remaining time varying coordinate 
is the total entropy input which is proportional to the 
time. The unsteady part of the temperature distribution 
is a superposition of sinusoidal modes, each with its 
own exponential decay, 

6. VARIATIONAL PRINCIPLE FOR THE CASE OF 
HIDDEN COORDINATES 

%, 
4‘s= --&(l-e*s’)E8. (5.11) 

Up to now we have involved all the degrees of freedom 

* 8 
in the variational equations. However, it is possible to 
introduce a variational principle which involves only a 

If some of the roots X, are zero, we denote them by X, partial number of the total degrees of freedom. We 

and write have shown2 that for a system with n degrees of free- 

.&= tz,. dom, if K variables are observed, the forces applied to 

The rate of production of entropy is 
these degrees of freedom are expressed in terms of the 
coordinates as 

dS 20 1 
;=r=$C e-“%‘s”+C &“I. (5.12) 

II m with 

Qi= ,tl Tcjqj, (6.1) 

We may state the following property: The rate of 
production of entropy is a monotonically decreasing func- 
tion which tends toward a constant. All higher time deriva- 
tives of the entropy also decrease monotonically and tend 
to zero. 

We note that is, &,,, are proportional to the dis- 
equilibrium forces X,, X, applied to each normal coor- 
dinate: 

&=%*-X8&=X8, fm=Em=Xm. (5.13) 

We may write the rate of entropy production as 

Tij=C 
P 

-Dij”+ Dij+ Dij’p, 
8 p+7.4 

(6.2) 

where the D’s are constants, the r’s, are decay constants, 
and p is the time operator. The symmetry of the coef- 
ficients 

Tij= Tji, 

leads to a quadratic invariant : 

I= 8 C Tijqiqj, 
ii 

(6.3) 

dS/dt=$ x8 X,“+& C,,, Xm2. (5.14) and Eq. (6.1) may be expressed by the relation 

-The stationary state corresponds to X,=0. Therefore, 
in the stationary state the entropy production con- 

Q&i=sI=Ej Tijqj]Sqi, (6.4) 

sidered as a function of the dis-equilibrium forces is a to be satisfied identically for all virtual displacements 
minimum under the constraint that the forces X, car- 6q,. 
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This variational principle, as formulated here, applies 
to all phenomena expressible by the basic thermo- 
dynamic equations on which the present paper is based 
and is therefore quite general. As an example of the 
fecundity of this principle, it is of interest to formulate 
it more specifically for the case of a viscoelastic con- 
tinuum. In terms of the stress tensor kM;. and the strain 
tensor e,,, it was shown2 that for an anisotropic material 
the relations are 

up”= C PNviieij, (6.5) 
ij 

with 

The stress-strain law of such a material is expressed 
operationally as2 

e = C Grverv, 

with the operators Q and R given by 

(7.1) 

pr&,iizC 
P --__Dcviia+Dllvii+PDlpyii. (6.6) 

8 P-b, 
Q=C %Q+Qp: R=C 

W 

8 P-b.8 
--+R+R,‘. (7.2) 

8 P-bs 

The corresponding operational invariant is, without the 
summation signs, 

With Cartesian components of displacement u, v, w, 

I = $P,,“je jiefi’ 
the strain tensor is defined as 

, (6.7) 
au i av at4 

and the variational principle may be expressed as e ZZ=-, etc.; cry=- -+- , etc. (7.3) 

o;uvSe~v= 61. (6.8) 
ax ( > 2 ax ay 

The usefulness of this formulation lies in the fact that We consider a plate of thickness 2h. The xy-plane is 

since the internal stress field is in equilibrium, the total parallel with the faces located at z= &h/2. We choose 

virtual work is equal to that of the forces applied to the as a representative deformation : 

boundary of the continuum. Denoting by F,, this 
boundary force and by x” the boundary coordinates, 

2d=zXj2(x), 21=0, w=p1(x). (7.4) 

we have This constitutes a two-dimensional bending and shear- 
ing deformation parallel with the xz-plane. The func- 

sss 
a,,Gefi”d V = 

ss 
F,Gx”dS, (6.9) 

tions ~1, q2 of x are to be determined. Components of the 
strain tensor are 

V s 

where the volume integral is taken in the volume V 
bounded by S. Hence the variational principle in the 
form 

ss, FJxj‘dS=Ss~SldV. (6.10) 

The procedure exemplified here for a viscoelastic con- 
tinuum is not restricted to the case of a stress field and 
may be used to analyze the time history of complex 
physical chemical systems, by means of a suitable choice 
of generalized coordinates in a way quite analogous to 
the example treated hereafter. The disappearance of the 
virtual work of the internal forces is then replaced by 
the more general condition of conservation of mass and 
energy fluxes between the interacting cells. 

In the above derivation dynamic effects have been 
neglected. It can be easily verified that the acceleration 
of the observed coordinates may be included by in- 
troducing the virtual work of the inertia forces as done 
in the expression of d’alembert’s principle. 

7. APPLICATION TO THE BENDING OF A 
VISCOELASTIC PLATE 

As an example of the variational method, we shall 
treat the problem of two-dimensional bending of a 
viscoelastic plate of isotropic homogeneous material. 

ezz = ati/ax = zdq2/dx, 

e2/2/=ezz=ezy=eyr- , -0 

ezz= 3qd-3dqddx. 

(7.5) 

The invariant I is 

I = +upvefi” = ~uzzezz+uzzrezz. (7.6) 

In order to apply the variational principle (6.10) we 
must integrate 1 over the volume. We first integrate 
along the thickness of the plate and obtain 

1:;: Idz=;( z)2+;( z+qz): (7.7) 

with B= (h3/12)(2Q+R). We then integrate with 
respect to x 

+; i*(z+q2)2dx. (7.8) 

If we assume that 6ql and 6q2 are zero at the end points 
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x=0 and x=1, the variation of J is 

If a force j is applied to the surface of the plate per 
unit area in the z-direction, the virtual work of this 
force is 

JZ j&O~x=~’ jsqrdx. (7.10) 

Applying Eq. (6.10) of the previous section, the varia- 
tions (7.9) and (7.10) must be equal. The expressions 
multiplying 691 in (7.9) and (7.10) must be equal and 

that multiplying 6q2 in (7.9) must vanish. We derive the 
differential equations : 

B$=Qh(z+q+ Qh(z+z)=-j. (7.11) 

Eliminating q2, we find 

d4T71 f 1 #j 
_= 
dx4 B Qh dx2’ 

(7.12) 

The first term on the right-hand side corresponds to a 
bending deflection while the second term corresponds 
to a shearing deformation. We must remember that 
the differential equation (7.12) is also an operational 
equation in the time variable since B and Q are time 
operators. It is therefore also an integro-differential 
equation. 


	Foreword
	Papers:
	Titles
	Full Citation
	Abstracts

	About M.A.Biot
	Domains
	Keywords
	Copyrights
	Acknowledgments
	List of Papers:
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179


