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I N a previous publication,’ the problem of bending of 
a viscoelastic plate of uniform thickness Iz was used 

as an example of application of variational principles in 
irreversible thermodynamics. We considered a two- 
dimensional deformation parallel with the x, y plane 
and corresponding displacement components u, w, 
along the x and z directions. The coordinate z is directed 
along the thickness. We assumed that the displacement 
could be represented by 

zc=z211(x), w=w&). (1) 

It should be pointed out that this representation is a 
particular case of the more general one where the dis- 
placements are expanded in a Taylor series of the 
coordinate z, namely, 

u=g u&n, 
00 m 

v=c v&, w=c w,P. (2) 
?a==0 n=o n=O 

The u,,, v,, wn are functions of x and y. Application of 
the variational method with such expressions leads to 
a very general theory of viscoelastic plates represented 
by partial differential equations in x and y with time 
operator coefficients. This, of course, applies to plates 
of constant or variable thickness. The question then 
arises as to the number of terms required in the ex- 
pression (2) in order to represent the deformation with 
adequate accuracy. This can be answered, of course, 
only by considering each individual problem and will 
depend on the type of material and deformation as 
well as on the accuracy requirements. 

The approximation (1) represents an expansion to 
the first order and was introduced only for the purpose 
of presenting a simplified example of the variational 
method. The approximation is only valid for materials 
which elongate with a small lateral contraction and 
therefore does not apply in the case of incompressi- 
bility. A better approximation is given by expanding u 
and w to the second order in z. Because of the par- 
ticular nature of the problem, we may assume that u is 
an odd function and w an even function of z. Hence 
expressions (2), expanded to the second order, are 

u=z41z, w= wo+w29. (3) 

The invariant in this case is 

I= 3 (2Q+R) (ezz2+ezz2) +Rez,e,,+2Qezz2, (4) 

with the time operators P and Q. The terms ezz2, ezz2 
and e,,e,, are all of the second order z2, while ezz2 con- 
tains a term independent of z and terms of the order z2 
and z’. To be consistent, of course, we should retain at 
least all terms of the order z2. However, we shall drop 
both z2 and z’ terms in ezz2. There is some justification 
for this from a physical standpoint in the present case. 
Furthermore, it leads to agreement with the classical 
theory of bending of plates in the elastic case. Applying, 
then, the variational method as indicated in reference 1, 
we find 

h3 d2u1 Rh3 dwz 
- (2Q+Rb---Yz+Qh 

dul 
2(2Q+R)wz+R--0. 

dx 

In this derivation, we assume that the load j applied 
to the plate is distributed uniformly throughout the 
thickness. The last equation is equivalent to the con- 
dition that the stress component (r,, vanishes. Eliminat- 
ing all variables except wo in (S), we find 

d%o j 1 d2j 
-=- - --. 
dti BI Qhdx2 

This equation is of the same form as found previously’ 
except for the operator B, which is 

B1=$h3Q(Q+R)I(2Q+R). (7) 

This operator coincides with the coefficient in the theory 
of bending of plates for the elastic case. 

1 M. A. Biot, Phys. Rev. 97, 1463 (1955). 
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