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N a previous publication,! the problem of bending of
a viscoelastic plate of uniform thickness # was used
as an example of application of variational principles in
irreversible thermodynamics. We considered a two-
dimensional deformation parallel with the x,y plane
and corresponding displacement components u, w,
along the x and z directions. The coordinate z is directed
along the thickness. We assumed that the displacement
could be represented by
w=w,(x). (1)
It should be pointed out that this representation is a
particular case of the more general one where the dis-
placements are expanded in a Taylor series of the
coordinate z, namely,
0 o
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U= Uuz", V=3 0,2% W=D W,5" (2)
=0 n=0 n=0

w=gu,(x),

The %, v, wa are functions of x and y. Application of
the variational method with such expressions leads to
a very general theory of viscoelastic plates represented
by partial differential equations in x and y with time
operator coefficients. This, of course, applies to plates
of constant or variable thickness. The question then
arises as to the number of terms required in the ex-
pression (2) in order to represent the deformation with
adequate accuracy. This can be answered, of course,
only by considering each individual problem and will
depend on the type of material and deformation as
well as on the accuracy requirements.

The approximation (1) represents an expansion to
the first order and was introduced only for the purpose
of presenting a simplified example of the variational
method. The approximation is only valid for materials
which elongate with a small lateral contraction and
therefore does not apply in the case of incompressi-
bility. A better approximation is given by expanding %
and w to the second order in z. Because of the par-
ticular nature of the problem, we may assume that # is
an odd function and w an even function of 2. Hence
expressions (2), expanded to the second order, are

u=u13, W=wotwszl ©)

The invariant in this case is
I=3(20+R) (e +e.2)+ Resaest2Qe.22,  (4)

with the time operators P and Q. The terms e..? ..
and e.€,. are all of the second order 2?, while e,.? con-
tains a term independent of z and terms of the order 2
and 2. To be consistent, of course, we should retain at
least all terms of the order z2. However, we shall drop
both 2? and 2* terms in e,,?. There is some justification
for this from a physical standpoint in the present case.
Furthermore, it leads to agreement with the classical
theory of bending of plates in the elastic case. Applying,
then, the variational method as indicated in reference 1,
we find

B d*u, RE dw, dwo
—QQ+R%~———————+Qh——+m)=Q
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L W
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dul
2(20+ R)ws+R—=0.
dx

In this derivation, we assume that the load f applied
to the plate is distributed uniformly throughout the
thickness. The last equation is equivalent to the con-
dition that the stress component ¢, vanishes. Eliminat-
ing all variables except wo in (5), we find

e ©)
This equation is of the same form as found previously'
except for the operator B, which is

B1=3W*Q(Q+R)/(20+R). Q)

This operator coincides with the coefficient in the theory
of bending of plates for the elastic case.

1 M. A. Biot, Phys. Rev. 97, 1463 (1955).
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