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ABSTRACT 

The static aeroelastic stability or divergence problem is in- 
vestigated for thin supersonic wings when not only the spanwise 
bending and twist are taken into account but also the chordwise 
bending. The problem is treated in successive phases of in- 
creasing complexity from the two-dimensional curling-up of the 
leading edge to the three-dimensional stability of the cantilever 
wing. Several methods of approach are developed including 
the nonlinear aspects of the structure and the aerodynamics. 
Results indicate a strong dependence of stability on Poisson’s 
ratio and the magnitude of the deformation. 

T 

HE PROBLEM OF STATIC AEROELASTIC stability or 
divergence is usually dealt with by introducing cer- 

tain simplifying assumptions, including that the wing 
structure is rigid along the direction of the ribs. The 
advent of supersonic flight and the use of very thin wings 
requires a re-examination of the problem and the in- 
clusion of chordwise bending in the analysis. The 
present paper is a review of the investigation of this 
problem in the supersonic speed range carried out dur- 
ing the past years by the Cornell Aeronautical Labo- 
ratory. Many details of the analysis had to be omitted 
because of space limitations. For specific treatments 
of each problem the reader is referred to the C.A.L. 
reports listed in the references.$ 

The methods are developed with the assumptions of 
a lift proportional to the local slope. However, for 
cases when this assumption does not constitute a valid 
approximation, this is not a limitation, since three- 
dimensional aerodynamic theory may readily be intro- 
duced by evaluating the corresponding generalized 
aerodynamic forces. Linear aerodynamic theory is 
also used in most cases, but it is shown how modification 
of certain coefficients makes it possible to account for 
wing thickness and nonlinear effects of aerodynamic 
origin. The nonlinear elastic behavior of the wing due 
to finite deformation and the generation of membrane 
stresses are also discussed. 
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The theory is developed by considering a succession 
of cases of increasing complexity. The “curling-up” 
of a leading edge facing a supersonic stream is treated 
in Sections (1) and (3) as a two-dimensional problem. . 
Section (1) deals with the stability of a wedge-shaped 
profile and Section (3) with that of a biconvex profile. 
Section (2) deals with the deflection of a wedge under 
conditions of stability but with an initial angle of attack. 
This introduces the concept of amplification factor, 
which is a measure of the increase in lift and overturn- 
ing moment caused by the elasticity of the structure. 
The results that are made to include the significant 
features of the nonlinear aerodynamic theory are used 
to extend the analysis to the three-dimensional prob- 
lem as developed in Section (4) by a procedure desig- 
nated as the “strip method.” This method is first 
developed in a simplified form by neglecting the anti- 
elastic effect produced by Poisson’s ratio. However, 
extension of the strip method in Section (7) to include 
both the anticlastic and nonlinear effects shows that, 
although the anticlastic effect has a strong influence on 
the stability for infinitesimal deformations, this influ- 
ence tends to vanish rapidly for deflections of the order 
of the wing thickness. This fact enhances considerably 
the practical importance of the simplified strip method. 
In Section (5) the equations are solved rigorously on 
the basis of the theory of plates of uniform thickness 
and results compared to that of the approximate theory. 
Section (6) treats the cantilever wings of double wedge 
section by a method of generalized coordinates. The 
success of this latter approach depends, of course, 
entirely on the suitable choice of the coordinates, a 
choice that is made possible by proper interpretation of 
previous results. The results that are valid only for 
infinitesimal deflections show a strong dependence of 
the stability on Poisson’s ratio. This is a consequence 
of the influence of Poisson’s ratio on the anticlastic 
curvature of the wing in bending. The nonlinear as- 
pects of the theory are discussed in Section (7), and it 
is shown that the membrane stresses set up by the 
finite deflection greatly minimize the anticlastic effect 
as soon as the magnitude of the deflection becomes of 
the order of the wing thickness. The theory is de- 
veloped by extending the simplified strip method of 
Section (4) to include the anticlastic effect. For small 
deflections the twist is shown to satisfy an ordinary 
differential equation of the fourth order along the span, 
and the nonlinearity appears as a modification of the 
coefficients in this equation. This approach has also 
the advantage of lumping all the variables of the prob- 
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lem into two basic parameters. The influence of non- 
linear aerodynamics is also discussed in this section, 
and appropriate correction factors are introduced which 
depend upon the Mach Number and the wing thickness. 

The present theory must be considered as a first 
step yielding information on the nature of significant 
parameters, an evaluation of the efficiency of various 
methods of calculation, and simple procedures for the 
approximate determination of the stability. The re- 
sults should be particularly useful in choosing appro- 
priate generalized coordinates and procedures for accu- 
rate computation with automatic computers. 

It should also be noted that the methods and equa- 
tions derived in the present theory cover a wider field 
than just the divergence problem since they are directly 
applicable to the calculation of aeroelastic stability de- 
rivatives required in problems of control. 

(1) THE LEADING-EDGE INSTABILITY 

Before we attempt to deal with the stability of the 
wing as a whole, it is essential to analyze the properties 
of the leading edge of a supersonic wing from the stand- 
point of its aeroelastic stability. It will be shown here 
that it exhibits an instability of its own such that for 
zero angle of attack it tends to “curl-up.” 

This phenomenon admits of an exact analysis by con- 
sidering a cylindrical wedge of trapezoidal section sym- 
metric about its center line, whose thick edge of thick- 
ness h is clamped while the thin edge of thickness ah is 
facing a stream of supersonic velocity V, as shown in 
Fig. 1. 

The chord of the wedge is 1. When the wedge is 
undeformed, there is no lift on the structure. The 
problem is to ‘examine the stability of this structure 
with the assumption that it is an elastic, isotropic, and 
homogeneous solid. 

The problem has been given detailed treatment in 
reference 2. The wedge structure is considered as a 
beam while the aerodynamic forces are derived from 
the two-dimensional linear supersonic theory-i.e., the 
local lift is assumed proportional to the local slope of the 
center line. The local lift per unit area is 

P= - (4W/&? - 1)(/X2/2) (dzU/dx) (1.1) 

where w = the upward deflection of the center line9 
p = air mass density, c = velocity of sound, and M = 
V/c = Mach Number. The wedge deflection 
equation is 

@2/d%?) [EJ(d2w/&)] = 9 (1.2) 

with El = E/(1 - v2) a “reduced” Young’s modulus 
for two-dimensional strain, E = Young’s modulus, 
v = Poisson’s ratio, and I = moment of inertia per 
unit span of the cross section about a spanwise axis 
through its center line. 

The x axis lies along the direction of the stream ve- 
locity, V, and it is convenient in the present problem to 
place the origin at the intersection of the top and bot- 
tom faces of the wedge. The moment of inertia may 

then be written 

I = h3X3/(12113) (1.3) 

with Ii = Z/(1 - a) (1.4) 

Combining Eqs. (l.l), (1.2), and (1.3), we may write 
the stability equation as 

(d2/dt2) [E3(da/dUl + klcr = 0 (1.5) 

The nondimensional variables are 

‘$ = x/l1 

(Y = - dw/dx 

and the stability parameter is 

ki = 24 (W/1/W - 1) (pc2/E1) (ZJh)3 (1.6) 

It is readily seen that Eq. (1.5) is not of the self-adjoint 
type. The present eigenvalue problem, therefore, 
differs essentially from the usual vibration or elastic 
stability problem. The general solution for Eq. (1.5) is 

a! = tit*’ + czy + c3yr (1.7) 

where m(=zl- 1; i= 1,2,3 (1.8) 

and z2 are the three roots of the cubic equation 

z(zZ - 1) + Ri = 0 (1.9) 

This equation has a real root 

z1<-1 

The two other roots may be expressed in terms of zi as 
I. \ 

22 = - (zJ2) + (l/2) V4 - 3212 

i 
(1.10) 

23 = - (21/2) - (l/2) m 

The latter roots are complex conjugates if 

k1 > 2/(3 V%) = 0.3849 (1.11) 

In this case, also zi < -2/X%= - 1.1548. 
Introducing the general solution, Eq. (1.7), into the 

three boundary conditions 

(Y = 0 for c = I 

t3(&/dE) = (d/dl) [[3(d~/dE)] = 0 for F = a 1 
(1.12) 

we find a characteristic equation that may be written 
in two different forms depending on whether the roots, 
22 and 23, are real or complex. 

In the first case-i.e., for k, < 0.3849-the charac- 
teristic equation is 

B.z&l + 1) - 
21 - 1 

0 1 3Z1’2 + 2 + 321 ___ 
a 2 

sinh(Blog$) + 

= 0 

with B = (l/2) +4 - 32i2 (1.13) 

For a given value of a, this may be considered an equa- 
tion for the characteristic parameter kl. It is easily 
verified that for values of a such that 

O<a<l 
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there are no real roots Ki since all three terms of Eq. 
(1.13) are always negative. Hence we must have ki > 
0.3849 and the characteristic equation becomes 

B’z& + 1) 0 1 3E1’2 2 + 3% - + ~ sin 
Zl - 1 a 2 

(,‘log+) + 

B’(2Zi + 1) cos (Bl log ;) = 0 

with 

B’ = (l/2) d3zr2 - 4 (1.14) 

This equation has an infinite number of roots corre- 
sponding to different modes of instability. The lowest 
value of kr corresponds to the mode of lowest stability. 
Eq. (1.14) may be solved for this value of kr as a func- 
tion of a. Actually, we choose to refer the stability 
parameter to the actual chord 1 instead of 11. The 
corresponding stability parameter is then 

k = 24 (M2/&lP - 1) (pc2/E1) (Z//Z)~ (1.15) 

This parameter is related to Kr by the relation 

K = ki(1 - a)” (1.16) 

The lowest critical value, K,, of li versus a is given by 
Table 1. This value of k, versus a is plotted in Fig. 3 
as the curve marked A. 

The limiting value k = 6.33 for a = 1 has been cal- 
culated directly from the case of a slab of uniform thick- 
ness-i.e., by solving the simple equation 

U%Y/@~) + ka = 0 (1.17) 

with f = x/L 

It remains to be seen what the stability becomes in 
the case of a = 0. This corresponds to either the case 
of an infinite chord or an infinitely sharp leading edge. 
It is seen that the boundary conditions are 

(Y=O for-f=1 

[3(da/dE) = (d/do [43(da/dl)] = 0 for 4‘ = 0 (1.18) 

The last two conditions are satisfied if any of the ex- 
ponents, mi, appearing in the general solution, Eq. 
(1.7)) is such that 

Re (mi) > - 1” (1.19) 

All these conditions are satisfied if Ci = 0 and Cz = 
- C3. Hence, the particular solution satisfying the 
boundary conditions (1.18) is 

a! = C2(ErnS - E”‘) (1.20) 

A deflection occurs whatever the value of k1 or k. 
Hence, the case a = 0 is always unstable. Let us 
examine the significance of expression (1.20). If k < 

2/(3&) = 0.3849, the exponents rrz2 and m3 are real 
and negative; hence, the slope a is infinite at the lead- 

ing edge. For k > 2/(32/i) the exponents are com- 
plex conjugates, and we may write 

* The notation Re means “real part of.” 

(Y = C’!$ sin (7 log e) (1.21) 

with p = - (z1/2) - 1; y = (l/2) d3Zi2 - 4 
In this case the slope oscillates between negative and 
positive values an infinite number of times as we ap- 
proach the leading edge, while the amplitude tends to 
infinity or zero, depending on whether p < 0 or fi > 0. 

We may therefore conclude that the infinite insta- 
bility of the infinitely sharp leading edge is due to the 
singular behavior of the mathematical solution and the 
breakdown of the assumptions of linearity on which 
the theory is based. The actual physical stability 
must depend on the interplay of two factors. One of 
these factors is the departure of the aerodynamic forces 
from the linearized expressions assumed in the present 
theory. The other factor is the departure from 
linearity of the geometry of finite deflections and de- 
formations. Further studies, both theoretical and 
experimental, are necessary to determine the stability 
where such factors as nonlinearity must be taken into 
account. It may be concluded that the stability will 
not only depend on the relative bluntness a, but on the 
absolute size of the leading edge-ie., on a scale factor. 

(2) AMPLIFICATION FACTOR FOR LIFT AND 
OVERTURNING MOMENT OF A WEDGE 

In the previous paragraph we have considered only 
the stability problem. For further extension of the 
theory it is useful to examine what happens when the 
root of the wedge is given a certain angle of attack, 
under conditions where the wedge is still stable. Be- 
cause of the tendency for the leading edge to curl up 
under a positive angle of attack (~0, the overturning 
moment N at the root is greater than the value of this 
moment if the wedge were rigid. In the case of a rigid 
wedge the moment would be 

No = (M2/%%.T2 - 1)pc2Z2a (2.1) 
The ratio of the actual moment N to the rigid wedge 

moment No is equal to an amplification factor that 
has been evaluated for various values of the bluntness 
a. This has been done in more detail in references 2 
and 3. By solving the wedge problem as above with 
a boundary condition that the root is rotated by an 
angle (~0 and computing the bending moment N at the 
root, it is found that the amplification factor 

RN = N/No cw 

may be represented empirically as 

RN = [1 - -4W,) - &WJ211t1 - WJl (2.3) 

when k is the parameter defined in the previous section 
and k, is the critical value of this parameter for insta- 
bility. This parameter is a function of a through the 
value of k, represented by curve A of Fig. 3. 

The coefficients A, and B1 are also functions of k,. 
We have 

A1 = 0.325/k, 

B1 = 0.250/kc2 I (2.4) 
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FIG. 1. Straight wedge in the two-dimensional problem. 
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FIG. 2. Coordinates for the wedge. 
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Fro. 3. Critical value of the stability parameter for the straight 
wedge (A) and biconvex wedge (B). 

FIG. 4. Wedge with initial angle of attack. 

TABLE 1 

Critical Value of the Stability Parameter, k, for the Two- 
Dimensional Straight Wedge as a Function of Bluntness Factor, a 

TABLE 2 

Critical Value of the Stability Parameter, k, for the Two- 
Dimensional Biconvex Wedge as a Function 

of Bluntness Factor, a 
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A similar derivation may be made for the lift L. If 
the wedge were rigid, the lift would be 

Lo = (2ilP/V%P - 1)pcYac (2.5) 

Defining an amplification factor for the lift as before, 
we write 

RL = L/Lo (2.6) 

Again an apfiroximate empirical expression for this 
factor may be found and written 

RL = [l - AdkIkc) - B~(k/k,)V[l - (k/k,)1 (2.7) 

with the constants 

Az = 0.15 + (0.40/k,) 

Bz = 0.160/k, 

The empirical values given above break down, of 
course, as we approach the case a = 0. However, 
they are reasonably good down to the value of a = 
0.02. 

(3) STABILITY OF THE BICONVEX LEADING EDGE 

In order to evaluate the inffuence of the shape of the 
cross section, let us now investigate the stability of 
the leading edge of biconvex cross section as shown in 
Fig. 5. 

The problem is treated in reference 4. Unfor- 
tunately, it does not lend itself to a closed mathematical 
solution as the previous case. The boundaries of the 
profiles are assumed parabolic so that the moment of 
inertia per unit span is distributed according to the 
formula 

I = (h3/12) [l - (X/Zi)2]3 (3.1) 

The problem is conveniently formulated by means 
of an integral equation. In order to facilitate the solu- 
tion from the standpoint of numerical accuracy, it is 
useful to distinguish between two cases. One case is 
that of a relatively blunt profile such that for instance 
a > 0.2. The other case is for the sharper leading edge 
where a < 0.2. In the latter case we may expect the 
singular behavior of the leading edge to become in- 
creasingly important as the sharpness increases. In 
order to take this effect into account, we separate the 
profile into two parts. One section, A (Fig. 6), which 
is near the leading edge, is assumed to behave similarly 
to a straight wedge as considered in Sections (1) and 
(2) above. The base of the wedge A is taken to be 
a’h with a’ = 0.2. The effect of this wedge is then 
replaced by its moment and lift on the remaining part 
B of the profile. The integral equation for the slope 
may be written as follows: 

In this expression the eigenvalue parameter k is the 
same as defined for the straight wedge. 

k = 24 (M2/&V2 - 1) (pc2/&) (z/h)3 (3.3) 

The variable ,$ is 

t = x/A (3.4) 

The kernel for ,$ < 71 is 

r(4‘9 rl) = 1 
h 3 41 

4 (1 - ‘$2)” + s (1 - c;“) + 

3 (l+E) 1 1 
l-6 r]log ~ - - 

(1 - ‘9 4 (1 - ,$2)2 
+ ; (3.5) 

and for .$ > 1 

CY, is the slope at the abscissa x = I’, ([ = dl - a’). 
We also have the functions 

S 
t 

F,(t) = 
4 1 5 

0 (1 - E2)3 = 4 (1 - .$“)” 
+ 

&(a’, 8 = S Wl--a’-[ 
’ (3.6) o (1 _ f2)3 d5 = 

1 ,$XKz 

4 (1 - %$“)” 

+ 3&l-aa’ 

s 1 - E2 
+ 

i dl - a’ log z - + ( h2)’ + $ 
I 

The factors RN and RL are amplification factors for 
part A of the profile. They express the fact that if 
the slope is cy, at x = I’, the partial wedge A produces 
a lift and moment greater than if it were rigid. These 
factors are given by expressions (2.3) and (2.7). How- 
ever, we must remember that the parameters in these 
expressions now refer to the wedge of base a’h and lead- 
ing edge thickness ah. The bluntness factor of this 
wedge A is therefore 

a ’ = a/a’ (3.7) 

The stability parameter, k, in Eqs. (2.3) and (2.7) 
must also be replaced by 

k” = k(Z”/Z)s [l/(a’)“] (38 

The critical value, k,, in these formulas is that corre- 
sponding to the bluntness a”. 

The integral equation (3.2) is a rather complex one 
since the unknown eigenvalue, k, appears nonlinearly 
in RN and RL. However, it may be conveniently 
solved by an iteration procedure that is rapidly con- 
vergent . 

In this iteration process a value k is assumed, say, 
k,, from which the amplification factors RN and RRL are 
derived. The unknown function, a(t), is then repre- 
sented by an interpolation formula of the type 
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(5 - b) (E - ‘52) . . . (E - 5n) 

a(5) = ao (ELI - [I> (Fo - E2) * . . (50 - ‘5,) + 

65 - Eo) (6 - (2) . * . (5 - 578) 

a1 (b - 50) ((1 - h> . . . Rl - fn> + . . . + 

(E - to) (E - t1> . . * (6 - En-d 

aTa (&I - Eo) (En - 51) . . . (fn - L&-l) (3*g) 
The integral equation is thus replaced by an algebraic 
system with n unknowns, CQ, and an eigenvalue param- 
eter, k, which may be solved by the usual iteration 
process. Good accuracy is obtained with n = 3 or 4. 
The new value, k, is then compared with the originally 
assumed value k,. If k is not close enough to k,, the 
process is repeated a number of times, and, by plotting 
k versus k, (Fig. 7), we obtain a curve whose inter- 
section with the straight line k = k, at P gives the true 
eigenvalue k = k,. For cases of bluntness, a 2 0.2, 
the terms containing RN and RL drop out of the integral 
equation. The process is then much simpler and re- 
quires only one iteration sequence. 

The values k, for the critical stability parameter, k, 
as a function of the bluntness a are given in Table 2. 
The curve of k, versus a is plotted in Fig. 3, curve B. 
It is noticed that the biconvex wedge is considerably 
more stable at the low values of a than the straight 
wedge. 

(4) APPROXIMATE TREATMENT OF THE THREE- 
DIMENSONAL PROBLEM 

The khree-dimensional problem of a cantilever wing 
is obviously a very complex one. Before treating the 
problem more elaborately, it is useful to bring out cer- 
tain characteristic features of the phenomena by means 
of an approximate method. We shall use here a modi- 
fied “strip method.” That is, we shall assume that 
the wing consists of a series of chordwise strips that are 
linked together at the mid-chord by a spar. The 
chordwise bending of these strips and their rotation 
resulting from the torsional deformation of the spar are 
the elastic parameters to consider in such a model (Fig. 
8). An approach along these lines has been developed 
in reference 3. 

The significant effect to be introduced is the over- 
turning moment due to the curling-up of the strip. 
This may be done quantitatively by using the results 
obtained in Section (2) on the overturning moment of 
a wedge. 

Let us assume a double wedge symmetric cross section 
of chord 2 1 and maximum thickness h. Consider the 
forward half of the strip (Fig. 9). When the root at 
the mid-chord rotates through an angle (Y, the strip 
bends upward due to the lift distribution. The root 
moment N on this half strip is according to Eq. (2.2). 

where 

N = RNNO (4.1) 

N,, = (M2/m) pc212a . (4.2) 

and 
R 

N 
= 1 - 4kIkJ - &(k/kJ2 

1 - WkJ 
(4.3) 

The root moment due to the aft portion of the strip 
may similarly be written 

N’ = RN’No (4.4) 

with 
RN, = 1 + AW,) - WklkJ2 - 

I + (k/k,) 
(4.5) 

The expression for RN’ is taken to be the same as for 
RN except for a reversal in sign of the quantity k. This 
finds its justification in the fact that the deformation 
of the aft portions of the strip is expressed by a differ- 
ential equation identical with that [Eq. (1.5) ] of the 
forward portion except for a change in sign of the 
parameters k and k1. 

In practice the BI(k/kJ2 term turns out to be 
usually small except for very thin leading edges. We 
shall neglect it hereafter and write : 

RN = I - AlWk,)ltl - (k/kc> 1 (4.6) 

RN’ = 1 + A(klk,)ltl + @/kc)1 (4.7) 

The above expressions have been derived for the 
aerodynamic forces on a very thin wing. It is possible, 
however, to introduce the effect of the finite thickness 
of the wedge by remembering that the so-called “slope 
of the lift curve” will be different for the forward por- 
tion of the wedge and for the aft portion. In other 
words, we may introduce to this effect correction factors 
p and /3’ and write: 

N = PRNNo 

N’ = fi’R~‘iVo i 
(4.3) 

The total unbalanced moment at the mid-chord is 

N - N’ = (@RN - @‘RN’) No (4.9) 

We will now show that the values of the coefficients fl 
and 0’ may be derived in terms of the eccentricity of 
the aerodynamic center. We remember that for a 
completely rigid structure k = 0 and 

RN = RN’ = 1 

Hence, for such a structure 

N - N’ = (@ - p’) No (4.10) 

represents the mid-chord moment. 
Similarly denoting by L and L’ the total lift on the 

fore and aft portions, we may write for the total lift on 
the rigid section, 

L + L’ = (B + P’)La (4.11) 

where Lo is defined by Eq. (2.5). Because of the sym- 
metry we have to a second-order approximation 

P+P’=2 (4.12) 

L + L’ = 2Lo (4.13) 

Introducing the eccentricity e of the aerodynamic center 
as a fraction of the total chord 21, we write 

N - N’ = 4elLo (4.14) 

also from Eq. (4.10) 
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FIG. 5. Biconvex wedge. 

R 4 R a 
FIG. 7. Plot to determine critical value of k. 

FIG. 9. Moments on fore and aft portions of strip. 

FIG. 11. Cantilever wing of trapezoidal plan form. 

x-Q x=Q’ 

I I 

FIG. 6. Coordinates for the biconvex wedge. 

FIG. 8. Wing replaced by a series of chordwise strips. 

FIG. 10. Cantilever wing of rectangular plan form. 
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TABLE 3 
Critical Value of the Stability Parameter, X, for the Cantilever 
Wing of Trapezoidal Plan Form, as a Function of Taper Ratio, 

(bl - b)/bl, as Given by the Strip Theory 

(p - P’)No = 4E1Lll (4.15) 

and from Eqs. (2.1) and (2.5) 

2N,, = Lo1 (4.16) 

Hence, (p - 0’) = 8E (4.17) 

Going back to expression (4.9) and taking into account 
the values of fi and /3’ derived from Eqs. (4.12) and 
(4.17), we find for the mid-chord moment of a flexible 
strip the expression 

N _ N, = c + A(w%) - ml~J2 N 

1 - (P/&2) 
0 . 

(4 @) 

with 

A = 2(1 - AI) 

B = 8cAr 

C =8e 

A1 = 0.325/k, 

We now derive a differential equation for the spanwise 
deformation of the wing. We denote by Q the torsional 
stiffness of the wing and write: 

(dldy) [Q(Wdy)l + N - N’ = 0 (4.19) 

where y is the coordinate along the span. On the 
other hand 

N - N’ = Ka (4.20) 

with 

K = tC + A(%) - B(Wc)2l M2 pc212 

[,l - (k2/kc2)] &I2 - 1 

(4 21) 

. 

Hence, the differential equation for cr is 

(U~Y) [Q(Wdy)l + Ka = 0 (4.22) 

We shall apply this equation to the treatment of two 

n 
-0 .I .2 .3 .4 .5 .6 .7 .8 .9 I 

4 -b 
61 

FIG. 12. Stability curve of trapezoidal wing. 

cases. The first one considered is that of the cantilever 
wing of rectangular plan form (Fig. 10). The span 
is b. We must solve Eq. (4.22) with the boundary 
conditions 

(Y=O for y=O 

da/dy = 0 for y = b 

A solution satisfying the first boundary condition is 

(Y = sin VK/Q y (4.23) 

The second boundary condition is satisfied if 

b 1/KIQ = x/2 

This equation may be written 

(4.24) 

C + A(klk,) - WlkJ2 
1 - (WJ2 

k(b/l)2 ‘$ z f (4.25) 

It is an equation for the unknown stability parameter 
k. Remember that k, is a known function of a (the 
bluntness factor of the leading edge), according to the 
results of Section (l), and given by curve A of Fig. 3. 
Numerical values are discussed in later sections for 
comparison with more exact methods. The second 
example is that of a wing of trapezoidal plan form with 
no sweep (Fig. 11). All cross sections are assumed 
similar so that the wing is actually a truncated cone. 
The origin of the coordinates is taken at the vertex of 
the cone (at a distance bl from the root). The differ- 
ential equation of the torsional deflection is then 

(d/W tQ(y4/br4) (Wdy)l + K(y2/h2) a = 0 (4.26) 

where Q is the torsional stiffness at the root and K the 
value given by Eq. (4.21) in which 1 is the half root 
chord. 

The general solution of Eq. (4.26) is 

a! = CryS’ + C2ylEL (4.27) 

nl and n2 may be found by substituting in the differ- 
ential equation. Introducing this solution into the 
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differential equation and applying the boundary condi- 
tions, the critical value of the stability parameter 

0 $ 2 ES (4.28) 

is obtained. Critical values of X are given as a function 
of the taper ratio, (bi - b)/bi, in Table 3 and are plotted 
in Fig. 12. The taper ratio (bi - b)/bi = 1 corresponds 
to the rectangular wing analyzed above, and the value 
of X for that case is found to be in accordance with Eq. 
(4.25). 

It is interesting to note that the stability is rather 
insensitive to taper ratio except at very small values of 
this ratio. The stability is theoretically indeterminate 
for a conical wing of triangular plan form. This spurious 
result is analogous to that found in Section (1) for an 
infinitely sharp leading edge and is due to a breakdown 
of the physical assumptions. 

(5) APPLICATION OF LINEAR PLATE THEORY TO THE 

THREE-DIMENSIONAL PROBLEM 

If we restrict ourselves to the simplifying assumption 
for the aerodynamic forces that the lift is proportional 
to the local slope, as we have done all along, the sta- 
bility problem of the plate of uniform thickness may 
be solved rigorously in some ideal cases which we shall 
now discuss. The treatment of such cases has the ad- 
vantage of bringing out certain features that would 
otherwise have passed unnoticed. Developments are 
given in more detail in reference 5. 

The aeroelastic differential equation for the plate 
may be written 

v4w + (K/13) @w/&V) = 0 (5.1) 

with [@Y/&X?) + (@/by2)]2 = v4 

w = plate deflection and 1 = reference length. 
The following problem has been considered. A plate 

of uniform thickness h, chord 21, and span S, is hinged 
at both ends, y = 0 and y = S. The mid-chord, x = 
0, is hinged about a rigid spar. The divergence de- 
formation will then occur as shown in Fig. 13. The 
fore and aft portions are treated as two different plate 
problems, connected by the conditions that the de- 
flection is zero at x = 0 and that the slope is continuous 
on that line. 

Boundary conditions at the leading and trailing edges 
are 

(@w/bx2) + [V(@W/by2)] = 0 

(@W/bX3) + (2 - Y) [@w/(dxby2)] = 0 1 
(5.2) 

(V denotes Poisson’s ratio). The first of these condi- 
tions corresponds to the vanishing of the bending 
moment, while the second corresponds to the vanishing 
of the vertical shear. It is known that the vanishing 
of the twisting moment is a redundant condition and 
need not be independently introduced (see reference 1, 

page 89). The deflection, w, of the plate is expressed 
in the form 

w,(‘)(c) sin Xy \ 

w1(2)({) sin Xy I 
(5.3) 

where the first expression refers to the portion ahead 
of the mid-chord and the second to the portion aft. 
The chordwise variable is taken as [ = (x/Z) vi. 
The condition that the wing is pinned at both ends is 
satisfied if we put X = r/S, where S denotes the span. 

Expressions (5.3) are solutions of the differential 
equation [Eq. (5.1) ] if we write 

7&(2) = C1(2@ + c2w(.3 :'+ c&"I + c4(2)g4S I 
(5.4) 

The cI.)s are eight constants of integration and zi, 22, 23 
and 24 are the four roots of the equation 

(2” - $2)” + 2 = 0 (5.5) 

with p = r212/(k”‘“S2) (5.6) 

The characteristic determinant for the eigenvalues 
yields a functional relationship between k and p with 
an infinite number of branches. The numerical evalu- 
ations of these branches have been done for a value of 
Poisson’s ratio, v = 0.3. From this plot it is possible 
to find the characteristic values of k for a given aspect 
ratio, S/(21). It is found that there are a finite number 
of real and positive values of k and that this number 
decreases as the aspect ratid becomes smaller. How- 
ever, no matter how small the aspect ratio, there always 
remains one fundamental mode with a real root. Fur- 
ther results presented below indicate that even this 
real root becomes infinite for a vanishing aspect 
ratio when Poisson’s ratio is zero. For the case v = 
0.3 we have plotted the lowest critical value of k as a 
function of S/(21) shown as the full line in Fig. 14. 

It is of interest to apply to the present case the strip 
method as developed in the previous section. Con- 
sidering that we have a wing hinged at both ends in- 
stead of a cantilever, relation (4.24) is replaced by 

S-Q== (5.7) 

We also introduce the assumption of linear aerodynamic 
theory-i.e., e = 0 so that B = C = 0. Furthermore, 
for the plate of uniform thickness a = 1 and k, = 6.33. 
Hence, Ak, = 12 and Eq. (5.7) is written 

12k2 S 2 Elh31 r2 

K,2-z (>- 24Q = 4 (5.8) 

The torsional stiffness Q is 

Q = (1/3)El(l - v)h3Z (5.9) 

Introducing this value in Eq. (5.8) and solving for k, 
we find an expression for the critical value as a function 
of the aspect ratio, for v = 0.3. 

k = kc/d1 + 0.87 (S/2Z)2 (5.10) 

This value is plotted as a dotted line in Fig. 14. We 
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may conclude from the comparison with the exact 
value that the strip method yields a good approximation 
in the present case for high aspect ratio and that the 
result is still significant down to aspect ratio two. 
Below aspect ratio one, the strip method completely 
breaks down. 

Another case that has been treated is that of a plate 
of uniform thickness hinged at both ends, as in the 
previous case, with a free leading edge but a trailing 
edge whose deflection is restrained elastically. It is 
found that as the restraint of the trailing edge is 
gradually relaxed, the stability increases and becomes 
very high and very sensitive to the Poisson ratio. In 
fact, it can be shown that in the case with zero trailing- 
edge restraint, the instability is completely controlled 
by the anticlastic effect-i.e., the curling-up of the 
leading edge caused by the spanwise bending. Since 
this effect disappears for a zero Poisson ratio, we may 
expect that, in this case, the plate free at the leading 
and trailing edges is never unstable. This is effectively 
the case. 

The anticlastic effect may be evaluated independently 
by considering the plate of infinite chord and span S 
(Fig. 15). The stability parameter must now be re- 
ferred to the span and is conveniently taken as p, de- 
fined above by Eq. (5.6). We may write 

ryp8/. = 24 (M2/1/M2 - 1) (pc2/&) (S/h)3 (5.11) 

The critical value of fl is found to be a function of the 
Poisson ratio only, according to the curve in Fig. 16. 

From this result it may be inferred that in the case 
of a wing pinned at both ends, an increase in Poisson’s 
ratio will cause an increase of the instability as a result 
of the anticlastic effect. The critical value of p, as 
plotted for the infinite chord, is found to check with that 
found for the limiting case of a wing of the type shown 
in Fig. 13 whose aspect ratio tends to zero. When 
both Poisson’s ratio and the aspect ratio tend to zero, 
the wing is found to be infinitely stable. The type of 
wing illustrated by Fig. 13 contains a spar at the mid- 
chord which is infinitely flexible in torsion and infinitely 
rigid in bending. It is interesting to see what happens 
when this spar is not present and the wing is reduced 
to a strip of uniform thickness simply hinged at both 
ends. As already mentioned for the case of a strip 
of vanishing restraint at the trailing edge, the analysis 
leads to the striking result that the stability of such 
a strip depends primarily on Poisson’s ratio-i.e., that 
it is due only to the anticlastic effect. When Poisson’s 
ratio vanishes, the strip becomes infinitely stable. It 
is obvious that in this case the method of Section (4) 
completely breaks down since its application would 
lead to a finite value of the critical parameter in all 
cases. 

As a general conclusion we may therefore state that 
in addition to the aspect ratio there are two other signifi- 
cant parameters in the stability. One of these param- 
eters is the ratio of the spanwise bending stiffness at 
the mid-chord to the chordwise bending stiffness (for 
instance, as measured by the parameter a). The other 

is the Poisson ratio which controls the anticlastic effect. 
It will be noted that the latter will have a positive or 
negative effect on the stability, depending on whether 
the wing is supported at both ends or cantilevered. In 
the case of a cantilever, for instance, the anticlastic 
effect will tend to increase the stability, while for the 
case of a wing supported at both ends, it will have a 
tendency to decrease the stability. 

(6) THE STABILITY OF THE CANTILEVER WING 
A GENERAL NUMERICAL METHOD 

We shall now consider a case close to the actual 
practice and solve the problem of the stability of a 
cantilever wing of symmetric double wedge cross section 
and rectangular plan form, as shown in Fig. 10 [see 
Section (4) 1. Since we are dealing here with numerical 
methods, certain specific values of the parameters had 
to be chosen. The bluntness factor was taken to be 

a = 0.1 

This value was assumed to lead to representative re- 
sults as may be inferred from the analysis of Section (1). 
Two values of the aspect ratio were also considered 

Ai. = b/21 = 1.5, 3 

(b = cantilever span, 2 I = chord). 
The Poisson ratio was kept variable. It was first 

attempted to deal with this problem by using the in- 
fluence coefficients of the wing as a function of the two 
coordinates in its plane. The development of this 
approach is the object of reference 6. However, that 
method turned out to be less flexible and practical than 
the one developed hereafter. Only essential points 
are presented. Further details will be found in refer- 
ence 7. Essentially what was done was to represent 
the wing deflections as a sum of amplitudes of “modal 
functions” and to take the coefficients multiplying 
these modal functions as generalized coordinates. As 
an example we show how this method can be applied 
to the problem of a clamped wedge, treated in Section 
(1). We may adopt for this ddettion w, a polynomial 
expression 

w = c2x2 + cax3 + . . . (f-5.1) 

The origin of the coordinate x is located at the mid- 
chord with the leading edge at x = 1. The coefficients, 
ct, are taken as generalized coordinates. The elastic 
potential energy is 

B(x) = (&h3/12) [l - (1 - a) (x/Z)ls (6.2) 

El = E/(1 - v”) 

The Lagrangian generalized aerodynamic forces, Qt, are 

Qt = ’ dze) xidx 4M2 PC” 
s &~2-12 odx 

(6.3) 

Lagrange’s equations are thus written : 



DIVERGENCE OF SUPERSONIC WINGS 247 

FIG. 13. Wing hinged at both ends and pinned at mid-chord. 
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FIG. 14. Stability of the wing illustrated in Fig. 13 as a function 

of aspect ratio. 
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FIG. 16. Stability of the wing of infinite chord illustrated in 
Fig. 15 as a function of Poisson’s ratio. 

-y----j- 

2 

A 

I 

0 
0 .02 

l.J 
.04 .C 

L 

, 

FIG. 17. Stability of a cantilever wing as a function of Poisson’s 
ratio for aspect ratio 3. FIG. 15. Wing of infinite chord hinged at both ends. 
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hG. 18. Stability of a cantilever wing as a function of Poisson’s 

ratio for an aspect ratio 1.5. 

av/aci = Qi 

which in matrix form becomes : 
(6.4) 

X[ltl hl = Ml M (6.5) 

with X = l/K, and where [&I and [4] are two numerical 
matrices. The equivalent system 

~[ctl = [~-‘~I [Cl1 (6.6) 

may conveniently be solved by iteration. For a blunt- 
ness of a = 0.1, a satisfactory value, k = 1.78, is found 
with only two coefficients, cp and c3, different from zero. 
For sharper wings, more coordinates have to be used. 

The three-dimensional case is then treated in a 
similar way. The success of this approach and its 
practicability depends, of course, entirely on the choice 
of the proper modal functions. In this choice we have 
been guided by the results obtained above by other 
methods. A great many types of modal functions 
have been tried.’ The following representation of the 
deflection was used: 

with 

w = d4fdY) + &9fi(Y> (6.7) 

g&) = co + ClX + @2x2 

fl(Y> = Y2(3b - Y) 

g2(x) = f-1x + 12x2 

MY) = Y(2b - Y) 

For the coordinate system we refer to Fig. 10. As be- 
fore, the leading edge is at x = -1 and the trailing 
edge at x = +Z. The term gi(x)fi(y) represents mainly 
a cantilever deflection with a horizontal slope at the 
root y = 0 and a vanishing curvature at the tip, y = b. 

The term gz(x)fi(y) corresponds to a torsional deforma- 
tion such that df2/dy = 0 at the tip. It will be noted 
that this deflection does not satisfy the condition of 
complete clamping at the root along the whole length 
of the chord but only at the mid-chord. However, it 
was verified’ that for the numerical cases investigated 
here the additional condition of complete clamping does 
not modify the result appreciably. The procedure 
then followed is to set up Lagrange’s equation using 
the five coordinates co, cl, ~2, ri, r2. The potential 
energy is expressed by 

1 b 

SS _l o B [wzz2 + wyy2 + 2%G%v + 

with 

2(1 - v) wzV2] dx dy (6.8) 

WZX = azw/as; wzu = a2w/(axay), etc. 

and B = iQ~‘~/12, where h’,is the local wing thickness. 
The generalized force associated with ci is 

~~~ = d;y_ 1 $ 1, f wz_fdy)x” dx dr (6.9) ss 
and the force associated with rl is 

& = ?!?-- PC” ’ 
ss 

’ w&(y) x:dx dy (6.10) 
1/W-12 --I 0 - 

with wZ = -awjax 

Lagrange’s equations are then expressed in a form 
similar to Eq. (6.5). 

Xbkl PI = bl m (6.11) 

where [I’] is the column matrix of the coordinates, 
cI and r(, and 

X = l/k 

The matrix equation [Eq. (S.ll)] was solved for the 
case a = 0.1 and an aspect ratio b/21 = 3. The char- 
acteristic equation of Eq. (6.11) after elimination of the 
root X = 0 turns out to be a quadratic in X2. When the 
two roots are plotted as a function of the Poisson ratio 
v, it is found that we start with two positive real values 
for v = 0. This corresponds to two positive values 
of k. These roots become coincident around v = 0.03. 
For higher values of v the roots first become complex 
and then become real again, but one root, X2, is positive 
and the other negative. This leads to only one positive 
value of k. The plot of the stability parameter k versus 
Poisson’s ratio v is shown for aspect ratio = 3.0 in 
Fig. 17. An identical procedure was used to compute 
the case of aspect ratio b/21 = 1.5, all other parameters 
being the same. The value of k versus v for aspect 
ratio 1.5 is plotted in Fig. 18. The graphs in Figs. 17 
and 18 are made of a loop and an asymptotic branch. 
The latter is indicated by a dotted line, since it is 
probably spurious and due to the particular choice of 
generalized coordinates, as may be inferred from the 
analysis in Section (7). 
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In discussing these results, let us first consider the 
case v = 0. For aspect ratio 3, the lower value of k 
is found to be k = 0.406. Applying the strip method 
to this case according to the formulas developed in 
Section (4) and assuming linear aerodynamic forces, we 
find k = 0.39. The two values are close enough to 
furnish satisfactory evidence that the strip method is 
applicable to this case. The strip method, however, 
neglects the anticlastic effect and gives results inde- 
pendent of Poisson’s ratio. Inspection of Fig. 17 shows 
that it completely breaks down beyond a rather small 
value of Poisson’s ratio. 

For an aspect ratio of 1.5 in the case v = 0, the lower 
value of k is 0.850, while the strip method yields k = 

0.73. The agreement in this case between the two 
methods is less satisfactory, as shown by the ordinates 
for v = 0 in the plot in Fig. 18. The simplified strip 
method, as developed in Section (4), does not, of course, 
yield the dependence of k on Poisson’s ratio since it 
neglects the anticlastic effect. However, in the follow- 
ing section in connection with nonlinearity, the strip 
method is extended to include the anticlastic effect 
and the same loop-type curve is derived as in Figs. 17 
and 18. 

(7) DISCUSSION OF NONLINEAR EFFECTS 

The preceding analysis is restricted to linear theory. 
This must be understood in the sense that even where 
the so-called thin wing theory does not apply, either 
because of wing thickness effects or because of the high 
Mach Number, the air forces may be linearized in the 
manner indicated in Section (4). This, however, yields 
only the incipient instability for very small deflections. 
It will be shown here that the nonlinear effects become 
important particularly for thin wings for deflections 
which in practice may still be considered small, say, of 
the order of the thickness. There are two important 
ways in which these nonlinear effects occur; one is 
through the membrane stresses set up by the anti- 
elastic deformation of the wing, the other is through 
the aerodynamic forces. We shall first discuss the 
structural nonlinearity. 

Consider again the cantilever wing of rectangular 
plan form and double wedge cross section of Fig. 10. 
The y axis is directed along the span b, and the x axis 
is directed chordwise along the direction of the super- 
sonic flow with the leading edge at x = -1 and the 
trailing edge at x = 1. If we assume that the major 
component of the membrane stress is spanwise, uu, the 
membrane stress satisfies the von Karman equation. ls 

b2a,/bx2 = -Eh(wz,w,, - w,,~) (7.1) 

This equation applies strictly to constant thickness h 

but may be used approximately for a variable thickness. 
We denote by y the total Gaussian curvature of the 
middle surface 

Y = wZZ%J, - %Y= (7.2) 

If we assume this curvature to be constant along the 

chord, we may find the chordwise distribution of uv. 
For simplicity we take the wing to be infinitely sharp. 
The distribution of uy is 

_==$[-4(1+;)3+ 

12 (1 +s) - 51 for --I<x<O 1 

and 
I (7.3) 

u~=~[_4(1_~)3+ 

12 (1 -T) - 51 forO<x<l 
j 

The constants of integration are determined by the 
condition that the resultant of all (To along the chord 
is zero. The membrane stress mv in conjunction with 
the spanwise curvature wyy acts as an equivalent load 
per unit area. The wing deflects as if it were sub- 
mitted to a total load 

!Z1 = ffuwuv + P (7.4) 

where p is the aerodynamic lift given by Eq. (1.1). 
We shall now compute the chordwise curvature gener- 
ated by this load. If the curvature wZX is assumed 
constant along the chord, the deflection due to this 
curvature is 

w = (1/2)WZ,X2 (7.5) 

The value of w,, due to the chordwise load distribution 
[Eq. (7.4)] may b e most conveniently calculated by the 
method of virtual work. Applying to a strip of unit 
span expression (6.8) for the elastic energy, we find 

v=f 
s 

+I 
B&z2 + w,v2 + ~vw~~w,,) dx (7.6) 

--I 

We neglect the twist wZu. Expressing the virtual work 
due to a variation, 6w,,, we have 

E bwz, = 
S 

+z 
_-I 4’ 6w ax (7.7) 

zz 

where 6w = (1/2)x26w,,. Only the symmetric part 
of p’ contributes to the integral so that we may perform 
the integration between the limits 0 and 1. With an 
angle of attack, a! = - aw/bx, at the mid-chord, 

WZZ + vwyy = -(11/15) (1 - v”) (Z4r/h2)w,, + 

(z/3) (k4) (7.8) 

Solving for wZZ,,, we may write 

WZer,, = -v’_fw,, + (2/3) (fkll) (Y (7.9) 

with 

V 
l- 

- v - (11/15) (1 - v”) (Z4/h2)wzu2 (7.10) 

and 

f = l/[l + (11/15) (1 - v”) (Z4/h2)wgv2] (7.11) 

The last two quantities are amplitude dependent. 
The parameter k is defined by Eq. (1.15). 
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The chordwise curvature wzz generates an aerody- 
namic torque per unit length ~ 

T= 
4&P PC2 

1/&Y-y -F s 
+ln:*dx 
__I 3x 

(7.12) 

with w given by Eq. (7.5). Substituting wz, from 
Eq. (7.9) 

T = (4/3) [(2/3)fka - v’fZw,,l X 

(iw/Vhf2 - 1) PC212 (7.13) 

The lift per unit span is 2L0, where Lo is defined by Eq. 
(2.5). Hence, we obtain two spanwise differential 
equations for torsion and bending 

- WAY) [QbWd~)l = T 
(dZ/dy2) [EI&PW/dy2)] = 2Lo 

(7.14) 

II is the wing cross-section moment of inertia about the 
chord and Q is its torsional stiffness. If we replace T 
and Lo by their values in terms of (Y and w, these last 
equations are two simultaneous differential equations 
for the twist and the deflection as a function of the 
spanwise coordinate. 

Introducing the following dimensionless quantities 

P = hYE/ [24(1 - v”)Q] ) 

R = hY/[6(1 - v”)IJ 

r = w/z 1 = Y/b I 
(7.15) 

, 

b = span I 

for constant values of Q and II, the differential equa- 
tions (7.14) become 

s+jkyP; 
dY 

CY - $ kfv’P -- = 0 
dq2 

1 
1 (7.16) 

(d45_/dq4) - kR(b4/Z4)a = 0 j 

The nonlinear character of the phenomenon is con- 
tained in the factors f and v’, which become unity and 
v, respectively, for small deflections. Strictly speak- 
ing, the moment of inertia, Ii, should also be amplitude 
dependent since the chordwise curvature will stiffen 
the wing against bending. This will not be introduced 
explicitly here, but could easily be done. Eliminating 
{, we obtain a single differential equation for the wing 
twist. 

(d4a/dT4) + Hf(d2a/dv2) - fHscy = 0 (7.17) 

with the parameters 

H = (8/9)k2P(b2/Z2) 

5 = (3/2)v’R(b2/Z2) 
(7.18) 

These two parameters embody a similarity law. The 
boundary conditions for Eqs. (7.16) are 

ff 

da/a? = d4y/dq2 = dS{/dq3 

Because of the differential 
come 

= 0 for 77 = 0 

= 0 for 
(7.19) 

7 = 1 

equations (7.16), they be- 

-L 
1 40 5c 7 

J 
FIG. 19. Dependence of the two basic parameters H and S for 

stability. 

fHa = d3a/dq3 = 0 for q = 1 1 

(7.20) 

ff=O forT=O 

da/dq = (d2ar/dv12) + 

if we neglect df/dq at q = 1. 
It is interesting to examine the linear case for infini- 

tesimal deflection. In this case, v’ = v and f = 1, 
and the differential equation [Eq. (7.17) ] has the 
solution 

a! = Ci cos zi(v - 1) + Cz cash zz(q - 1) (7.21) 

where zi and 22 satisfy, respectively, the equations 

s4 ‘f Hz2 - HS = 0 (7.22) 

From the boundary conditions and taking Eq. (7.22) 
into account, we find 

zi2 cos zi + zA2 cash 22 = 0 

H = z12 - zz2 I (7.23) 

s = 2&22/(2i2 - 22”) J 

The first equation defines z2 as a function of 21, and the 
last two may be considered parametric equations for 

H as a function of S. If we plot G as a function 
of S, we find a loop as in Figs. 17 and 18. We also 
find other similar loops in infinite number located 
above the first, but they are not relevant to the prac- 



DIVERGENCE OF SUPERSONIC WINGS 251 

tical range of the parameters. We have plotted the 
first loop in Fig. 19. 

The parameter ~~ lumps together the value of K 
with the torsional rigidity and the aspect ratio, b/21 = 
A& while S lumps the Poisson ratio v with the bending 
rigidity and the aspect ratio. We may derive the loop 

in Figs. 17 and 18 from the plot of ~~ versus S and 
the curves are found to check with an accuracy satis- 
factory for a frrst approximation. The bluntness 
factor a does not appear in this theory but it could be 
introduced indirectly as in Section (4) by replacing k2 
by 1 - (k2/k,*). In this factor k, is the critical value 
of k for the two-dimensional wedge problem as devel- 
oped in Sections (1) and (3). 

The effect of finite deformation is obtained by intro- 
ducing the quantities f and v’, which are amplitude 
sensitive. If we assume that they are constant along 
the span, say, equal to some average value, then the 
effect of finite deformation is obtained by replacing 

v by v’ in the expression of S and replacing 4% by 

d@. A stabilizing influence of finite deformation 

appears by an increase in the ordinate of %& in the 

ratio l/l/f The replacing of v by v’ amounts to a 
decrease of the influence of Poisson’s ratio-i.e., a hori- 
zontal extension of the unstable area represented by 
the loop of Fig. 19. Hence, the stabilizing effect of 
Poisson’s ratio, which is effective for infinitesimal de- 
formation, may suddenly disappear at some finite 
value of the deformation. It can be shown, using ex- 
pressions for v’ and f, that the effect becomes drastic 
as soon as the deflection at a spanwise coordinate equal 
to the chord becomes of the order of the thickness of 
the wing. It will be safe, therefore, in applying the 
linear theory to use a zero value of Poisson’s ratio. 

We must bear in mind here that the influence of 
finite deformation on the anticlastic bending of thin 
plates is a bit more complex than assumed in the 
present approximate theory. As shown by Searle* and 
AshwelJg for a strip of uniform thickness the anticlastic 
effect becomes confined to a narrow region near the 
edges. This was also investigated for a double wedge 
cross section by Fung and Wittrick,rO Flugge,” and 
Murray and Niles.‘* In this case it is found that the 
anticlastic effect is confined near the mid-chord. 

We shall now consider the possible effect of aero- 
dynamic nonlinearity and, as a consequence, departure 
from expression (1.1) for the lift. We introduce the 
expression for the lift, Q, given by Hayes13 and Light- 
hillI for the case of high Mach Number. We may 
write it 

where 

q/P, = 2ByMa (7.24) 

p = 1 + F M6 + ‘+ M‘%* + 

'+5&22 

12 
CY 

> 
(7.25) 

with pi = pressure of undisturbed gas, 6 = slope of 
symmetric airfoil section relative to the chord, (Y = 
angle of attack, and y = 1.4 for air. This formula is 
valid for the range M(a + 6) < 1. The coefficient /3 
is equal to unity for very small values of M6 and Ma. 
In that case, expression (7.24) at high Mach Number 
coincides with the value [Eq. (1.1) ] given by the linear 
aerodynamic theory. It will be noted that for a 
double wedge cross section with sharp edge, 6 is posi- 
tive in the fore section and negative for the aft portion 
while (61 is identical with the thickness ratio 

161 = h/(20 (7.26) 

The most significant term in the value of /3 is MA, since 
it will affect the eccentricity of the aerodynamic center 
and considerably influences the aeroelastic stability. 
This effect was already taken into account in Section 
(4) where ,8 was introduced as an empirical factor con- 
taining a linear correction term in 6, and p’ was the 
same factor with a negative value of 6. 

All analyses made previously may easily be extended 
by introducing such a factor @ with or without the term 
M2a2, since the aeroelastic theory in that case remains 
linear. Similar corrections can be introduced in the 
treatment of Section (6), since the generality of the 
procedure is not affected. The value of k, for in- 
stance, used in Section (1) could be replaced by 

k = 24/j (M2/dM2 - 1) (PC*/&) (l/h)3 (7.27) 

Finally, the effect of eccentricity of the aerodynamic 
force can be introduced in the approximate equation 
[Eq. (7.14)] by writing for T instead of expressions 
(7.12) the following value 

d:- 1 
pcV (7.28) 

where e is the eccentricity defined in Section (4). 
A truly nonlinear aeroelastic problem appears if we 

do not neglect the term M2a2 in the value of ,8. A 
rough evaluation of the effect may be obtained by intro- 
ducing an estimated weighted average of this term for 
each chordwise strip of the wing and treating p as a 
constant in each portion. This effect will result in a 
decrease of stability. 

REFERENCES 

1 Timoshenko, S., Theory of Plates and Shells, McGraw-Hill 
Book Co., Inc., 1940. 

2 Biot, M. A., Ae7oelastic Stability of Supersonic Wings, Re- 
port No. 1, Chordwise Divergence. The Two-Dimensional Case, 
Cornell Aeronautical Laboratory, Inc., Report CAL-CM-427, 
December 8,1947. 

8 Biot, M. A., Aeroelastic Stability of Supersonic Wings, Report 
No. 2, An Approximate Treatment of Some Simple Three-Dimen- 
sional Cases, Cornell Aeronautical Laboratory, Inc., Report 
CAL-CM-470, May 12,1948. 

4 Biot, M. A., Aeroelastic Stability of Supersonic Wings, Report 
No. 3, General Method For the Two-Dimension Case and Its Appli- 



cation to the Chordwise Divergence of a Biconvex Section, Cornell 
Aeronautical Laboratory, Inc., Report CAL-CM-506, September 
23,1948. 

5 Biot, M. A., Aeroelastic Stability of Supersonic Wings, Report 
No. 4, Some Exact Solutions Based on Plate Theory, Cornell Aero- 
nautical Laboratory, Inc., Report CAL-CM-580, November 23, 

1949. 

6 Biot, M. A., Aeroelastic Stability of Supersonic Wings, Report 
No. 5, Stability of Cantilever Solid Wings of SymmetriG Cross-Sec- 
tions and without Sweep, Cornell Aeronautical Laboratory, Inc., 
Report CAL-CM-622, May 31,195O. 

7 Biot, M. A., Aeroelastic Stability of Supersonic Wings, Report 
No. 6, Solution of the Problem by the Use of Generalized Co0rd.i. 
nates, Cornell Aeronautical Laboratory, Inc., Report CAL-CM 
730, March 31,1952. 

8 Searle, G. F. C., Experimental Elasticity, Cambridge Uni 
versity Press, 1908. 

9 Ashwell, D. G., The Anticlastic Curvature of Rectangular 
Beams and Plates, Journal Roy. Aero. Sot., Vol. 54, p. 708, 1950. 

10 Fung, Y. C., and Wittrick, W. H., The Anticlastic Curvature 

of a Strip with Lateral Thickness Variation, Journal of Applied 
Mech., pp. 351358, December, 1954. 

11 Flugge, W., Large Deflections of Thin Wings, Tech. Report 
No. 3, Air Force Contract No. W 33-03%ac-16697, Stanford Uni- 
versity, 1949. 

12 Murray, T. R., and Niles, A. S., Bending of Wide Beams of 
Doublj Symmetrical Section, Tech. Report No. 4, Air Force Con- 
Contract No. W 33-03&ac-16697, Stanford University, 1949. 

18 Hayes, W., On Hypersonic Similitude, Quart. Appl. Math., 
Vol. 5, pp. 105-106,1947. 

14 Lighthill, M. J., Oscillating Airfoil at High Mach Number, 
Journal of the Aeronautical Sciences, Vol. 20, No. 6, pp. 402- 

406, June, 1953. 
I5 Love, A. E. H., The Mathematical Theory of Elasticity, p. 

558; Dover Publications, New York. 


	Foreword
	Papers:
	Titles
	Full Citation
	Abstracts

	About M.A.Biot
	Domains
	Keywords
	Copyrights
	Acknowledgments
	List of Papers:
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179


