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Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. 
I. Low-Frequency Range 

M. A. BIOT* 
Shell Development Concpany, RCA Buddirg, New York, New York 

(Received September 1, 1955) 

A theory is developed for the propagation of stress waves in a porous elastic solid containing a compressible 
viscous fluid. The emphasis of the present treatment is on materials where fluid and solid are of comparable 
densities as for instance in the case of water-saturated rock. The paper denoted here as Part I is restricted 
to the lower frequency range where the assumption of Poiseuille flow is valid. The extension to the higher 
frequencies will be treated in Part II. It is found that the material may be described by four nondimen- 
sional parameters and a characteristic frequency. There are two dilatational waves and one rotational wave. 
The physical interpretation of the result is clarified by treating first the case where the fluid is frictionless. 
The case of a material containing a viscous fluid is then developed and discussed numerically. Phase velocity 
dispersion curves and attenuation coefficients for the three types of waves are plotted as a function of the 
frequency for various combinations of the characteristic parameters. 

1. INTRODUCTION 

0 UR purpose is to establish a theory of propagation 
of elastic waves in a system composed of a porous 

elastic solid saturated by a viscous fluid. It is assumed 
that the fluid is compressible and may flow relative to 
the solid causing friction to arise. Part I which is 
presented here assumes that the relative motion of the 
fluid in the pores is of the Poiseuille type. As already 
pointed out by Kirchhoff this is valid only below a 
certain frequency which we denote by ft, and which 
depends on the kinematic viscosity of the fluid and the 
size of the pores. Extension of the theory in the fre- 
quency range above ft will be presented in Part II. We 
have in mind particularly the application to cases where 
the fluid is a liquid, and we have therefore disregarded 
the thermoelastic effect. We include only materials such 
that the walls of the main pores are impervious and for 
which the pore size is concentrated around its average 
value. Extension to more general materials will be 
considered along with the thermoelastic effect in a later 
and more complete theory. 

Development of the theory proceeds as follows. Sec- 
tion 2 introduces the concepts of stress and strain in the 
aggregate including the fluid pressure and dilatation. 
Relations are established between these quantities for 
static deformation in analogy with a procedure followed 
in the theory of elasticity for porous materials developed 
in reference 1. Section 3 considers the dynamics of the 
material when the fluid is assumed to be without vis- 
cosity. This case is of practical interest since this repre- 
sents the limiting behavior of wave propogation at very 
high frequency. It introduces the concepts of apparent 
masses and dynamic coupling between fluid and solid. 
The wave propogation in the absence of friction is 
analyzed in Sets. 4 and 5. It is found that there is one 
rotational wave and two dilatational waves. A remark- 
able property is the possible existence of a wave such 
that no relative motion occurs between fluid and solid. 

* Consultant. 
1 M. A. Biot, J. Appl. Phys. 26, 182 (1955). I 

This is obtained if a “dynamic compatibility” relation is 
verified between the elastic and dynamic constants. This 
is a case where dissipation due to fluid friction will 
disappear. In Sec. 6 the dynamic relations are derived 
with the addition of fluid viscosity and Sec. 7 derives 
the properties of the propagation of the waves when 
dissipation is present. It is found that the phase velocity 
of rotational waves increases slightly with the frequency 
f while the absorption coefficient is proportional to the 
square of the frequency. All plots are presented non- 
dimensionally by referring to a characteristic frequency 
f. which depends on the kinematic viscosity of the fluid 
and the pore diameter. The characteristic frequency fc 
may be considered as a frequency scale of the material, 
the nondimensional abscissa of the plots being the ratio 
f/fc. There are two dilatational waves denoted as waves 
of the first and second kind. The waves of the second 
kind are highly attenuated. They are in the nature of a 
diffusion process, and the propagation is closely analo- 
gous to heat conduction. The waves of the first kind are 
true waves. The dispersion is practically negligible with 
a phase velocity increasing or decreasing with frequency 
depending on the mechanical parameters. The absorp- 
tion coefficient is proportional to the square of the fre- 
quency as for the rotational waves. In cases close to the 
dynamic compatibility condition, the dispersion and 
attenuation of the waves of the first kind tend to vanish. 
The attenuation of this wave may therefore vary widely 
for materials of similar composition and may be larger 
or smaller than the attenuation of the rotational waves. 

A beginning along the present lines was made by 
Frenkel.2 He discusses the rotational and dilatational 
waves, but the subject is summarily treated and impor- 
tant features are neglected. 

Sound absorption in material containing air was the 
object of extensive work by Zwikker and Kosten.3 
Rotational waves are not considered, and simplified 
equations are used for the dilatational waves. The 

*J. Frenkel, J. Phys. (U. S. S. R) 8, 230 (1944). 
a C. Zwikker and C. W. Kosten, Sollnd Abswbing Mataials 

(Elsevier Publishing Company, Inc., New York, 1949). 
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171 ELASTIC WAVES IN POROUS SOLIDS. I 

be expressed as 

+2p12 [ 
au, au, at4, au, au, au, 

tat+xat+tal 1 
+,22[ (592+(z)2+(;)2]. (3.2) 

This expression is based on the assumption that the 
material is statistically isotropic hence the directions 
x,y,z are equivalent and uncoupled dynamically. Let 
us discuss the significance of the expression for the 
kinetic energy. The coefficients pllp22pl.r are mass 
coefficients which take into account the fact that the 
relative fluid flow through the pores is not uniform. 

In discussing the significance of expression (3.2) we 
may, without loss of generality, consider a motion 
restricted to the x-direction. If we denote by qz the 
total force acting on the solid per unit volume in the 
x-direction and by QZ, the total force on the fluid per 
unit volume, we derive from Lagrange’s equations 

= qz 

a aT a2 
(3.3) 

at aO, 
(-)=--J~12uz+p22UJ=Qz. 

Before applying these relations (3.3) let us further 
discuss the nature of the coefficients pllp22p12. Let us 
assume that there is no relative motion between fluid 
and solid. In this case 

and 
u,= u, 

2T= (~11+2~12+~22)uz~. 

We conclude that 

(3.4) 

Pll+2Pl2+P22=P (3.5) 

represents the total mass of the fluid-solid aggregate 
per unit volume. We may also express this quantity by 
means of the porosity /3 and the mass densities ps and pj 
for the solid and fluid, respectively. The mass of solid 
per unit volume of aggregate is 

Pl= (1 -PIP8, (3.6) 

and the mass of fluid per unit volume of aggregate 

Pz=PPf. (3.7) 
Hence, 

P=Pl+Pz=Pe+rB(Pf-Pa). (3.8) 

Let us now again assume that there is no relative motion 
between solid and fluid. The pressure difference in the 

fluid per unit length is 

or (3.9) 

The left-hand side is the force QZ acting on the fluid per 
unit volume. Hence, taking into account Eq. (3.7), we 
may write 

a%% 
Q~=P.. (3.10) 

Now, in the case 
uz= u,, 

the second equation (3.3) becomes 

(~12+~22)u.=Qz. (3.11) 

Comparing Eqs. (3.11) and (3.10) we derive 

PZ”Pl2+-P22. (3.12) 

Combining this result with relations (3.5) and (3.8) we 
have also 

Pl=Pll+P12. (3.13) 

The coefficient p12 represents a mass coupling parameter 
between fluid and solid. This is illustrated by assuming 
that in some way the fluid is restrained so that the aver- 
age displacement of the fluid is zero, i.e., U,=O. 
Equations (3.3) are then written, 

qz=p11- 

at2 
(3.14) 

The second equation (3.14) shows that when the solid is 
accelerated a force QZ must be exerted on the fluid to 
prevent an average displacement of the latter. This 
effect is measured by the “coupling” coefficient pl,.The 
force QZ necessary to prevent the fluid displacement is 
obviously in a direction opposite to the acceleration of 
the solid; hence, we must always have 

PlZ<O. (3.15) 

The same conclusion is reached by considering the first 
equation (3.10) in which ~11 represents the total effective 
mass of the solid moving in the fluid. This total mass 
must be equal to the mass proper of the solid pl plus an 
additional mass pa due to the fluid. 

Pll=Pl+Po. (3.16) 

From Eqs. (3.13) and (3.16) we derive 

Pl2’ -pa. (3.17) 
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Hence, plz is the additional apparent mass with a change 
in sign. Therefore, the dynamic coefficients may be 
written 

p11= Pl+Po 

PZZ’P2SPa (3.18) 

p12=-Pa. 

Further conditions must be satisfied by these dynamic 
coefficients if the kinetic energy is to be a positive 
definite quadratic form. The coe5cientspll and pz2 must 
be positive 

Pll>O P22>0 

and 

PllP22-P122>o. (3.19) 

These inequalities are always satisfied if the coefficients 
are given by the relations (3.18) where p1p2 and pa are 
positive by their physical nature. 

In terms’ of stresses the force components are ex- 
pressed as stress gradients, i.e., 

,Z=a,,+a,,+a,,, 
ax ay a2 

QZ= as/ax, etc. 

(3.20) 

Hence, we have the dynamic equations 

;+~;=;(pn”r+p12uZ) 

(3.21) 
as a2 
-=- 
ax at2 

(~122b+~22UJ, etc. 

Strictly speaking, the generalized forces are defined as 
the virtual work of the microscopic stresses per unit 
value of the displacement vector u and U and not as the 
average of the microscopic stresses as used in expressions 
(3.20). However, for all practical purposes it is justified 
to use either definition. 

It is interesting to note that because of the coupling 
coefficient an acceleration of the solid without average 
motion of the fluid produces a pressure gradient in the 
fluid. This is physically caused by an apparent mass 
effect of the fluid on the solid. 

Equations (3.21) are referred to the x-direction. 
Identical equations may be written for the y- and 
s-directions. 

4. EQUATIONS OF PROPAGATION OF 
PURELY ELASTIC WAVES 

Equations for the wave propagation are obtained by 
substituting expressions (2.12) for the stresses into the 
dynamical relations (3.21). We obtain for the x- 

direction. 

ae a6 a2 
(4.1) 

Q~+RaX=~(pl~u’+p2zU=), 

and two other similar equations, respectively, for the 
directions y and z. With the vector notation 

n= (%21&Z) 

u= (u,lJ,u,). 

Equations (5.1) are written 

.VV2u+,,dC(a+Me+Q~l=~2~p~,“+p,2u) 

grad[Qe+R~,=~2(p~s+p.,u). 

(4.2) 

These six equations for the six unknown components of 
the displacements u and U completely determine the 
propagation. 

Because of the statistical isotropy of the material, it 
can be shown that the rotational waves are uncoupled 
from the dilatational waves and obey independent 
equations of propagation. This is done in the usual 
way by introducing the operations div and curl 

divu=e divU= e 

curlu= 0 curlU= P. 

Applying the divergence operation to both equations 
(4.2), we obtain 

a2 
(4.4) 

V”(Qe+Rr) =-$2(pl2e+mc) 

with the definition 
P=A+2N. (4.5) 

These two equations govern the propagation of 
dilatational waves. As discussed in more detail in the 
next section, it can already be seen that, in general, 
there will be two such dilatational waves and that each 
of these waves involves coupled motion in the fluid and 
the solid. 

Similarly, applying the curl operation to equations 
(4.2) we obtain 

;2(P12ti+p22*) =o. 

(4.6) 
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These equations govern the propagation of pure rota- 
tional waves. It is seen that these equations imply also 
a coupling between the rotation o of the solid and that 
of the fluid SL. These equations will now be discussed. 

5. PROPERTIES OF THE PURELY ELASTIC WAVES 

Consider first, Eqs. (4.6) for the rotational waves. 
By eliminating P in these equations, we find 

Nvb=pll( 1-2);. (5.1) 

There is only one type of rotational wave. The velocity 
of propagation of these waves is 

[ 

N 4 

v8= 
P11(1-P122/Pl*P22) I* 

(5.2) 

defined by 

V,2= H/P, (5.4) 

with H= P+R+-2Q. Referring to the definition of p 
as representing the mass per unit volume of the fluid- 
solid aggregate it is seen by adding Eqs. (4.4) that Vc 
represents the velocity of a dilatational wave in the 
aggregate under the condition that e=e, i.e., if the 
relative motion between fluid and solid were completely 
prevented in some way. The following nondimensional 
parameters are further introduced 

P R Q 
u11=- lS22=- u12=- 

H H H 
(5.5) 

Pll PZ2 PI2 

y11=- y22=- -in=-. 

P P P 

The rotation w of the solid is coupled proportionally to 
The uii-parameters define the elastic properties of the 

the rotation SL of the fluid according to the relation 
material while the yij-parameters define its dynamic 
properties. Since we have the identities 

PI2 
iA= ----cd. (5.3) 

P22 

Since ~12 is negative and ~22 positive, the rotation of the 
fluid and the solid are in the same direction. This means 
that a rotation of the solid causes a partial rotational 
entrainment of the fluid through an inertia coupling. 
It this coupling did not exist and the fluid would stay at 
rest on the average the rotational wave velocity would 
be V8= (N/p&, where ~11 represents the mass of the 
solid plus the apparent mass due to the relative motion 
of the solid in the fluid. Actually, the partial rotational 
entrainment of the fluid by the solid decreases the 
apparent mass effect with a corresponding increase in 
the wave velocity. This decrease of the apparent mass 
is expressed by the factor [l- (p122/pllp22)] in formula 
(5.2). 

The existence of a rotation in the fluid seems at first 
sight to be in contradiction with Kelvin’s theorem that 
in a frictionless fluid without body forces no circulation 
can be generated. However, the velocity field U here 
considered is not the actual microscopic velocity but the 
average volume flow. The circulation of the former 
remains zero in conformity with Kelvin’s theorem 
while the line integral of the volume flow can be different 
from zero. The distinction is the same as made when we 
consider the apparent rotational inertia of a body 
immersed in a fluid. A rotation of the body in the fluid 
produces an angular momentum in the fluid while the 
circulation remains zero. 

We now consider the dilatational waves defined by 
Eqs. (4.4). All essential features are brought out by 
discussing the propagation of a plane wave parallel with 
the yz-plane and of normal displacement uZ and U, in 
the x-direction for the solid and the fluid, respectively. 

It is convenient to introduce a reference velocity V’, 

ull+u22+2u12=~11+722+2w2= 1, (5.6) 

there are only four independent parameters. We note 
that the positive character of the kinetic and elastic 
energies imply that ~~1u~2-u~~~ and yll*/22--yr22 are 
positive. 

With these parameters, Eqs. (4.4) are 

1 a2 
V2(alle+u12c) =v ---J7lle+~l2~) 

c2 

1 a2 
(5.7) 

V2(u12e+u22c) =+ al,(Yl2e+Y224. 
c 

Solutions of these equations are written in the form 

e= Cl exp[;(Zx+&)] 

r=C2 exp[i(Zx+olt)]. 
(5.8) 

The velocity V of these waves is 

v=ff/z. (5.9) 

This velocity is determined by substituting expressions 
(5.8) into (5.7). 

Putting 

2 = Vo”/ v2 , (5.10) 
we obtain 

z(ullCl+ul2C2) =Yllcl+Y12c2 

z(u12cl+u22c2) =Y12cl+Y22c2. 
(5.11) 

Eliminating Cl and C2 yields an equation for 2, 

(u11u22-u122)22- (u11u22+&2*/11- 2u12-Y12)z 
4- (YlrY22-Y122)=0. (5.12) 
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This equation has two roots 2122 corresponding to two sional wave will be designated as the wave of the first kind 
velocities of propagation VI, V2, and the low-velocity wave as the wave of the second kind.2 

v12= V,z/Zl 

vzz= v,2/22. 
(5.13) 

There are therefore two dilatational waves. The roots 
21, 22 are always positive, since the matrices of coeffi- 
cients u and y of Eqs. (5.11) are symmetric and are 
associated with positive definite quadratic forms repre- 
senting respectively the potential and kinetic energies. 

There are also orthogonality relations verified by the 
amplitude of these waves. Denote by C,(1)C2(1) the 
amplitudes associated with the root z1 and Cr(2)C2(2) the 
amplitudes associated with 22. The orthogonality rela- 
tions may be written 

yllc1(‘)c1(2)+2yl2(cl(l)c2(2)+c2~~)c1(2))+ 

y22C2W2(2)=0. (5.14) 

This relation shows that if the amplitudes are of the 
same sign for one velocity say Vr they are of opposite 
sign for the other. In other words, there is a wave in 
which the amplitudes are in phase and another in which 
they are in opposite phase. Moreover, from Eq. (5.11) 
we derive the relation 

jllC1E\i)2+2ylzCl(i)Cz(i)+YzzCz(i)2 
si= 

allCl(i)2+2,12Ci(i)Cz(i)+azzCz(i)2 
. (5.15) 

Because yr2 is the only negative coefficient, we con- 
clude that the higher velocity has amplitudes in phase 
while the low velocity has amplitudes in opposite phase. 

It is interesting to note the possible existence of a 
wave such that n= U, i.e., for which there is no relative 
motion between fluid and solid. By putting Cr=C2 
in Eq. (5.12) it is seen that this occurs if the parameters 
of the material satisfy the relation 

a1+u12 422+a2 
---= -= 1. 
+Yn+-Y12 722+712 

(5.16) 

This may be called a “dynamic compatibility” relation. 
It will be shown below that it plays an important role in 
the case where dissipation is considered. The propaga- 
tion velocity for this case is given by 

V?= H/p. (5.17) 

There is another wave propagation with a lower 
velocity VZ. It may be verified from the orthogonality 
relation (5.14) that if Eq. (5.16) is satisfied the ampli- 
tude ratio for this wave is, 

C,@)/C2@)= --&Pi. (5.18) 

It is also easily shown that the compatibility relation 
(5.16) is a necessary and sufficient condition for one root 
of Eq. (5.12) to be equal to unity. 

As a matter of terminology the high-velocity dilata- 

6. EQUATIONS OF PROPAGATION WHEN 
DISSIPATION IS INTRODUCED 

It will be assumed that the flow of the fluid relative to 
the solid through the pores is of the Poiseuille type. That 
this assumption is not always valid is well known, e.g., 
when the Reynolds number of the relative flow exceeds 
a certain critical value. The assumption also breaks 
down when we exceed a certain characteristic frequency. 
If we accept the assumption of Poiseuille flow the micro- 
scopic flow pattern inside the pores is uniquely deter- 
mined by the six generalized velocities 

Q,, tizi,, ti,, ir,, ri,, 0,. (6.1) 

As before, the kinetic energy depends only on these six 
coordinates. Dissipation depends only on the relative 
motion between the fluid and the solid. Introducing the 
concept of dissipation function, we may write this 
function as a homogeneous quadratic form with the 
foregoing six generalized velocities. Because of the 
assumed statistical isotropy, orthogonal directions are 
uncoupled. The dissipation also vanishes when there is 
no relative motion of fluid and solid; hence, when 

&=O, Q,=O, ?i,=Uj,. (6.2) 

The dissipation function D is therefore 

2D= b[ (tiz- LiJ2+ (&,- 0&l+ (tia- 0J2]. (6.3) 

Lagrange’s equation with a dissipation function are 
written (for the x-direction) 

a aT aD 
z G ( 1 z 

+K=qZ 
2 

aaT aD 
; 5 ( > I 

+z=Qz. 
z 

(6.4) 

Explicitly, we have 

3pnu,+p12U3+2&(u,- u,>=q, 

~(p12u.+~22uJ-+.- U,) =Qz. 

(6.5) 

We have seen that the generalized forces are related to 
the stresses by relations (3.20). The dynamic equations 
in terms of the stress components are 
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Expressing the stresses in terms of the displacements 
u and U the relations (6.6) become 

NV%+grad[(A+N)e+Qe] 

grad[Qe+Rel 
(6.7) 

=f-(Pl2u+p22u)-b~(u-u). 
at 

The coefficient b is related to Darcy’s coefficient of 
permeability K by 

b = /@/k, (6.8) 

where p is the fluid viscosity and /3 the porosity as 
defined in Sec. 2. 

We have mentioned in the foregoing that the assump- 
tion of Poiseuille ilow breaks down if the frequency 
exceeds a certain value. This is illustrated by considering 
a plane boundary in the presence of an infinitely ex- 
tended vicous fluid and oscillating harmonically in its 
own plane. The velocity parallel with the plane at a 
distance y from the plane is 

u=exp[&t- (l+i)(t)*y], (6.9) 

where v=p/p, is the kinematic viscosity. The quarter 
wavelength of the boundary layer is 

y1=7r(v/2a)% (6.10) 

For a porous material we may assume that Poiseuille 
flow breaks down when this quarter wavelength is of 
the order of the diameter a! of the pores, i.e., for fre- 
quencies higher than 

jt= ?rv/4d2. (6.11) 

In the case of water at 15°C we find jt=lOO cps for 
d= 1O-2 cm and jt= lo4 cps for d= 1O-3 cm. 

7. NUMERICAL DISCUSSION OF ATTENUATED 
WAVES 

As in the case of purely elastic waves, we may 
separate the body waves into uncoupled rotational and 
dilatational waves. Applying the divergence operator to 
Eqs. (6.7) we find the equations for dilatational waves 

VYPe+Qe)=~(p,,e+p,2r)+$(c- 6) 

(7.1) 

Va(Qe+R~)=~(p,,e+pln.)-$(c-r). 

Similarly, applying the curl operator, we have the 
equation for rotational waves 

3~llofp12Q)+;(o- a> = NV% 

(7.2) 

Consider first a rotational plane wave propagating in 
the x-direction. The magnitude of the rotations of solid 
and fluid in the z-direction may be put equal to 

LJ= C1 exp[i(Zx+cwt)] 

a= C2 exp[i (Zx+crt)]. 
(7.3) 

It is convenient to introduce a characteristic fre- 
quency 

jc=L- b . 
27rP2 27rP(Yl2+Y22) 

(7.4) 

Introducing the solution (7.3) into the propagation 
solutions (7.2) and eliminating the constants Cl, C2 we 
find 

with 
N12/pc?= E&E< 

Yll^/22--Y122 

1 +y22 

j 2 

h2+Y22)2 rc 0 
E,= 

(Y12+Y22) 

the frequency of the wave is j=(u/2?r. Putting 

I= I,+& 

the phase velocity is 

7b=(Y/1121. 

We introduce a reference velocity 

F,= (N/P)* 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

which is the velocity of rotational waves for the case 
of no relative motion between fluid and solid. We 
derive from (7.5) 

F=~~/[(E:+E,~)*+E,]*. (7.10) 
I 

This velocity ratio is a function only of the frequency 
ratio j/f0 and the dynamic parameters yii. The velocity 
ratio is plotted in Fig. 1 for cases 1 to 4 of Table I. 

It will be noted that there are only two independent 
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“r 
7 

1.006 

1.005 

1.004 

1.003 

1.002 

1.001 

, .I2 .I5 TABLE I. 

FIG. 1. Phase velocity V, of rotational waves. 

parameters since they must satisfy relation (5.7). 
According to the previous discussion of Sec. 6, the 
Poiseuille flow assumption is valid below a certain fre- 
quency. If we introduce the assumption that the pores 
behave like circular tubes of diameter d we may put 

b = 32p/3/d2. (7.11) 

FIG. 2. Attenuation coeflicient of rotational waves. 

In this case 

L&=()154. (7.12) 
fc 64 

Therefore, the curves are plotted only in the range 

o< j/j,<O.lS. 

The attenuation of the rotational waves is deter- 
mined by li. With a reference length 

and putting 

we find 

The amplitude of the wave as a function of the dis- 
tance x is proportional to exp(- x/x,). The nondimen- 
sional attenuation coefficient L,/x, is plotted in Fig. 2 
for cases 1 to 4 of Table I. 

Case Cl, (rzz Cl2 Yll Y21 712 e, ZP 

1 0.610 0.305 0.043 0.500 0.500 0 0.812 1.674 
2 0.610 0.305 0.043 0.666 0.333 0 0.984 1.203 
3 0.610 0.305 0.043 0.800 0.200 0 0.650 1.339 
4 0.610 0.305 0.043 0.650 0.650 0.909 2.394 
5 0.500 0.500 0 0.500 0.500 

-;150 
1.m 1.000 

6 0.740 0.185 0.037 0.500 0.500 0 0.672 2.736 

Approximate formulas may be obtained by expanding 
expressions (7.10) and (7.15) for small values of j/jc. 

We find 
2 

(7.16) 
V, 

L, f 2 
-=$(w+Y22) - 
X, 0 fc 

(7.17) 

When plotted these formulas give values indistin- 
guishable from the exact graph for the range j/jc <O.lS. 

We now consider dilatational waves. They are 
governed by Eqs. (7.1). Again we consider plane waves 
and Dut 

I 

e= CI exp[i@+cut)] 
(7.18) 

8= C2 exp[i(Zx+at)]. 
. , 

Substitution in Eqs. (7.1) and elimination of the con- 
stants Cl, Cs yield the relation 

+“b (P+R+Z+ 
I I 

=o. (7.19) 
a 
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With the variables already introduced in Sec. (5) this 
equation may be written in nondimensional form 

(u11~22-~122)22- (a22Y~~+a11~22-22a12*/12)2 

+(Ylll/az-~zz)~+~~z-1)=0 (7.20) 

with 
a/J 

12 
s=-_lr 2 

a2 c* 
(7.21) 

In this case 1 and hence z are complex. If we put 
b=O in Eqs. (7.20) we obtain Eq. (5.12) whose roots 

J!L 
"C 

I.0005 

1.0004 

1.0003 

1.0002 

1.0001 

1.0000 

.9999 
0 .03 .06 .09 .I2 .I5 

f/f, 

FIG. 3. Phase velocity VI of dilatational waves of the first kind. 

are zr, 22. With these roots Eq. (7.20) may be written, 

where 
(2-21)(2-z2)+iM(z-1)=0 

b 
M= 

qJ(alla22--a122) 

(7.22) 

(7.23) 

The roots z of Eq. (7.22) yield the properties of the 
dilatational waves as a function of a frequency variable 
M and two parameters ~1, z2 which correspond to the 
velocities of the purely elastic waves as given by Eq. 
(5.13). We may write M in terms of f/fC as 

M=f” (Y12fY22) 

f (w22-u122)' 
(7.24) 

FIG. 4. Attenuation coefficient of dilatational waves 
of the first kind. 

We denote by ZI and ZII the roots of Eq. (7.22). We 
assume that ZI is the root which tends to unity at zero 
frequency (f=O). Then this root corresponds to waves 
of the first kind while zr~ corresponds to waves of the 
second kind. We also write 

% 
vc 

5 

4 

.3 

.2 

I 

0 

(7.25) 

93 06 .09 .I2 .I5 
f/fc 

FIG. 5. Phase velocity VIZ of dilatational:waves 
of the second kind. 
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FIG. 6. Attenuation coefficient of dilatational waves 
of the second kind. 

second kind are similarly given by 

(7.29) 

(7.30) 

These are plotted in Figs. 5 and 6. 
Expanding expressions (7.26) and (7.27) for small 

values of the frequency variable j/jC, then putting 

p1=21- 1 

i-2=.7&- 1, 

(7.31) 

we find the following approximations for the waves of 
the first kind 

u'_l_l 

0 

f 2 bl1622-~12)2 

vc 2jc (Y12+Y22)2 

~lsrz(Tl+T2+3CJ2). (7.32) 

(7.33) 

The phase velocity VI of the waves of the first kind is 
These approximates are quite satisfactory when 

given by 
compared with the exact values. 

vrlvC=l/I &I. 
Similarly, for the waves of the second kind we have 

(7.26) the approximations 

The ratio VI/V, is plotted as a function of the fre- 
quency ratio j/ jC in Fig. 3 for the six cases of Table I. 
The numbers in all figures refer to the six cases listed 
in Table I. 

Attenuation of the waves of the first kind is given by 

L/XI = I 2-1 I (f/f 0) (7.27) 

and plotted in Fig. 4. The amplitude of the wave as a 
function of the distance is proportional to exp( - x/x1) 
and L, is a characteristic distance given by 

+A. 
2nfc 

(7.28) 

The phase velocity and attenuation of the wave of the 

_= 2f hu22-cd) VII 

( > 

5 

VC fe (Y12fY22) 

(7.34) 

-L 1 f (Y12+Y22) f 
-= -- 

XII ( 2 fC ( ullu22-u122) ). 

(7.35) 

The approximations (7.34), (7.35) are plotted as 
dotted lines for case 3 in Figs. 5 and 6. The departure 
from the exact value is small. This has also been 
verified for the other cases. These approximations cor- 
respond to diffusion type propagation with an attenua- 
tion factor per cycle equal to exp (-2~). In the low- 
frequency range therefore the waves of the second kind 
behave like a diffusion or heat conduction phenomenon 
and the attenuation is very high. 
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