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WHAT Is APPLIED MATHEMATICS? 

I T HAS BEEN SAID that France is divided into 40 
million Frenchmen. To raise the question of 

definition for applied mathematics is to invite perhaps 
as many answers as there are applied mathematicians 
or rather people who call themselves by that name. 
There have been numerously quoted remarks on this 
subject, some by individuals bearing great names in 
mathematics. I personally recall a lecture by the 
late Harry Bateman in which the applied mathema- 
tician was characterized as a “mathematician without 
mathematical conscience.” There is no doubt that the 
statement reflects the existence of a deep and insoluble 
conflict-the contradiction between the ideal of clarity, 
precision, and rigor of mathematics as a science and the 
adventurous and imaginative urge of the mind, whether 
it is striving for the ultimate in its impatient search for 
truth and artistic expression or laboring under the fierce 
compulsions of the pragmatic and competitive world 
of technology. One could understand the feelings of 
the artist who undoubtedly benefits from the scientific 
study of colors but who would be constantly reminded of 
proceeding with rigorous conformity to the dictates of 
physics and psychology. 

An excellent illustration of the conflicting mental 
attitudes referred to here is given by Sir Geoffrey 
Taylor in a recent witty essay.t His advice to those 
who would seek counsel from a mathematician is to use 
the approach one would make to a child : “Make your 
question as simple as possible and don’t be disappointed 
if he finds that he cannot answer the exact question 
you put to him but can answer a related but rather 
different one.” 

Evidently it would be a drastic fallacy to envisage 
this conflict as opposing the pure and the applied 
sciences. Indeed it has generally been the rule that 
many significant discoveries in pure mathematics were 
made by a process of trial and error which did not 
exactly reflect a spirit of conformity with the conven- 
tional requirements of rigor. This is not to say, of 
course, that rigor lies outside the realm of aesthetics, as 
mathematicians well know, but simply that many 
times, because of human limitations, it cannot be 
attained except through lengthy and laborious meth- 
ods. 

* Research Consultant. 
t Taylor, G. I., Rheology for Mathematicians, Proceedings of 

the Second International Congress on Rheology; Academic 
Press, Inc., New York, 1954. 

If mathematicians were to be assembled to agree 
on a formal definition of the fieldof applied mathematics, 
I believe the result would bear a rather embarrassing 
similarity to the emasculated and noncommittal 
resolutions that the present generation has resigned it- 
self to accept as the normal product of international 
political gatherings. As a definition would surely be 
presumptuous, is it not preferable to recognize that we 
are dealing here not with an established body of science 
but rather with a way of life of the scientific mind in 
general, best understood by a description of its activ- 
ities and of its peculiar creative tools and processes? 
It may be truly said that mathematics today is not 
only the very fabric and soul of the physical sciences 
but also their universal language, providing the essen- 
tial symbols through which the key concepts are not 
merely conveyed, but created, molded, and refined. 

If there is a conflict, we should recognize that it is not 
between people but that it arises in the individual and is 
reflected with all the gradations and shades of a spec- 
trum-between those whose preoccupation is mainly 
with the creation of a systematic and rigorous body of 
science and those whose interest in mathematics is 
purely pragmatic. Such disharmonies may be some- 
times trying, but we should look upon them as a sign 
of inner vitality. For in this dual aspect and con- 
flict lies the most fertile source of progress, from the 
early attempts at land surveying in primitive agri- 
cultural’ societies and their influence on the develop- 
ment of abstract geometry to the complexities of pres- 
ent-day technology. The contrast is reflected on many 
planes in the teaching and practice of applied mathe- 
matics, as it is only partly a science and mainly a craft 
and an art. This is particularly apparent in the teach- 
ing, for, as experience shows, it is usually much easier 
for a student to acquire the formal trappings of a theory 
than the ability to use it and adapt it to a particular 
situation. 

In this respect, the achievements of von K&m&r 
as an applied mathematician are perhaps better ap- 
praised by stressing the imponderable rather than by 
referring to specific contributions that are amply dis- 
cussed elsewhere in this issue. He gives innumerable 
examples of how to tackle difficult and complex prob- 
lems in widely different ,fields, providing the student 
with the opportunity of living through the same creative 
experience and inspiring him with an indelible vision 
and an enduring faith in the effectiveness of such 
methods in pure and applied science. 
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THE INTERRELATION BETWEEN PURE AND 
APPLIED MATHEMATICS 

We can best characterize the relationship between 
pure mathematics and the surrounding sciences as a 
continuous process of cross-fertilization. From the 
applied fields questions constantly arise-problems of 
precise definition, existence, unicity, convergence, 
and others that are a challenge in pure logic and belong 
to the classical realm of pure mathematics. In fact, 
it is sometimes difficult to say whether some questions of 
this type belong to the pure or applied category. Take, 
for example, the problem of unicity of solution of the 
Navier-Stokes equations in fluid dynamics. We may 
consider this as a problem for a specific equation 
concerned with a physical problem, but obviously 
the question immediately arises of the properties of 
equations of a similar type, devoid of any physical 
application and of the possibility of generalizing par- 
ticular theorems to more general classes of objects. 
One can cite innumerable occurrences of this process. 
One of the most striking is the recent impressive de- 
velopment of theories in the functional and abstract 
spaces which found their origin and inspiration in the 
familiar eigenvalue problems of classical and quantum 
physics. As another example in a totally different 
branch of physics we could mention the boundary- 
layer theory, whose progress is closely associated with 
the name of von Karman, and which has led to a new 
and interesting study of the properties of differential 
equations when a high-order derivative is multiplied by 
a vanishingly small coefficient. 

In turn, such progress in the domain of pure form 
and concept suggests new viewpoints and novel ways in 
the formulation of physical problems. The tensor 
calculus, a primary conceptual tool in the creation of 
the theory of Relativity, was itself the result of abstract 
developments and generalizations arising from the 
study of geometric surfaces. Here we have a typical 
example of the stimulation and the molding of physical 
thinking by purely mathematical concepts. 

In this sense, the mathematical sciences may be 
looked upon as providing not only an indispensable 
and universal language for our description and under- 
standing of nature but also the spark for the imagina- 
tion, casting the experimental facts in a new light and 
suggesting totally new viewpoints and relationships 
which would otherwise have remained unnoticed. 

THE HEURISTIC AND QUALITATIVE FUNCTIONS 
OF MATHEMATICS 

This leads us to an even more striking influence of the 
mathematical viewpoint on physical discovery, one 
that is often overlooked but is becoming more apparent 
every day as modern physics reaches deeper into the 
nature of matter and energy itself. We refer to what 
might be called the heuristic function of mathematics- 
i.e., that by which it operates as a catalytic agent for 
new discoveries of physical laws. There exists a com- 
mon misconception embodied in the popular belief that 

science always proceeds in steps, from the collection 
of unbiased and precise empirical facts to their general- 
ization in the form of systematic scientific laws. The 
prevalence of this viewpoint, due perhaps to the per- 
vasion of our elementary and undergraduate teaching 
by the positivism of Auguste Comte, has had an im- 
ponderable but pernicious influence on the layman’s 
conception of creative scientific thought and on scien- 
tific progress itself. There are numerous instances of 
scientific discoveries where the pattern is actually 
reversed, and where mathematical theories determine 
directly the type and scope of physical measurements 
and observation. One of the earliest and most striking 
examples is the discovery of radio waves. The exist- 
ence of these waves was not suspected and could not 
be derived mathematically from the laws of electro- 
dynamics as formulated by Faraday and Amp&e. It 
took Maxwell’s addition of a term known as the dis- 
placement current in the equations to make it possible 
to derive theoretically the existence of electromagnetic 
radiation, later confirmed in most striking fashion by 
Hertz’s famous experiment. It must be emphasized 
that Maxwell’s brilliant intuition was essentially a 
modification of the physical laws motivated solely 
by considerations of mathematical symmetry, con- 
sistency, and aesthetics. Some of the most spectacular 
advances in physics have been consequences of this 
type of thinking. Its latest triumph is the experi- 
mental confirmation of the existence of the antiproton. 

Having considered what we have called the heuristic 
value of mathematics in the discovery of physical 
laws, let us turn our attention to another aspect 
which can be characterized as the qualitative in con- 
trast with the quantitative. It is represented by the 
approximate laws and the mathematical models whose 
object is to give a compact and simple mathematical 
representation of basic phenomena. In this category 
we have, for example, sources and sinks, the radiation 
of a Hertzian dipole, etc. They may or may not be 
realizable physically, but they furnish a precise formu- 
lation of an intuitive concept, combining the advantage 
of simplicity while containing the essence of the physics. 
Such models are further useful as building blocks in the 
representation of a more actual and complex situation. 
We are referring here more particularly to the use of 
such models in mathematical physics as a powerful 
method for acquiring insight and understanding. We 
shall have occasion to come back to this later in con- 
nection with the subject of engineering sciences, where 
the greater complexity of the problems increases the 
need for such models and requires an unusual skill 
on the part of the applied mathematician. 

One might argue that it should be simple for a mathe- 
matician and an applied scientist to join efforts in such 
attempts, each as a specialist in his own field; but in 
fact this always proves to be extremely difficult be- 
cause of the high degree of compromise required be- 
tween the use of sufficiently simple mathematical 
techniques and the inclusion of the most significant 
physical parameters. 
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Before ending these remarks, I should like to add a 
slight note on the critical side. It may occur, and it 
has happened, that physical thinking has been confused 
by a choice of inappropriate mathematical techniques. 
Such occurrences, however, are fairly infrequent and 
usually quickly corrected by subsequent investigators. 

THE ROLE OF NUMERICAL ANALYSIS AND COMPUTERS 

Finally, let us consider the more obvious applications 
of mathematics, those that are primarily of a computa- 
tional nature. This is a field in which, as a rule, the 
student trained in the techniques of pure mathematics 
finds his way more easily. I do not wish to enter into a 
detailed discussion of this vast field which has ac- 
quired a tremendous impetus since the advent of 
electronic calculators. I wish merely to point out two 
aspects of the numerical approach to scientific prob- 
lems, which are not always given clear recognition. 

One function of numerical analysis is to act as an 
instrument for empirical discovery. As an example we 
may cite the law of asymptotic distribution of prime 
numbers which was first formulated tentatively 
by Gauss after a study of prime number tables. The 
power of modern computing machines opens vast new 
possibilities along this line. Recent numerical work on 
the evolution of a complex dynamical system with non- 
linear coupling terms promises to throw new light on 
the validity of the axiomatic foundations of statistical 
mechanics. 

Aside from this role in fundamental science, another 
important function of the numerical work-and one 
which does not seem to have reached its full develop- 
ment-is to act as a substitute for elaborate physical 
experimentation. This is of particular importance in 
areas where the fundamental laws are well known 
and when it is desired to develop new principles appli- 
cable directly to more complex situations. This is, for 
instance, the case if we want to derive from the ele- 
mentary laws of particle interaction some understand- 
ing of the general behavior of groups of particles such 
as atoms and crystals. Calculation of a sufficient 
number of cases may lead to the formulation of general 
laws much as they would arise from a systematic 
experimental program. There are of course drastic 
limitations in this approach. It does, however, possess 
the advantage over the purely experimental methods 
of enormous flexibility in the choice of parameters and 
variables. Furthermore it opens the way to the study 
of phenomena under conditions unattainable under 
physical testing, such as those of extremely high pres- 
sure and temperature. 

As we shall have occasion to point out below, there 
seems to be a whole field as yet unexploited which lies 
at the borderline of pure science and engineering. 
As an example among hundreds, I might mention the 
calculation of electromagnetic radiation and scatter by 
va.rious objects and antennas of elementary geometrical 
shape. 

Finally, it cannot be too strongly emphasized that, 
no matter how powerful the numerical tools of analysis 
and the computing devices, they may predict the be- 
havior of a particular system, but they never as such 
furnish an understanding or a grasp of the qualitative 
effect of each of the factors involved. They can never 
therefore substitute for the necessity of mathematical 
models and simplified theories. In fact, such simpli- 
fied models not only are essential in the efficient plan- 
ning of computing programs but act as the prime source 
of invention and imaginative design. 

MATHEMATICS AND ENGINEERING EDUCATION 

It is perhaps in engineering that the most exciting 
challenge arises ror broadening the use of mathematical 
methods. We can distinguish two major roles to be 
played by mathematics in the engineering field. One 
can be characterized as conceptual. With the ever- 
increasing complexity and the expanding domain of 
technology, it is essential for those engaged in research 
and development to possess broad knowledge and in- 
sight in connection with the problems investigated. 
It is in the very nature of mathematics to be syn- 
thetic and to provide compact formulation for a vast 
body of learning in widely different and apparently 
unrelated fields. We have in recent years become more 
familiar with what has come to be known as analog 
computers. However, it is not so much in its applica- 
tion to computing that the concept of the analog is most 
useful. There are innumerable phenomena obeying 
laws formulated by the same equations. Familiarity 
with one type of phenomenon immediately leads to 
understanding of a large class of others falling in the 
same analog category. One of the well-known ele- 
mentary examples is the theory of the electric circuit 
with capacity and inductance. The differential equa- 
tion for the electri6al variable is identical with that of a 
spring-mass system, thus bringing the invisible elec- 
trical phenomenon within the immediate grasp of 
common experience. 

What I wish to emphasize here is a point that seems 
to have been generally overlooked not only by the 
layman but also by some who are interested in the 
promotion of mathematical courses in the engineering 
schools-namely, the power of mathematics as an 
educational tool. It is clear that the example of the 
electric circuit cited above may be multiplied ad 
infinitum. To cite only a few, such models as the beam 
on elastic foundation occur repeatedly in a wide variety 
of problems governed by the same simple differential 
equation. Phenomena that involve diffusion, heat and 
electrical conduction, laminar viscous friction, etc., may 
all be explained rapidly if the student possesses the 
mastery of a single type of differential equation. 
Aeronautical engineers are well acquainted with the 
far-reaching analogy between the laws of electrostatics 
and magnetism, and the basic principles of subsonic 
aerodynamics. The more recent developments in the 
field of compressible flow have shown the usefulness of 
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the Lorentz transformation in airfoil theory, thereby 
familiarizing the student of aeronautics with one of the 
fundamental aspects of a remotely different subject- 
the theory of Relativity. 

This interrelation goes even further than is usually 
apparent because many courses have been taught as 
specialized fields, and the classrooti presentation Lhas 
usually been encumbered by the addition of unessential 
features required by traditional approaches in form and 
concept. Enormous strides could be made in the 
training of engineering students if a unified treatment 
of science subjects could be introduced, eliminating 
much duplication and confusion while reaching simul- 
taneously the dual goal of timesaving and a deeper 
understanding of the subject. 

No doubt not all students possess the ability to grasp 
the abstract concepts involved or the ihagination to 
master the techniques and a change in tlie direction 
indicated would certainly require a r&her basic re- 
orientation of our present way of thinking in engineer- 
ing education, if only in the selection and encourage- 
ment of the more gifted student, &d the creation of 
more than one level in the quality and scope of training. 

We should realize that there has been a gradual break- 
down of the barriers between the various branches of 
engineering and an enormous expansion of the knowl- 
edge in all fields. A more extensive use of the mathe- 
matical tool furnishes the only hope of coping with the 
educational problems involved in these two trends, and 
in our losing battle against increasing specialization. 

From the viewpoint of the teacher, the job of pre- 
senting the subject matter in such fundamental fashion 
is also not an easy one. Many subjects have to be 
completely rethought. Formulating a problem or a 
physical theory so that all its essential features are 
properly represented in the simplest mathematical 
model is an art. It cannot be taught in systematic 
fashion but, like all craftmanship, must be acquired 
from example 2nd mastered through practice. The 
difficulty lies not generalIy in the mathematics but 
in the proper evaluation of the various factors in d 
physical situation as to their essential or secoudary 
character-a point that we have already stressed above 
in connection with mathematical models. 

Not the least contribution of von K&m&n to the 
advancement of the engineering sciences has been 
through his teaching. His lectures here and abroad 
have left their imprint on the thinking and outlook 
of generations of students. They have learned by 
direct example how complex phenomena could be re- 
duced to the essential and how the mathemat.icalX 
language can be made to express ideas and formulate 
scientific problems with simplicity, elegance, and pre-. 
cision, by a skillful balance between sophistication and 
misleading crudeness. The fact that many of these 
former students, at present in leading and influential 
positions, have thus come to realize the power and 
1:racticability of mathematical methods is in itself a. 
substantial factor in the progress of our present ad- 
ministration of engineering research and development. 

During the years preceding World War II, an attempt 
was made to crystallize this approach to engineering 
problems and applied mathematics in the form of a 
textbook written by von K&-m&n in collaboration 
with this writer. As its title Mathematical Methods in 

Engineering infers, the emphasis was not on the teach- 
ing of mathematics or engineering but on the art of 
formulating problems mathematically. As such it 
constituted perhaps a pioneering attempt. However, 
in appraising the effectiveness of such writings, one 
should remember that, especially in the learning of a 
craft, the written word is never a substitute for the 
teacher. ’ 

MATHEMATICS IN ENGINEERING RESEARCH 

AND DEVELOPMENT 

We should also keep in mind that, while the subject 
of engineering mathematics bears strong resemblance 
to mathematical physics, there are also some differences 
in both the scope and the methods. It is clear, of 
course, that much of the fundamental knowledge in 
physics is of immediate use in the engineering sciences. 
However, there have been many areas of physics which 
have been left undeveloped. This has happened to 
problems that did not lie directly in the path of the 
major objective of physics-namely, the quest into 
the fundamental nature of matter and energy. It is 
especially true for such problems as those of boundary _ 
layer and turbulence, which, in addition to being on the 
sideline of fundamental physics and exhibiting con- 
siderable theoretical difficulty, have been investigated 
primarily because of their great technological interest. 
This also explains why applied mechanics and applied 
mathematics have been closely associated in their 
histqrical development. 

And this leads us to another difference between engi- 
neering mathematics and mathematical physics. 
Many engineering systems are exceedingly complex. 
Furthermore the compromise between theoretical 
simplicity and accuracy generally lies at a different 
level from that of pure science because of the engineer’s 
greater emphasis on the practicability of a theory and 
the margins of error usually accepted in technological 
problenis. Therefore the degree of simplification re- 
quired in the mathematical formulation of an engineer- 
ing problem is often greater, with the accompanying 
demand of, unusual specialized ability on the part of 
the analytical engineer. 

One of the usual mathematical difficulties that occur 
in the problems of the engineering sciences in contrast 
to those in mathematical physics is nonlinearity. Only 
an extremely small class of nonlinear differential equa- 
tions has beefi successfully treated by the mathematician. 
This is especially true in the case of partial differential 
equations, and much progress has been achieved in 
this field by the ingenuity of the individual worker in 
applied mechanics and the engineer. Among these von 
K&-m& stands in a unique position. He has given 
an excellent review of such problems and methods, 
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including many original viewpoints, in the article T/z 
Engineer Grapples with Nonlinear Problems.* It is also 
in connection with such problems that the art of linear- 
ization has its greatest value and makes the largest de- 
mand on the ingenuity and flair of the applied mathe- 
matician. The remarkable success of the linear airfoil 
theory, particularly in the nonstationary case, is an 
outstanding example of the power and fertility of this 
approach. Along the same line, one of the most 
ingenious discoveries is the so-called Kutta- Joukowski 
principle, which approximates the effect of viscosity on ) 
the flow around an airfoil by a potential flow with 
circulation, transforming an insuperable mathematical 
problem into a simple one and leading to many new 
and fruitful physical viewpoints. 

The importance of the conceptual and theoretical 
approach should also be emphasized in connection 
with experimental progra: us in engineering research 
and development. A huge amount of experimental 
data has been accumulated in the past at enormous cost 
in time and energy. A large portion of this data, now 
buried in files and forgotten, has contributed little 
to technological advances because of the absence of 
coordinating theoretical concepts. 

Having discussed the conceptual role played by 
mathematics in engineering, let us now consider the 
more evident one that can be characterized as that of a 
super slide rule. While this viewpoint is familiar and 
might be said to constitute the popular notion, I 
believe there are also some current misconceptions. It 

is true that electronic computers are fast becoming 
instruments of enormous power and flexibility. This, 

however, requires of the engineer an even higher 
standard in scientific training. A keen appreciation 
of the capabilities of the machines in terms of other 
available tools is necessary, as well as a competent 
evaluation of the reliability and accuracy of the input 
data. As experience shows, it is often possible to 
solve complex problems by skillful simplified analysis, 
statistical methods, or synthetic mathematical theorems * 
without recourse to the expensive brute force procedure 
of the large computers. This type of approach has the 
added advantage of bringing out certain general prin- 
ciples that afford a better understanding of the problem 
and may contribute unexpected and useful results. 

Everything points to an ever-increasing extension 
of theoretical and numerical methods versus trial-and- 
error testing in design and development. There are 
several reasons for this trend: first the availability 
of the new computing tools themselves, then the in- 
creasing cost and complexity of prototypes, and finally 
the constant advances in all fields of macroscopic 
physics and a better knowledge of the laws and prin- 
ciples applicable in the engineering sciences. This 

last factor has often been underestimated in discussions 
among engineers about the relative merits of the so- 
called theoretical and “practical” approaches. 

* Fifteenth Josiah Willard Gibbs Lecture of the American 
Mathematical Society, 1940, Bulletin, Amer. Math. Sot., Vol. 46, 
No. 8, 1940. 

In addition to the factors cited above, it may truly 
be said that a new dimension has been added to the 
analysis of engineering systems by the application of 
the methods of operations research and programing 
through which difficult design problems may be treated 
analytically for optimization, under conditions in- 
volving a high degree of compromise between various 
technological and even human factors. 

A well-conceived development program should re- 
duce the most expensive phase-the actual physical 
testing-to the minimum required by our inevitable 
ignorance of certain factors in the physical laws, the 
hazards of materials quality, and operational uncer- 
tainties. As a consequence, testing becomes more and 
more in the nature of a spot check and verification or a 
means of answering definite and specific questions. 

THEFUTURE 

We stand at the threshold of a new era, and the 
future presents unlimited horizons. We have referred 
only casually to the applications of mathematics to 
systems analysis, operations research, and programing 
and have made no mention of information theory, the 
theory of games, economics, or the biological and social 
sciences. In some of them, the role of mathematics 
is still in its early stage but holds tremendous promise. 

It must be expected that the rapid progress and 
expansion of electronic calculators will considerably 
enhance the practical value of mathematical theories. 
With wider application of new inventions, such as the 
semiconductor elements, miniaturization, and the 
introduction of automatic coding, we may visualize 
the development of small-size analog and digital com- 
puters of enormous speed and flexibility, requiring no 
specialized skill for their operation. The widespread 
use of such powerful calculating tools will certainly 
promote new interests and advances in pure mathe- 
matics. Many problems that were only of academic 
interest in the past now become key questions related 
to the applications of the new computers. 

In the educational field we should recognize three 
distinct areas-the teaching of mathematics to science 
and engineering students, mathematics as a cultural 
subject, and the teaching of pure mathematics and its 
techniques as a distinct science and specialization. 
We have already discussed the advantages of a more 
unified outlook in the training of science and engineer- 
ing students. There is no doubt that considerable 
difficulties shall be encountered in raising the present 
standards, but should we not pay more attention to 
the selection of students particularly gifted to benefit 
from such a change? We must keep in mind that an 
important purpose of advanced teaching, as opposed to 
mass education, is to stimulate existing talent and help 
it discover itself. 

In the field of research and development, progress 
will depend not only on the technical personnel but also 
to a great extent on those at the policy-making and 
administrative levels. Here again improved educa- 

(Continued on #age 489) 
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tional programs can ensure that such positions are 
occupied by leaders who possess a thorough grasp of 
the nature and potentialities of applied mathematics 
and are capable of making an efficient choice and use 
of facilities and personnel. In this connection it may 
be well to emphasize that in many cases it is not so 
much a question of organizing and blueprinting as it 
is one of creating a suitable climate. 

While the pragmatic viewpoint is important, cer- 
tainly the cultural aspects of mathematics should not 
be overlooked. The fundamental discoveries in pure 
mathematics must be looked upon as major contribu- 
tions to our culture. We are all familiar with the 
famous paradox of Zeno illustrated by the story of 
Achilles and the tortoise. The object since antiquity 
of endless argumentation by philosophers, this paradox 
finds its clarification in the theory of infinite series. 
That it is essential for those in the applied fields to 
be acquainted with the more academic questions and 
the discipline of rigor of pure mathematics is not only 
true because this knowledge and experience may sud- 
denly acquire unsuspected practical value, but it is 
also of importance simply for the same purpose that 

motivates the study of the liberal arts-the achieve- 
ment of an intimate communion with the great histori- 
cal currents of thought and the practice of a formative 
intellectual discipline. 

Finally, if we wish to carry this viewpoint to its 
ultimate conclusion, it is to be hoped that the teaching 
of mathematics as a purely cultural subject, stripped 
of its technicalities and the narrow viewpoint of the 
specialist, may become a requirement in our general 
curriculum. The impact of the mathematical sciences 
on our society is becoming more evident every year, 
influencing the language and concepts of our culture, 
and expanding rapidly into fields that until today 
were looked upon as the exclusive domain of those 
trained in the traditional methods of economics, law, 
and business administration, If the means of accom- 
plishment remain a question for debate, we should 
never lose sight of the fact that, in many ways, the 
final purpose is humanistic, and that intellectualism 
should never be promoted for its own sake or at the 
expense of the spiritual, the artistic, and the creative. 
Thus can we hope to meet the challenge of the future 
and fulfill its bold promise. 
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