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Abstract 

New principles are introduced for the formulation of dynamic 
problems in viscoelasticity for the most general case of 
anisotropy. One is a variational principle derived from irre- 
versible thermodynamics. The other a correspondence prin- 
ciple between viscoelasticity and elasticity. Applications to the 
mmics of viscoelastic plates and rods are developed as 
examples. The variational principles are applied in conjunction 
with a very general method of approximation by expanding the 
deformation in a power series across the thickness. The 
method is applicable to viscoelastic shells. The concept of 
partial mode as a generalization of that of vibration mode for 
the elastic case is also introduced. 

1. Introduction 

General stress strain laws in anisotropic linear viscoelastic- 
ity were derived in operational form from irreversible thermo- 
dynamics by the writer’ [ 11. In a subsequent publication 121 it 
was shown that the stress strain relations are a particular case 
of a more general formulation of irreversible thermodynamics 
applicable to a wide variety of phenomena of the linear relaxa- 
tion or viscous type when mechanical electrical thermal chemi- 
cal effects, etc. are simultaneously present and may be coupled 
to each other. Variational principles were also formulated and 
a brief outline was given of their applicability to viscoelasticity. 
We present here a more extensive treatment of methods derived 
from these principles to calculate stresses and deformation in 
viscoelastic media. The principles are generalized also to in- 
clude all dynamic phenomena such as wave propagation and 
vibrations. The methods are applied mostly to examples of 

1. Numbers in brackets refer to the bibliography at the end of the 
paper. 



plates and rods of isotropic materials but they apply without 
difficulty to much more general problems including materials 
with a high degree of anisotropy. 

The general variational principle is established in section 2. 
In the case of viscoelasticity it may be considered as an exten- 
sion of the principle of virtual work to an operational form. 
Another principle which we call the principle of correspondence 
is a consequence of the formal analogy between the operational 
tensor and the elastic moduli and is formulated in section 3. A 
complete correspondence exist between the two so that all static 
and dynamic solutions of elasticity may be immediately trans- 
posed into a corresponding viscoelasticity solution by simply 
replacing the elastic constants by operators. Because of the 
variational principle of section 2 the correspondence also ex- 
tends to all Elasticity solutions obtained by variational methods. 
In the more restricted domain of static and isotropic problems, 
the existence of associated solutions in elasticity and visco- 
elasticity was also noticed by Lee. [5] 

Illustrations of the principles are shown in sections 4 and 5 
by application to the dynamics of plates and rods. The varia- 
tional principle is a very flexible and powerful tool for the sim- 
plified formulation of complicated problems by the use of partial 
generalized coordinates. It is shown how this method may be 
used to establish equations for vibrations and wave propagation 
in plates and rods to any degree of accuracy by expanding the 
displacements in a power series along the thickness coordinate. 
More appropriate series such as combinations of powers and 
trigonometric functions or other functions may also be used 
depending on the problem. The method is readily applicable to 
the dynamics of viscoelastic shells. Equations are also ob- 
tained from the principle of correspondence. 

In section 6 we discuss the concept of partial mode which 
constitutes a generalization of the vibration modes of elastic 
media. A solution for the moving load on a beam or plate is 
also indicated. 

The treatment of plates and rods are intended here more as 
examples of the methods and is of course far from exhaustive. 
A more complete discussion should be carried out ultimately 
regarding the best choice of generalized coordinates to achieve 
a suitable compromise between simplicity and accuracy. 

Extension of the present methods to include non-linear prob- 
lems of large deflections will be presented in a forthcoming 
publication. [ 71 A brief account of the method as applied to 
plates was given in references [2] and [8]. 



2. Variational Principles Derived from 
Irreversible Thermodynamics 

We consider a viscoelastic continuum which is linear and may 
have a most general anisotropy. The small strain tensor in 
terms of the displacement Ul and the coordinate Xi is 

(2.1) 

From the principles of irreversible thermodynamics we have 
shown [l] that under the assumption of linearity the strain is 
related to the stress up,, by 

. . 

up,, =;P ij e.. 
/fv lJ 

ij 
The tensor Ppv is an operational expression 

&D;T +Dijv +PD 
S 

Li; 

in the time operator 

d 
P=* 

(2.2) 

(2.3) 

(2.4) 

The D’s are constant tensors and the r’s are decay constants 
of “internal degrees of freedom.” 

The summation sign in Eq 2.3 may be replaced by an integral 
if there are a great number of internal degrees of freedom-i.e. 
a relaxation spectrum. In a general way we may write 

. . 
pij = 

!lv 
ij (r)Y(r)dr + Dzv + p Dfv (2.5) 

where y(r) is a spectral density function which may not neces- 
sarily be continuous and may contain discontinuities of the Dirac 
function type. This property may of course be also formulated 
by introducing Stieltjes type integrals. 

The tensor has the following symmetry properties 

P’j *. .* = plJ = pJ1 
IF(v vp flv 

= P;v (2.6) 



Because of this symmetry, we may introduce an equivalent six 
by six matrix relating the six stress components to six strain 
components eii and 2e.. = 
the shear. 

9 
Yij where 0 f j and Yij represents 

In this system there are twenty one components. This opera- 
tional tensor constituting a six by six symmetric matrix, which 
generalize the elastic moduli of the classical Elastic Theory. 

The above operational relations are a particular case of the 
general theory of linear irreversible thermodynamics, as for- 
mulated in references [l] and [ 21, Being given any system of n 
thermodynamic state variables, it is possible to derive equations 
for the time history of the systems under given perturbations if 
we know two invariant functions. One is a function of the time 
derivatives of the state variable and is proportional to the rate 
of internal entropy production. It corresponds to a generalized 
dissipation function. The other is a function of the state vari- 
ables and represents a generalized free energy. Relations of 
the type (Eqs 2.2 and 2.3) arise when we consider a system con- 
taining hidden coordinates and we wish to find expression for the 
observed coordinates only. The assumption that viscoelasticity 
results from a great number of hidden thermodynamic coordi- 
nates lead to the above stress strain relations. 

In reference [ 21 we have formulated variational principles 
applicable to irreversible thermodynamics. One of these prin- 
ciples is a general law of minimum entropy production. It is 
applicable to viscoelasticity. Another variational principle 
applies to the case where certain coordinates are hidden and is 
therefore particularly adaptable to the case of viscoelastic 
materials. The principle was formulated for static viscoelastic 
problems in reference [z]. It may be considered as a generali- 
zation of the principle of virtual work of Elasticity. We shall 
now derive a similar principle applicable to viscoelastic prob- 
lems which include inertia forces. 

We formulate d’Alembert’s principle as follows: 

2 J.. piiP 6upd-r 
I- 

These equations express that the virtual work of the internal 
forces is equal to the virtual work of the inertia forces and the 
boundary forces. 



The virtual displacement dufl and associated strain vari- 
ations depv are applied in the volume -r and at its boundary s. 
Forces FCI per unit area are applied at the boundary and p is 
the mass density. The method hinges on the symmetry of the 

. . 
tensor Plv . Because of this symmetry we may write 

. . 
flv 

= upv beflv =!F 2pzveij depv 

. . 
=$Yz pij e 

pv ij 
epv (2.8) 

We introduce the following two operational invariants integrated 
over the volume 

epvd 7 

and 

(2.9) 

(2.10) 

The latter corresponds formally to the kinetic energy. With 
these invariants the variational equation is written 

6 (J + T) = ; 
SI 

F bupds 
s /l 

(2.11) 

This expresses that the variation of J + T is equal to the virtual 
work of the boundary forces. 

The significance of this variational principle and its useful- 
ness will be illustrated by its application below. 

Finally, it should be noted that the variational principle (Eq 
2.11) or the principle of correspondence formulated hereafter 
depend only on the symmetry property of the operational mat- 
rix, and not on any particular nature of the operator as a function 
of p. 

The variational principle still applies if the operators are 
derived from a viscoelastic material where the kinetic energy 
associated with hidden coordinates is taken into account. The 
operators would then be similar to the impedance matrix of an 
electric network with inductance resistance and capacity. In 
this case the roots of the denominator of the operational tensor 
(Eq 2.5) could be complex conjugate. 



3. Principle of Correspondence 

We have seen that the stress-strain relations are identical to 
those in the classical theory of Elasticity, when the elastic 
moduli are replaced by the operators (Eq 2.3). With respect to 
a geometric symmetry as already indicated in reference [l] the 
same relation holds as in Elasticity. Invariance under geomet- 
ric symmetry operations require that the number of independent 
operators be the same as the number of elastic constants in the 
theory of Elasticity. For instance, cubic symmetry requires 
three independent operators and isotropy two. Finally, we have 
just seen that a variational principle can be formulated which is 
the exact counterpart of the principle of virtual work and 
d’hlembert’s principle in the theory of Elasticity. We may 
therefore formulate the general rule that a large class of equa- 
tions of the theory of Elasticity whether derived by direct or 
variational methods may be extended to the most general type of 
viscoelastic material provided the elastic constants are re- 
placed by the corresponding operators. We call this the prin- 
ciple of correspondence. 

As an example let us consider waves in an isotropic visco- 
elastic material. The stress-strain relations in this case are 
written: 

Oxx = 2&e= + Re 

aYY 
= 2&e + Re 

YY 

uzz = 2QeZz + Re 

OXY 
= 2&e 

xy 

uYz 
= 2&e 

uzx = 2QeIl 

e =e 
xx + eyy +e 

zz 

This introduces the two operators: 

Q(P) = P 
f 

mQb-)Y(r)dr+ Q + QIP 

0 
p+r 

R(P) = P 
s 

\(r) Y(r)dr + R + R,p 

0 
p+r 

(3.1) 

(3.2) 



In the case of a discrete relaxation spectrum the integrals 
will be replaced by summations. A scalar 4 and a vector $ 
represent the displacement ii of the continuum in the form 

ii = grad 4 + Curl $ (3.3) 

The functions 4 and 6 satisfy the operational equations 

(R + 2Q) v; = tip@ 

QV;=p’P$ 
(3.4) 

where p is the mass density. 
Harmonic dilatational waves of circular frequency (,J propa- 

gating along x are represented by 

4 = exp (iwt) exp[ v& x ] (3.5) 

and the rotational wave by 

$I = exp (iot) exp (3.6) 

The operator p is replaced by iw in these expressions. 
For a material which is elastic under hydrostatic stress, 

there is only a single operator Q. In this case, as shown in 
reference [l] we may write R as 

R=K-;Q (3.7) 

where K is the elastic bulk modulus. 
Attention should be called to the proper application of the 

principle of correspondence to the case where the applied 
forces are not the product of a function of the coordinates by a 
function of time. In such a case we should first transform the 
applied load into a sum of forces applied at fixed points, each 
being multiplied by its own function of time. A particular case 
is that of a moving load. A possible representation of such a 
moving load could be a Fourier series in the coordinate variable 
with time dependent coefficients. 

We have stated that the principle of correspondence applies 
to a large class of solutions in the theory of Elasticity. In gen- 
eral it applies to all static solutions and to the dynamic solutions 
in operational form. 



4. Flexural Deformations of Viscoelastic Plates 

We consider a plate of thickness h. The x,y plane coincides 
with the plane of symmetry of the plate and the z axis is direct- 
ed along the thickness. A load f per unit area of the x,y plane 
and directed along z is applied. It is assumed that this load is 
distributed uniformly as a body force along the thickness. It is 
clear that flexural deformation will correspond to antisymmetry 
with respect to the x,y plane while extensional deformations 
will be represented by symmetry with respect to the same plane. 
For simplicity we shall assume that the thickness h is uniform, 
since the results can be readily extended to the case of non- 
uniform thickness. In that case the surfaces of the plates are 
represented by the planes z = + h/z. 

It should be pointed out that the case of loads applied to the 
surface of the plate on one side can be treated exactly as here- 
after. Such a load may be decomposed into an antisymmetry 
part of two equal loads acting in the same direction on top and 
bottom and a symmetric part when loads act in opposite direc- 
tions. The two systems excite separately flexural and exten- 
sional deformations. 

We shall first consider flexural deformations and use the 
variational approach. The method is quite general and applies 
to materials with complete anisotropy. However, in order to 
avoid undue heaviness we shall treat the isotropic case where 
the stress-strain law is given by the operational relations 
(Eqs 3.1, 3.2). 

We now introduce some simplifying assumptions regarding 
the deformation of the plate. We denote the three displacement 
components by u, v, w, and express them as Taylor series 
expansion in z 

n 
u =c unz 

n 

0 
n 

v=cv zn 
0 n 

n 
w=cw z” 

0 n 

(4.1) 

Where un vn wn are functions of x,y. Application of the vari- 

ational principle leads to partial differential equations in x and 
y for these quantities, with coefficients which are functions of 



the time operator p . The advantage of this method is that we 
may introduce gradually terms of higher power zn as we con- 
sider plates of increasing thickness. The problem of course is 
in practice to decide how many terms are required to achieve a 
desired amount of accuracy. In order to simplify further the 
formatism we consider a deformation which is two dimensional, 
i.e., parallel with the xz plane and independent of y. In this 
case v is zero and unwn are functions only of x. Since we con- 
sider flexural type deformations u is an odd function and w an 
even function of z. We shall use expansions to the third order 
in z and put 

u = ulz + sz2 

w = w, + w2z2 (4.2) 

The strain components associated with these displacements 
are 

e =zdu, 
dx 

-I- zs i!k 
dx 

e zz = 2w,z (4.3) 

2eZx = 2 + UI + z2( 2 + 3%) 

Considerable simplification results if we introduce additional 
constraints in the choice of the four unknown func tions u1 US w,, w2 
in such a way that the shear stress uzx be made to vanish at the 
surface of the plate. This requires the condition 

e 
zx = 

0 for ,=+h 
2 (4.4) 

The function US is then determined in terms of the three others 

~=_l!!!!z 
3dx 34h (%+u,, -2 

The strain component eZx becomes 

2eZx = (2 + UJl - $ ) 

(4.5) 

(4.6) 

The operational invariant J may be written as the volume 
integral ““” 

J= JJJ 4 d7 
7 

(4.7) 



with 

4 .=A 1 
2 %xexx + z *zzezz + uzxezx (4.3) 

In terms of the strain components and the operators this is 

I, = i(2Q + R)(e& + eiz) + Rezzexx + 2&e;. (4.9 

Neglecting all powers of z higher than zS this may be written 

I1 = i(2Q + R) 
2 

2 [ 
(2) + 4w,’ z2 1 

+2Rw2~z2+;Q(~ + u$(l - $ ) (4.10) 

We also must form the invariant T corresponding to the 
dimetic energy 

Neglecting again all powers of z higher than zS we find 

I, = ; pap[u12z2 + wt + 2w,w,z2] (4.12) 

Finally we must evaluate the virtual work of the external 
forces. Assuming that at the end points the forces accomplish 
no virtual work we have 

Applying now the variational principle (Eq 2.11) yields 

J 
I fh2 J 

I 
dJ+6T=f odw,dx+iz odw2dx 

(4.13) 

(4.14) 

The left-hand side is evaluated by integrating first with respect 
to z. This leaves us with integrations with respect to x. The 
variational calculus method gives three differential equations in 
x obtained by equating the coefficients on both sides of the 
equation. We find 



4(2& + R)w, + 2R 2 + @Pw, = ; (4.15) 

Qh d ( dw, hs w2 = f 
-3dx dx + ~1) + PPhw, + PZPE 

At the ends x = 0 and x = f we have the condition 

(2Q + R) 2 + 2Rw, = 0 

for a pinned end and the additional condition 

dw, 
dx 

+I$=0 (4.17) 

for a free end. 
Elimination of u1 and wa in the three equations (4.15) leads 

to 

(4.18) 

with 
p2Ph2 

B=l -z@zj-x+ 
B 

1 
= ~Q(Q + R, hs 

2Q+R 12 

In solving such an equation we must remember of course that 
the coefficients are time operators. 

The plate equations in two dimensions with terms up to the 
third order in zs can be developed as above without difficulty. 
They lead to partial differential equations in the coordinates 
x,y. A less accurate equation neglecting shear and rotational 
inertia may be obtained from the principle of correspondence 
replacing the Lam6 constants h and fi by the operators R and 
Q is the classical theory of elastic plates. We find 

bv4w0 + pphw, = f (4.19) 

The effect of shear and rotational inertia may also be intro- 
duced by similarly applying the principle of correspondence to 
the equation derived by Mindlin [3] for the elastic case. 



Equations for flexural deformations of beams and rods may 
also be obtained by the present variational method or by the 
principle of correspondence from elastic theories such as de- 
rived by E. G. Volterra. 

5. Extensional Deformations of Plates and Rods 

Extensional deformations are represented by displacements 
which are symmetric with respect to the plane z = 0. For sim- 
plicity in fact we limit the expansion of the displacement to the 
first order in z and write 

u = u. 

w = wlz 
(5.1) 

The invariant I,, is 

1 +R~wr+&Z2(&2 

(5.2) 
The invariant I, corresponding to the kinetic energy is 

I, = ; p2p 
[ 

I+)2 + W12Z2 
1 

(5.3) 

Integrating Ir, and I, first with respect to z then with re- 
spect to x and taking the variations we find the two differential 
equations 

-(2Q+R)$$-R2 +@pu,=O 

du 
(2Q+R)w,+R3j 

(5.4) 

More accurate equations would be obtained of course by consid- 
ering a third order approximation of the type 

u = u0 + %Z2 
(5.5) 

w = wrz + WfZS 

and to carry out the derivation as for the flexural case. For 
instance it is possible to introduce the constraint that ozz= 0 at 
z = f h/2, in which case 

w2=-j@&& h2 +“2)-&w, 
%Q (5.6) 



and we are left only with three unknown functions u,, $ wr 
leading to three differential equations for these quantities. 
Trigonometric expansion along z could also be used in conjunc- 
tion or not with power series terms. 

We may also use the principle of correspondence by taking 
advantage of known solutions for the elastic case. Extensional 
waves in an elastic circular rod were investigated by Mindlin 
and Herrmann [4]. Replacing the Lam6 constants by the car - 
responding operators R and Q we find the two equations 

-a2(2Q + R) dx2 %!Q- - 2aR 2 + p a2pu, = 0 

9 (5.7) 
8ki2(Q + R)w, + 4ak2R dx - a2k2Q a+ p”a”pwr = 0 

The longitudinal displacement is ~0 and the radial displacement 
at the boundary is wr. The radius of the cross section is a. 
The coefficient k, denotes the ratio of the Rayleigh wave veloc- 
ity to the shear wave velocity and 

4” = 0.422(2 - k2) (5.8) 

The analogy of the rod Eq (5.7) and the plate Eq (5.4) is ob- 
vious. The above equation contains correction coefficients k 
and $ not derivable from the theory. A more accurate theory 
for the rod could be obtained by the use of a third or higher 
order approximation of the type Eq (5.5). 

6. Partial Modes 

Consider the problem of forced flexural oscillations ex- 
pressed by Eq (4.17). If the plate is pinned at x = 0, x = [, the 
end conditions are satisfied by solutions of the type. 

w, = sin n7r 
i 

(6.1) 

If there is no external force, f = 0, each of these solutions in- 
troduced in the equation yields an equation for p, 

znb) = -f-i-+ Q n4r4 &‘~fl+;~)]$$+ p” F= 0 (6.2) 

Each solution may be called a “partial mode.” Each partial 
mode has its own spectrum of real or complex time constants 
pns such that the time history of the free mode is 



w,(t) = w, f C, epnst (6.3) 

It is represented by a superposition of damped oscillations or 
decaying motions all with the same sinusoidal spatial distribu- 
tion. The constants C, depend on the past time history of the 
partial mode at the time it becomes free. 

The set of pns which are the roots of Eq (6.2) have real 
negative parts. They may be called the partial spectrum asso- 
ciated with the mode n. Because P, Q and B, are operators 
function of p Eq (6.2) may be of a very high or even infinite 
degree and lead to an approximately continuous partial spectrum. 
The response to a transient loading is easily found by the opera- 
tional method. Consider a constant load with sinusoidal distribu- 
tion and suddenly applied at t = 0. The external force is 
represented by 

f = f, sin n p 1 (t) 

where 1 (t) is the unit step function 

(6.4) 

1 (t) = l 
f 

t>o 
(6.5) 

0 t<o 

The corresponding operational solution for wn is 

w,(t) = wnfn ( j$ + 
3n27r2 B 

1 c&z,ol(t) (6.6) 

It is seen by expanding the operator in partial fraction or 
using the method of residues that the roots of Z,(p), i.e. the 
partial spectrum will appear as time constants in the exponen- 
tials representing the motion. If we denote by Ui the roots of 
the equations, 

Q(P) + R(P) = 0 Q(P) = 0 Zn(P) = O, (6.7) 

the operator in Eq (6.6) may be expanded in partial fraction. 

The operational expression Eq (6.6) becomes 

(6.8) 

i A. 

wn(t) = wnfn 2 $1 - edit) (6.9) 



The case of an arbitrary load distribution is taken care of by 
Fourier expansion and any arbitrary time variation by applying 
Dubamel’s integral. 

The case of a moving load is handled in the same way by ex- 
pressing the moving load as a Fourier Series with coefficients 
as functions of time. An alternate method is to represent it by 
a sequence of fixed loads with a Dirac type function of time as 
a factor for each load. 

The concept of partial mode is quite general and has a deeper 
significance. Its introduction does not require that we first 
establish the differential equation. We could have started 
directly by considering amplitudes of mode shapes as general- 
ized coordinates and applying the variational method with the 
operational invariant expressed in these generalized coordi- 
nates. The existence of partial modes is a consequence of the 
property that in this case the invariant separates into a sum of 
partial invariants each containing only the coordinate of the 
associated mode. The variables have then been separated from 
the start. 
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