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1. Introduction. The time history of a thermodynamic system per- 

turbed from equilibrium under the assumption of linearity obeys certain 

differential equations. Starting from ONSACER’S reciprocity relations we 

have shown [l] how they may be derived from generalized concepts of 

free energy and dissipation function. This provides a most fruitful link 

between physical chemistry, thermodynamics, and mechanics, and leads 
to a very general formulation of relations between stress and strain in 

linear viscoelasticity in operational form. The outline of this development 

is given in section 2. The matrix relating stress and strain is formally 

identical with the matrix of twenty-one distinct coefficients in the theory 

of Elasticity. In linear viscoelasticity the elements of this matrix are 

functions of the differential time operator. The form of this opera.tor is 

also derived from the theory. Variational formulation of deformation 

and stress field problems are outlined in section 3 and lead to generaliz- 

ations of LAGRANGE’S equations with operational coefficients. We also 

introduce a general principle expressing the formal correspondence be- 

tween problems in viscoelasticity and Elasticity. By the latter it is pos- 

sible to carry over almost all solutions of the theory of Elasticity into that 

of a corresponding problem of viscoelasticity. Thus we uncover in one 

stroke a vast area of solved problems for viscoelastic media. This ap- 

proach provides a compact and synthetic formulation of linear visco- 

elasticity. As an example we derive in section 4 some general properties 

of a medium with a uniform relaxation spectrum. An outline is also given 

of a new approach to the dynamics of plates or shells for isotropic or 

anisotropic media. It includes the classical theories for elastic materials 

as first order approximation. The method is also, of course, applicable to 
improving the theory of plates and shells in the purely elastic case when 

the effect of increasing thickness is taken into account. 



252 M. A. BIOT 

The section 6 deals with large deformations and it is shown that the 
same methods are also applicable to this case. The approach to the non- 
linear problem is different from the traditional one followed by the mathe- 
matician in the elastic case. Thus it is possible to separate the nonlinear 
effects of purely geometric origin from those arising from the physical 
relations between stress and strain. This leads to a treatment of plates 
and shells with large deformations which parallels the one outlined above 
for the linear case. 

2. Viscoelastic stress-strain relations derived from thermodynamics. 
A thermodynamic derivation of the stress-strain relations in linear visco- 
elasticity for the most general case of anisotropy has been established 
by the writer. It is based on ONSAOER’S reciprocity relations. We have 
shown [I, 21 that a thermodynamic system in the vicinity of equilibrium 
is in its linear ranges of behaviour entirely defined by two quadratic 
invariants. A generalized free energy 

and a generalized dissipation function 

(2.1) 

(2.2) 

Both are positive definite forms and the q’s are incremental state variables 
defining the deviations of the thermodynamic system from equilibrium. 
The function is a generalization of HELMHOLTZ’S free energy concept to 
include the case of nonuniform temperature. It is defined in references [I] 

and [Z] as 
V=TS, (2.3) 

where S is the entropy of a total isolated system, by the adjunction of a 
large heat reservoir at the equilibrium temperature T. The dissipation 
function is defined as 

D= ;Tti, (2.4) 

where S is the rate of entropy production, in the total isolated system - 
expressed in terms of rate variables i. 

When a system is under the action of perturbing generalized forces Q 
similar concepts may be introduced by adding large energy reservoirs 
to the isolated systems, the total energy of the perturbing reservoirs 
being CQq . 

The total entropy S’ of this new system is then given by 

TX’= V-CQq. (2.5) 
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This constitutes a generalization of the GIBBS free energy concept to 

nonuniform temperature. Application of the ONSACJER reciprocity relation 

to the total system with the “forces” aS/aq and conjugate “fluxes” i 

leads to the differential equation 

(2.6) 

These are the equations of a spring dashpot system or in the electric 
analogy a resistance capacity network. An interesting case is that of a 

system with a great number of unobserved coordinates with conjuguate 

forces equal to zero. This is the analogue of a large R. C. network with 

a small number of outlets or pair terminals. The voltages of the terminals 

and the total quantities of electricity flowing at these terminals are related 

by an impedance matrix. Consider now an elementary cube of viscoelastic 

material oriented along the coordinate axes. If we attribute its visco- 

elastic properties to a large number of unobserved internal state variables 

associated with chemical, electrical, thermal effects, etc., we may assimi- 

late this element to an impedance for which the observed input forces 

are the nine stress components oi i and the associated coordinates the nine 

strain components, e, i. They are, therefore, related by 

(2.7) 

where Py,, is an operator analogous to an impedance matrix. The strain 

sensor is defined in terms of the displacement vector ui as 

(2.8) 

We have shown that if we consider the system represented by equations 

(2.6) with a generalized free energy and dissipation function and assume 
a large number of coordinates the operator is 

with 

(2.9) 

The operator has the following symmetry properties : 

p?? = pP = p?? = pii 
23 31 L3 PV. (2.10) 

These are the same as in the case of the elastic moduli of the theory of 

elasticity. There are twenty-one distinct operators which constitute the 
formal analogue of these moduli. We have also demonstrated [I] that ex- 

pression (2.9) is a general formula valid whether the coefficient matrices 
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of V or D are singular or not. The variable r represents a distribution of 

internal relaxation constants with a density or relaxation spectrum y (r). 

The integral expression may be considered as containing formally the case 

of a discreet spectrum when it is replaced by a finite or inilnite summation. 

The reader will recall the significance of these operators. Take for in- 

stance a relation such as 

(2.11) 

where E is a strain and o a stress. If the deformation E jumps from zero 

to unity at t = 0 and remains constant thereafter, it is represented by 

The first term in (2.11) is 
E = 1 (t) . (2.12) 

(T = At- 1 (t) = e-rt 1 (t) 
Z?+r 

This represents an exponential relaxation of stress. The term a: represents 

an elasticity while the last one represents NEwToNian viscosity 

o=Igl)&=/ld. (2.14) 

If E varies in an arbitrary way the first term is the integral transform 

(2.15) 

Attention is also called to the general significance of the term visco- 

elasticity in the present theory. It is to be taken in a very general sense 

and includes for instance the thermoelastic effect in which the energy 

dissipation of a perfectly elastic body arises through temperature varia- 

tions associated with the volume changes and the resulting exchange of 
heat through conduction. The theory of thermoelastic dissipation has 

already been developed by ZENER [3] but from a less general viewpoint. 

A thermodynamic approach to relaxation phenomena was also given 

by STAVERMAN [4] and MEIXNER [5]. 

3. Variational principles and Lagrangian methods. It is possible to 

formulate the fundamental laws of dissipative phenomena by means of 

variational principles. One such principle refers to minimum rate of 

entropy production for the stationary or nonstationary state. We have 

established [Z] that the rate of dissipation is a minimum for a given 
power input of the disequilibrium forces. Although this statement was 

proved only for linear thermodynamics, there are indications that it is 

a particular case of a much more general principle. In the case of visco- 
elasticity where the particular stress-strain relations has been expressed 

operationally we have also shown [Z] that it is possible to formulate a 
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different variational principle which establishes a powerful tool for the 
calculations of stress fields or deformations. We define an operational 
invariant 

which is the formal equivalent of the elastic potential energy, per unit. 
volume and we introduce the volume integral 

The variational principle is then stated as 

(3.3) 

This is an identity valid for all variations of the displacement field U. 
The integrals on the right-hand side are respectively the virtual work of 
the body force c? and the surface boundary force P. Proof of the varia- 
tional equations may be established by evaluating the variation of J 
integrating by parts and showing that this leads to the equations of 
equilibrium for the stress field. It may also be derived as in reference [2], 
as a particular case of a variational principle of interconnected thermo- 
dynamic systems. The systems in this case are the elements of the con- 
tinuum considered as infinitesimal cells. 

The variational equation (3.3) may be extended readily to include 
dynamics by using D'ALEMBERT'S principle. The inertia force is then in- 

cluded in the body force. The amounts to replacing B by G - Q >T, 
Q being the mass density. The variational equation becomes 

6J-t 
JJJ 

Q$Siib JJ c diidz + JJ PG,iidS. (3.4) 
r r S 

With the operator p = & we introduce a kinetic energy invariant 

T+_? JJJ @U2dT. (3.5) 
Z 

The variational principle is then written 

An interesting application is obtained by the use of generalized coordi- 
nates, If the field is expressed in terms of n discreet coordinates qi we 

write 

ii =&&qi, (3.7) 
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where Gi are field distributions represented by fixed function of x, y, z 

then 

6J =i+, 

/ 

(3.3) 

Defining a generalized force by 

Q;=jlJOiiidr +ijF&idrS 
Z 

(3.9) 

the variationa equation (3.6) leads to the n equations for qf 

aJ 
=+g-=Qi. (3.10) * 

Note that this is an operational expression since J and T contain the 

operator p. Hence these equations are integro-differential equations in 

LAGRANGEian form. 

If we define the kinetic energy in the usual way, i.e. 

(3.11) 

we may replace 2 above by gt 

more familiar form 

and the equations assume the 

(3.11) 

If the operators in J correspond to pure elasticity and NEwToxian 

viscosity then 
p$ = & + Pooh? (3.13) 

hence 

J = $gaijqiqg + ~P~biiqiqi (3.14) 

putting 

V=+2Chijqiqj, 
. 

D = $$bii&jj 

(3.15) 

equations (3.12) become 

(3.16) 

This is the usual form of LAGRANGE’S equations for an elast,ic system 

with NEwToNian damping. An important principle may also be formu- 

lated relating to the formal correspondance between a large class of 

equations of the theory of elasticity and viscoelasticity. Because of the 
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identical properties of the operators PFi and the elastic moduli we may 
generally extend the formulas of the classical theory of elasticity to visco- 

elasticity provided the elastic moduli are replaced by the corresponding 

operators. This leads immediately to a large class of solutions of problems. 
We shall refer to this as the correspondence rule. 

In particular the various cases of geometric symmetry are the same. 

For instance a system with cubic symmetry is characterized by three 

operators and an isotropic medium by two. 

The variational formulation above indicates that the correspondence 

rule also applies to the approximate solutions of Elasticity derived by 

energy methods. 
It should be noticed that the above principles do not depend on the 

particular form (2.9) of the operators but only on their symmetry pro- 

perty (2.10). Hence they are valid also in the case when there are internal 

dynamic degrees of freedom, i. e., microscopic kinetic energy. The latter 

appears in the particular operational form of J. 

4. Some specific applications. We shall now consider some specific 
applicat,ions of the principles formulated above. We shall first derive a 

general theorem for a viscoelastic medium with a homegeneous relaxation 

spectrum. This is a case for which the operators are of the form 

where C,Li are constants and P is an invariant operator 

In this case 

with 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

This invariant is the potential energy of an elastic medium of moduli C$i. 
We consider the deformation for the case of negligible inertia effect. The 

variational equation (3.3) may be written after multyplying by the inverse 

operator P-l 
sJ=SSS8’sudz+SSP’BUdS. (4.5) 

Z s 

The forces 8’ and P’ are body forces and boundary forces obtained by 

applying to their actual values the operator Pm1 

f%=P-lB,\ 

P’=P-*F. j 

17 Grammel, Madrid-Kolloquium 

(4-G) 
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We conclude from (4.5) that the deformations are the same as for an elastic 

medium under the action of the transformed forces 8’, fi”. The stresses are 

given by 

0 ~ P%G$$ eT; j , l&Y ~ (4.7) 

where eii are the elastic strains due to the transformed forces G’, Ei’. 

Because of linearity they may also be written 

e..._-J-le!. 
L3 23 (4.8) 

where eij is the elastic strain due to the original forces 8, P. Hence 

oUy =$C’,i,ei j. (4.9) 

The stress is therefore the same as for the elastic case under the original forces. 
This applies in particular to an incompressible isotropic medium by 

considering the invariant made up of the product of the stress deviator 

by the strain. A single operator is then factorized and the above reasoning 

may be repeated leading to a known theorem by ALFREY [6]. 

The theory of deformation of viscoelastic media furnish a fertile field 

for the application of LAGRANGEian and variational methods. The use 

of generalized coordinates constitutes a powerful method of approach 
to the dynamics of plates and shells. It is also of great flexibility and 

permits the gradual introduction of thickness corrections with a degree 

of accuracy adjusted to the practical requirements. 

This general method was introduced by the writer in references [Z, ?‘I. 

It applies also of course to purely elastic plates and shells since this a 

particular case of viscoelasticity. 
The method is best illustrated by an example. It is valid for the most 

general case of anisotropy of the material and applied without difficulty. 

However, for simplicity we shall assume an isotropic material. In this 

case we have seen [I] that the stress-strain law is 

oPV= 2&e,, + &.Re, 

with e = eZZ + e,, + ezr, 

a,,= 
{ 

1 f_L=v, 

0 /L#V. 1 

The operators are the two invariations 

Q=/mp:;Q(r)y(r)dr+Q+pQ’, 
0 

m 

R= 
s 

& R(r) y (r) d r + R + p R’. 
n 

(4.10) 

(4.11) 
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We consider a plate of uniform thickness h, the x, y plane coinciding with 

the plane of symmetry, and the z axis being directed across the thickness. 
The boundaries of the plate are at z = k h/2. We propose to find the 

deformation of the plate by expaunding the displacement field u, v, w, 

into a TAYLOR series in Z. We put 
12 

u =&@, 

(4,421 

The coefficients u, (x, y) , v, (x, y) , w, (x, y) are unknown functions 
of x, y and implicitly also of the time operator p. In order to find the 

equations for these unknown functions we apply the variational equation 

(3.6). In this case 

(4.13) 

Since we aim principally to illustrate the method let us further simplify 

the problem by assuming a cylindrical deformation parallel with the 

x, z plane. Hence v = 0 and u,v, are functions only of x. Finally we 

expand u, w, to the third order in the thickness and put 

u = u1.z + u,9, 

w= w,+ w2z2. 1 (4.14) 

If we introduce the condition that the shear stress is zero at z = &h/2 

we find 

(4.15) 

This leaves only three unknown functions u, w, , w2 of x. The variational 

principle is applied by first integrating along z 

1 +h/2 1 +h/z 

6 dx s / Id% + +p2Qqdx / (u2 + w2) dz 
0 42 0 -h/2 

= fisw,dx + +$w2dx. 
0 0 

(4.16) 

In these expressions quantities of order higher than z3 are neglected. The 

17* 



260 M.A. BIOT 

right-hand side represents the virtual work of applied load f uniformly 
distributed along the thickness. The integrals along z arereadily evaluated. 
We are then left with single integrals with respect to x and a variational 
problem yielding three EULER differential equations obtained by cancel- 
ling the variation due to 6 ui , 6 w, , 6 w,. These three equations are 

Elimating u1 w2 we find 

@wo Pa@ ~-- 
dx4 Q [3~+-&;+;)]~=&f-p2phwo)--~$ 

with I (4.18) 

In conformity with the correspondence rule, for the purely elastic case, 
Q and R become LAM& constants. Putting p = 0 i.e., for the static case 

at zero frequency we obtain the classical equation of the elastic beam 
with the addition of a shear deflection term. 

A more direct method of deriving some simplified plate equations is 
to apply the correspondence rule to the classical equation of flexural 
deformation of plates which may be written 

v4w _.A? 2p+A n- h3 4y(1 + p) f> (4.19) 

where I and ,u are LAMI~ constants. Replacing these constants by the 
corresponding operators R and Q we obtain the equations for the visco- 
elastic ulate 

I 

v4u: -12 2Q+R 
0- 18 ctQ(R+Q$ 

We see that the deflection is proportional to that of an elastic plate under 
a load derived from a transformation of the actual load f to which the 
time operator on the right-hand side has been applied. For instance, if 
the operator is expanded in partial fractions 

the transformed load is 

(4.21) 

(4.22) 
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Because of some general theorems derived in reference [I] the roots c( are 
real. Equation (4.20) is for the nondynamical case, An inertia term 
p2~ h w. could be added on the left-hand side. 

5. Nonlinear problems associated with 1Wge deflections. In dealing 
with nonlinear problems of deformation of solids it is important to dis- 
tinguish between the nonlinearity arising from geometric properties of 
the deformation field and that due to the nonlinearity of the stress-strain 
relations. The former is essentially a mathematical problem while the 
latter is closely related to the physical nature of the material. An ap- 
proach to a nonlinear theory of Elasticity which emphasizes this separa- 
tion was developed by the writer in a series of publications some years 
ago [S, 9,10,11]. This constitutes a departure from the traditional 
approach to finite strain by the mathematician. 

It was found that the equilibrium equations for the stress field are 

(5.1) 

In these equations the stress components or i are referred to axes which 
rotate locally with the material. The rotation tensor is 

The stress is a function of the strain components referred to the same 
rotated axes namely 

1 1 
tpv = epv + 2 (Wipei” + coiv eir) + ~oi~wi~. (5.3) 

The body force is Xi per unit mass and summation signs are omitted. 

The gradients s in equations (5.1) contain the second order terms of 

physical origin due to the nonlinearity of the stress-strain relations. The 
others contain the second order terms of geometric origin which arise 
from the product of the stress by the strain and rotation components. 
When introducing the stress-strain relations in thedatter terms, it is only 
necessary to use the first order effects. 

The above equations were derived for an elastic body but are applic- 
able to solids in general. For instance, we may consider a viscoelastic 
solid and assume that the linear stress-strain relations in operational form 

(5.4) 

are valid throughout the range of strain involved. In that case the three 
equations for the displacement field are obtained by replacing in the 
three equilibrium equations (5.1) the value of o,, y by its operational ex- 
pression (5.4). Since we are now dealing wit’h nonlinear equations care 
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must be exercised to locate the operators in the proper place so that they 

operate only on the quantities to which they were originally attached. 
Since the equat,ions contain time operators we thus obtain three nonlinear 

integro-differential equations for the displacement field U of the solid. 

The present approach also leads immediately to the theory of in- 

cremental stress and deformation for a body under initial stress. By 

linearizing the equilibrium equations (5.1) in the vicinity of an initial 

state of stress S,, we obtain linear equilibrium equations for the in- 

cremental stresses. These equations are 

~~,i+~~-(S,(e)+~(Si.wap-Sise,,)+eAXc=O. (5.5) 

The incremental body force is. AX,. These equations, if we formulate a 

relation between incremental stress and deformation, lead to the solution 

of stability problems of elastic or plastic prestressed fields. In particular, 

it leads to solutions of incremental stability problems of viscoelastic pre- 

stressed fields if we assume incremental stress-strain relations of the type 

(5.4). The nature of the incremental stress-strain relation appropriate for 

various materials is essentially a physical problem which still remains to 
be investigated. 

Of special interest here is the possible introduction of variational and 

LAaRANadan methods in the formulation of problems of large deforma- 

tion of elastic and anelastic solids. To this effect we follow a procedure 

which we have introduced in the elastic theory, We define a variational 

invariant 

6 J =j.f&d~,d~, (5.6) r 
where 

Z (Iv=(l+s)(Tpv- &E,V + &v&u) (5.7) 

and cPY is given by (5.3). In these expressions the crPy components may 

be expressed in terms of eP ,, by means of operators. In the case of a 
viscoelastic material it is, therefore, an operational invariant of the same 

type as (3.2). The variational identity in the present case is 

(5.8) 

which must be valid for all variations of the displacement field. 

This variational principle is derived from [9] and [IO] where we have 

shown that it is equivalent to the equilibrium equations (5.1) of the stress 

field. Making use are before of D'ALEMBERT'S principle we may introduce 

the inertia effect and write 

(5.9) 
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This equation opens the way to a systematic treatment of nonlinear 

problems by methods of generalized coordinates entirely analogous to 

the linear case. Since the equations are now nonlinear we must take care 

that the operators remain attached to those quantities upon which they 

initially operate. We could treat problems of vibrations of plates and 

shells by expanding the displacement field in a power series of the trans- 

verse thickness coordinate, and obtain simplified equations with any 

order of approximation desired as exemplified above. We could for in- 

stance generalize the KARMAN-FOEPPL equations for the finite deflection 

of elastic plates to include higher order effects of the thickness and auy 

viscoelastic stress-strain law whether isotropic or anisotropic. Finally, it 
should be pointed out that a modified correspondence rule may be applied 

in the nonlinear case. Consider for instance the K~RMAN-FOEPPL equations 

of finite deformation of an elastic plate. If we follow the derivation of 

these equations and replace the LAMB constants il and ,u by the operators 

R and Q we obtain 

4Q(R + &) hS _~~__ ~4W,_f+aaF%-2zEE??- a2F Pw, 
2Q+R 12 a y2 3x2 axaq axaq + Xi? a 3 

(5.10) 

These are two nonlinear integro-differential equations for the finite 
deflection of an isotropic viscoelastic plate. 
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