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Abstract. Closed form expressions are developed for the output of a frequency 
modulation receiver for an arbitrary number of superposed input signals. This corresponds 
to problems of interference or disturbance due to scatter and multiple reflexions. It is 
also shown how the Fourier components of the output may be evaluated by methods 
more direct than the usual Fourier analysis. 

Introduction. A frequency modulation receiver is essentially a non-linear device. 
The input signal is usually fed into two non-linear filters, first into an amplitude limiter 
which reduces the signal to a constant amplitude, then into a discriminator whose 
output is a rectified signal with an amplitude proportional to the frequency deviation 
from the carrier frequency. Sometimes this output of the discriminator is processed 
through a linear filter which eliminates all but a few frequency components of the 
modulation. 

Because of the non-linearity of the system, special methods must be devised to 
evaluate the output due to the superposition of input signals. The procedure presented 
here yields closed form expressions for the output when an arbitrary number of signals 
or a continuous distribution of them are superposed. The results may be used to predict 
interference effects or the disturbance due to multiple reflexions or scattering of the 
main signal. The method makes use of the concept of instantaneous frequency. The 
limitations of this concept in analyzing the behavior of frequency modulation circuits 
was discussed extensively by Carson and Fry’ and Van der Pal’. 

The general theory is developed in Section 1 for the case of an arbitrary input repre- 
sented by a continuous spectrum. This is applied in Section 2 to the case of an arbitrary 
number of signals with a single modulation frequency. It is also indicated how the 
method applies when there is more than one modulation frequency. Section 3 deals 
with the Fourier analysis of the output. Because of the fact that the expression for 
the output is in the form of the quotient of two Fourier series, methods more direct 
than the usual Fourier analysis are applicable. It is shown that the Fourier coefficients 
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may be evaluated directly by use of the theorem of residues of analytic functions. The 
method yields directly the Fourier components of the output in both amplitude and 
phase for any number of superposed input signal. In particular, the input may be repre- 
sented by the superposition of its spectral components. This has an important bearing 
on scatter problems since it is then reduced to the calculation of the scatter for each 
monochromatic component. The procedure has been applied to a number of practical 
cases and found to be quite satisfactory from the standpoint of simplicity and accuracy. 
These applications along with some further simplifications will be presented in a sub- 
sequent paper. 

1. 
input 

with 

General expressions for the output signal of an FM receiver. We consider an 
signal which is both amplitude and frequency modulated, 

E(t) = $J(O[exp ($) + exp (--id1 (1.1) 

4 = wd + do, 

where w, represents the carrier frequency, p(t) the frequency modulation and I(t) the 
amplitude modulation. In the receiver the amplitude is first reduced to a constant 
value in a limiter circuit. It is then processed through a discriminator, This is usually 
made of circuits slightly off resonance with the carrier frequency, such that the output 
is a rectified voltage proportional to the frequency deviation of the signal from the 
carrier frequency. This frequency deviation being a/c&! - w, , the ouput of the receiver 
is then given by 

=K$ (l-2) 

Sometimes this output signal is passed through a linear filter so as to extract frequency 
components in a narrow band. 

In practice, the signal is not always given in the form (1.1) so that one cannot use 
(1.2) to evaluate the receiver output. In particular, we are interested in the calculation 
of the receiver output when the incoming signal is given by its spectrum 

E(t) = I’- G(w)e'"' I&. 
-m 

(1.3) 

We establish a mathematical processing of the expression (1.3) by which it is possible 
to evaluate a quantity proportional to the rate of change of the phase angle 9, hence 
also proportional to the receiver output. To do this we apply to the signal a linear operator 
which consists in replacing its spectrum G(w) by 

G(w)(l + KQ), (1.4) 

where 

is the frequency deviation of the spectral component from the carrier frequency. The 
effect of this linear operation on the signal can be readily evaluated in the form (1.3) 

*If we wanted to restrict ourselves to analytic functions, the same purpose could be accomplished 
by putting. s2 = (~2 - ~2,)/%, . 
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by multiplying G(W) by 1 + KQ in the integral. We shall now introduce the basic as- 
sumption of the method, namely that this operation is approximately equivalent to 
multiplying the signal by the factor 

& A=l+Kz. (1.5) 

This assumption is essentially the same as that upon which is based the design of a 
discriminator circuit, namely that the response of the circuit to the instantaneous 
amplitude and frequency of the signal is the same as in a steady state. The assumption 
will, of course, apply if the frequencies at which the amplitude, I, and phase angle, 9, 
vary are very much smaller than the carrier frequency, CO, . 
If we consider the signal in the form (l.l), it becomes 

K,(t) = Ul(t)[exp ($) + exp (--$)I. 

Squaring this quantity we obtain 

(1.6) 

E?(t) = *Aala + tA212[exp (2$) + exp (-2&$)]. (1.7) 

We notice that the first term represents the low frequency components, while the second 
term represents the high frequency components. In practice, these components are widely 
separated. We may write 

SE;(t) = 3A212, (1.8) 
where the symbol d: signifies “low frequency part of - - -“. Similarly, if we square the 
original signal E(t) we may write 

L?.zz(t) = 41”. (1.9) 

Hence, 

d@(t) 
Ei?q= Aa = 1 + 2K 2 + K’($‘. (1.10) 

The linear term in Kin the expression is proportional to the output signal of the receiver. 
We may write this output signal as 

& 
M(t) = K dt = 2sE2(t) dK K [” -:(t)j_ . (1.11) 

This expression will now be evaluated in terms of the representation (1.3) of the input 
by means of a spectrum. The square of the signal is the double integral. 

E’(t) = I’- I’- G(.f)G(u)e"e+w't d4 do. (1.12) 
-w -co 

The integral is extended to the infinite plane. We introduce the following change of 
variables 

and derive 

4 = 3(rl + C)), 6J = 4(rl - C) (1.13) . 

E’(t) = $I_: 1-y G(F)G(F)e;": dv dp. (1.14) 
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The spectrum of 2,%‘(t) is therefore 

R(q) = j-+_= G(+)G(+-) c&t-. (1.15) 

In evaluating this expression we take into account the fact that G(w) is small except 
in the vicinity of w ‘= f W, . Hence, the contribution to the integral will be only in 
the vicinity of the four points (see Fig. 1). 

FIG. 1. 

PI : ?j = 2w, I:=0 

P,: q=-26& 5‘=0 

Pa : v=o I = 2% 

Pa : q=o f = -20, 

The low frequency components of E’(t) are therefore given by integrating (1.14) in the 
vicinity of points P, and P, 

(1.16) 

the integral being evaluated over elements of area dS in the vicinity of P, and P, . 
Similarly, the low frequency components of E?(t) are given by 

eE;(t) = fl.,, 
. 

[l + K(j w 1 - wJ][l + K(I 4 1 - wc)]G(~)G(~)ei” dS. (1.17) 

Hence, 

=‘fK s ( PS,P. 
LT$d + LLfA - wo)G(JL$J)G(J-fJ)e’” dS_ 

From (1.16), (1.18), and (1.11) we derive the receiver output 

Mb) =K 
s ( PI OP. 

h$d + k+ _ wc)(J(~)(&+‘t dS 

(1.18) 

(1.19) 

r 
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We have thus expressed this output in terms of the input spectrum G. It is seen that, 
as required by the problem, this expression is independent of the input amplitude. 
Expression (1.19) may be put in a somewhat different form by introducing 

F(q) = /+a (w + w - wo)G(+)(+) C-Z!: 
-m 

I (1*2o’ = w.)G(+)G(+) d[. 

The equivalence of these two expressions is easily seen if we replace the variable { by -s: 
This function constitutes the spectrum of the numerator of expression (1.19). With the 
spectrum R(q) of the denominator, as defined by (1.15), we may write 

(1.21) 

The integrands in the expressions for F(v) and R(v) are different from zero only in the 
vicinity of { = f 2w, and the variable 7 is restricted to the vicinity of the origin. The 
range of integration - r < 7 < + E is that of the low frequency portion of the spectral 
functions F(v) and R(v). According to the footnote remark (I), we could also write 

for F(s) 

F(v) = I- f [; (a - 5-j” - w:]G(+)G(+ al. (1.22) 
-m w, 

This expression will be approximately equal to (1.20). 
2. Application to the superposition of sinusoidally modulated signals. In certain 

cases the input signal is made up of the superposition of signals whose frequency modu- 
lation is sinusoidal with a common carrier frequency, but with a different phase for 
each modulation. The signal is then expressed as 

2E(t) = c Rj exp sin (w,t + #J I 1 (2.1) 
+ TRTexp C 1 ) 

where Ri and RT are complex conjugates. Such a signal occurs, for instance, in the 
case of multiple reflection or scatter. In this case the phase differences are 

Vi = -4 , 
cm 

$i = -Wltj 9 

where ti is the time lag for arrival of the jth component in the receiver. In order to 
apply the results of the previous section, we must represent the signal by its spectrum. 
We make use of the identity 

exp ‘($3 sin I?) = 2 J,(p) exp (nie), 
n=-co (2.3) 

where J, is the Bessel function of the first kind of order 12. By putting /3 equal to the 
modulation index 
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(2.4) 

and 
B, = xi Ri exp (icpi + Wi) 

(2.5) 
B*, = xi R$ exp (-ivi - Wi) 

we may write the signal as 
m m 

2E(t) = 2 B,J, exp (iu,t + imolt) + c B*,J, exp (-iw,t - iwIt). (2.6) 
*m--m n--m 

This latter expression constitutes the expansion of the signal into a discrete spectrum of 
equidistant frequencies. The integration (1.3) is here replaced by a summation. The 
low frequency components of the square of the signal corresponding to expressions 
(1.16) are given by 

4sE2( t) = 5 B,B*,J: 
n--co 

+ exp (iwIt) 5 B,,BZ-,J,J,-l + exp (-iwIt) 2 B,E+lJ,J,+I 
V&=-CO n---m 

+ exp (2&t) z B,BLJ,J,-z + exp (--2zbt) 5 BnBn*+BJnJn+P 
v&=--m R--co 

+ etc. 

(2.7) 

We note that 

(2.8) 

and put 

i Ck = E B,,B,*-k J,J,_b 
n3-co 

(2.9) 

C? = 5 B:B,_,J,,J,_k . 
n--ox 

Then (2.7) may be written 

48E2(t) = Co + :$ [Ckeikol’ + C*ke-iy* (2.10) 

We must also evaluate E,(t). This is obtained by multiplying by 1 + KQ each frequency 
component in the expansion (2.6) of E(t). In this case 

St= [&I[ -0. (2.11) 

w = *(WC + ?zUJ. 
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We note that in practice the terms in the series (2.6) are vanishingly small for 1 n I > ,8 
because, in that case, J, g 0. It is therefore legitimate to write 

Putting 

Q = n&J, . (2.12) 

we find 

A, = 1 + nKw, (2.13) 

2E,(t) = g A,B,,J,, exp (iw,t + inwIt) + E A,B*,J, exp (--id - inwIt). 
n---m n---m 

Proceeding as before 

(2.14) 

with 

4SET(t) = P, + :$ [F, exp (ircWlt) + F*, exp (-ik~t)] (2.15) 

F, = F A,A,_kB,B:_~J,J,-k 
n---m (2.16) 

F*, = E A,,An_kB:B,,+J,,Jn_k . 
n---m 

In order to obtain cl/dK &E?(t) we consider the factor A,,AI_-k which is the only one to 
contain K. We have 

AnA,+) = [l - nKwJ[l + (n - k)Ko,] (2.17) 

and 

[& AJL-~]~_~ = (2n - kh . 

Hence, 

4[ $ mo]K_o = w,H, + w1 g [H, exp (iku, t) + H*, exp (-ik~~t)] _ 
with 

Hk = 5 (2n - k)B,,Bk,J,J,_, 
n--co 

H*, = g (2n - k)B?Bm_rJ,J,_k . 
n--co 

The output signal due to the input E(t) given by (2.1) is 

M(t) = 
& [ $ sE:(t)lI_. 

Ku, Ho + ,z IH,t ew (ihd) + fG exp (-~,kt)l 
s m 

=- . 
2 

Co + E [C, exp (ilw,t) + C*, exp (-&kt)] 
k--m 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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The same method may be applied if the superposed signals are not modulated by a 
single sinusoidal component. Consider, for instance, a signal component E,(t) con- 
taining two simultaneous modulation frequencies w1 and w2 . 

Ei(O = exp ht + ipl + icp2] + exp [-iw,t - icpl - &pz] (2.22) 

with 

$91 = p1sinw,t 
(2.23) 

$92 = pz sin W-J. 

Using the identity (2.3) the.spectrum of Ei(t) is obtained by writing 

E,(t) = exp iw, t exp ipl exp icp2 

E J&3,) exp (inwIt) I[ 2 J4PJ em (imd> 1 
(2.24) . %-+a T&z-.co 

Performing the multiplication yields a discrete spectrum. However, this time the 
frequency intervals are not equal. From (2.24) we derive the spectrum due to the super- 
position of signals of the type (2.22) with individual time lags and amplitude factors 
as in (2.1) 

E(t) = xR,E,(t - tJ. (2.25) 
I 

Proceeding as above, the spectrum may be used to evaluate the receiver output due to 
this superposition. 

3. Fourier analysis of the receiver output. We consider the case of the superposition 
of input signals modulated by the same modulation frequency w1 . We have shown that 
the output is given by expression (2.21) which is the quotient of two Fourier series. It 
is, itself, a periodic function of frequency w1 , which we may expand into a Fourier 
series. We omit the constant factor in expression (2.21) and write, putting wit = r 

Ho + z [H, exp (ih) + IIt exp (-ilcr)] 
M(t) = - 

Co + g [ Ck exp (2%~) + (7% exp (-ih)] (3.1) 

= M, + g [M, exp (ih) + M*, exp (-%T)]. 

If the receiver output is filtered through a lowpass filter so that only the fundamental 
component of the Fourier series of M is observed, we must evaluate the coefficients 
M, and MT . We have 

s 

2r 
27rM, = M(T) exp (-in) do 

0 

2nMT = 
s 

2T M(T) eXp (iT) dT. 
0 

(3.2) 
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The integrals may be evaluated by a method which takes advantage of the particular 
form of the function M(t) in the present case. Consider the second integral and change 
the variable of integration r to a complex variable P 

P = exp (i7) (3 -3) 

and express M(T) in terms of P 

Hfl + g FLP’” + mP-kl 
M(T) = = . 

co + g [GP” + c?$-“I 

The value of MT is then given by the contour integral on the unit circle 

dP* 

The value of this integral is equal to the sum of the residues and depends on the poles 
contained within the unit circle. There are multiple poles at p = 0 and poles corre- 
sponding to the roots of the denominator. These are the roots of the equation 

(3.42 

(3.5) 

co + g [CkP” + C*kIO-k] = 0. (3.6) 

If 

is a root of this equation, then 

PI = r1 exp (i0,) (3.7) 

exp (-ikO,>] = 0. (3.3) 

The conjugate of this expression must also be zero, hence, 

Co + g [C*kT: exp (-i&3,) + C,r;” exp (ikt?,)] = 0. 
k-l 

But this expresses that 

(3.9) 

P2 = $ exp (iel) (3.10) 

is also a root of equation (3.6). Therefore, the roots are grouped in pairs of the same 
argument 0, and such that the product of their moduli is unity. Half the roots will be 
inside the unit circle and to each of these roots corresponds an outside root on the same 
radius from the origin. If there are roots on the circle, the above conclusion does not 
hold. However, since the expression (3.6) on the circle represents the square of the 
amplitude of the input signal 1’(t), this can only happen if the input vanishes. As an 
example, let us consider the case when the denominator contains only C,, and C, . This 
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will often be the case in practical applications when higher order terms are negligible. 
Denote by N(p) the numerator of the integrand in (3.5). This integral becomes 

M:=&$ N(P) dp 
?r co + CIP + CTP-” 

The roots of the denominator are 

p 
I 

= -co + (Ci - 4C1cV’” 

2c* 

pz = -c0 - (Ci - 4C,C:)“a . 
2Cl 

(3.11) 

(3.~2) 

We shall assume the radical is real, in which case the roots are not on the unit circle. 
Moreover, if pl is inside the unit circle, the other root pz is outside. 

The integrand of (3.11) is 

Hop + $ [HkPE+l + ~:P-“ll 
PNPI 

c1p2 + cop + c: = * CdP - Pd(P - PJ 
(3.13) 

There is a residue due to the root p, and residues due to the terms H$pmk+’ for k > 1 
corresponding to poles of order k - 1 at the origin. The sum of residues inside the unit 
circle is 

MT = (3*14) 
This expression gives the phase and amplitude of the fundamental Fourier component 
of the output signal. If the denominator contains more terms than assumed here, we 
must solve a complex algebraic equation of higher degree and similarly evaluate the 
residue for these roots inside the circle. If the numerator N(p) contains only one Fourier 
component 

N(p) = Ho + H,p + H:P-' (3.15) 

then (3.14) reduces to the very simple form 

M* = HT + HopI + HIP:: 
1 -i-’ (c: - 4CJYT) ‘2 

(3.16) 

Instead of using the theory of residues, another method of computing the coefficients 
Mk of the Fourier expansion (3.1) is to write 

Ho + 2 FLpk + H%P-“I 

CO + 2 [ Ckpk + c%p-“1 

= Mo + $ [Mkpk + M:p-“1 (3.17) 

k-l 

considering M, as undetermined, then to multiply both sides of this equation by the 
denominator and equating coefficients of the same power of p. 
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