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The Elastic Coeffkients of the 

Theory of Consolidation 

BY M. A. BIOTl AND D. G. WILLIS2 

The theory of the deformation of a porous elastic solid 
containing a compressible fluid has been established by 
Biot . In this paper, methods of measurement are de- 
scribed for the determination of the elastic coefficients of 
the theory. The physical interpretation of the coefficients 
in various alternate forms is also discussed. Any com- 
bination of measurements which is sufficient to fix the 
properties of the system may be used to determine the co- 
efficients. For an isotropic system, in which there are four 
coefficients, the four measurements of shear modulus, 
jacketed and unjacketed compressibility, and coefficient 
of fluid content, together with a measurement of porosity 
appear to be the most convenient. The porosity is not re- 
quired if the variables and coefficients are expressed in the 
proper way. The coefficient of fluid content is a measure 
of the volume of fluid entering the pores of a solid sample 
during an unjacketed compressibility test. The stress- 
strain relations may be expressed in terms of the stresses 
and strains produced during the various measurements, 
to give four expressions relating the measured coefficients 
to the original coefficients of the consolidation theory. 
The same method is easily extended to cases of anisotropy. 
The theory is directly applicable to linear systems but also 
may be applied to incremental variations in nonlinear 
systems provided the stresses are defined properly. 

1 INTRODUCTION 

T 
HE theory of the deformation of a porous elastic solid 
containing a viscous compressible fluid was established by 
Biot in several earlier papers (1, 2, 3, 4).a In reference (1) 

the isotropic case is considered, and in reference (2) the theory is 
generalized to anisotropic materials. General solutions to the 
elastic equations are established in reference (3). The theory of 
wave propagation in such systems is examined in reference (4). 

Gassman (5, 6) has examined the properties of “open” and 
“closed” porous elastic systems corresponding to the case of con- 
stant pore pressure (u = 0) and constant fluid content ({ = 0), 
respectively. The elastic properties of a porous solid were con- 
sidrared by Gee&ma (7) who described methods for their measure- 
ment with jacketed and unjacketed compressibility tests, in the 
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case of a homogeneous and isotropic porous matrix. Hughes and 
Cooke (8) described measurements of pore volume and porosity in 
jacketed compression tests, which would apply to a system con- 
taining an incompressible fluid completely filling the pores. 

In the present paper methods of measurement are described for 
the determination of the elastic coefficients of references (1, 2, 3, 
4). The physical interpretation of the elastic coefficients in 
various alternate forms is also discussed. 

In Section 2 it, is shown that the elastic coefficients A, N, Q, and 
R may be expressed in terms of four directly measurable coeffi- 
cients p, K, 6, y, and the porosity factor f. It is pointed out that 
under certain assumptions the coefficient y does not need to be 
measured if we know 4he fluid compressibility c and already 
have measured 6 and f. Other elastic coefficients p, X, (Y, and M 
are discussed in Section 3. They may be expressed in terms of the 
measurable coefficients cc, K, 6, and y without reference to porosity. 
Use of the constants p, h, 01, and M are more convenient in ap- 
plication to consolidation problems, i.e., when the inertia forces 
are neglected, while A, N, Q, and R have been introduced in con- 
nection with wave propagation (4). 

In addition to these four measurements it is possible to measure 
directly the constant a! by a fifth and entirely independent 
measurement. This redundant information results from the fact 
that it, is possible to define five physically different, coefficients, 
two of which must be equal as a result, of the assumption that 
we are dealing with a conservative elastic system. The redun- 
dancy thus provides a check on the validity of this assumption. 

In Section 4 the case of transverse isotropy is considered using 
a different method and different measurements, and the case of 
general anisotropy is discussed in Section 5. 

The measurements described are directly applicable to linear 
systems. They also will apply to incremental variations in non- 
linear systems such as those having unconsolidated porous ma- 
terials, provided the stresses are defined properly. This will be 
discussed in Section 6. 

2 THE ISOTROPIC CASE 

The stress-strain relations for the isotropic case (2) are 

gz2 = 2Ne,, + Ae + QE ’ 

au, = 2Ne,, + Ae + QE 

a** = 2Ne,, + Ae + Qe 

atlz = Ne,, ’ . . . . . . . . . . . . [l] 

a,, = Ne,, 

UW = Ne,, 

u = Qe + Re I 

in which the Uii are the forces acting on the solid portions of the 
faces of a unit cube of porous material, and u is the force acting 
on the fluid portions. 

The average displacement, vector of the solid has the com- 
ponents u,, uy, u,, and that of the fluid U,, U,, U,. The solid 
strain components are then given by 
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e = e,, + eyp + e,, 

The fluid dilatation e is given by 

E = 2 +bUu +“A”.. 
ay a2 

. . etc. 

1 

. . ..[21 

. . . . . . . . . . [31 

It should be pointed out that this expression is not the actual 
strain in the fluid but simply the divergence of the fluid-displace- 
ment field which itself is derived from the average volume flow 
through the pores. 

In Equations [l] attention is called to the fact that the proper- 
ties of linearity alone would lead to five distinct elastic co- 
efficients. The assumption that there exists a potential energy for 
the fluid-solid system reduces to four the number of independent 
elastic coefficients. This is the reason why the constant Q which 
appears in the last Equation [l] is the same as in the three first 
equations. An equivalent way of formulating this property is by 
stating that the matrix of elastic coefficients is symmetric with 
respect to the main diagonal. This symmetry property appears 
throughout whep dealing with both isotropic and anisotropic 
media, and is further illustrated by Equation [30] and in the 
treatment of anisotropic media in Sections 4 and 5. The sym- 
metry property is the reason for the redundancy in the measure- 
ment of the elastic coefficients. As will be pointed out, it is 
possible to derive the quantityf(Q + R)/R from two independent 
physical measurements. 

Four independent measurements, in addition to the porosity 
f, are required to fix the four elastic coefficients A, N, Q, and R. 
Satisfactory combinations of measurements may be made in a 
variety of different ways, but the most convenient appears to be 
the combination of measurement of shear modulus, jacketed and 
unjacketed compressibility of the porous solid, and an un- 
jacketed coefficient of fluid content. 

The shear modulus p of the bulk material is equivalent to N, 
which is therefore obtained directly. 

In the jacketed compressibility test, a specimen of the ma- 
terial is enclosed in a thin impermeable jacket and then subjected 
to an external fluid pressure p’. 

To insure constant internal fluid pressure, the insideof the jacket 
may be made to communicate with the atmosphere through a 
tube. The conventional jacketed test is usually performed on a 
dry specimen, and in that case such precaution is of course not 
necessary. However, the dry specimen may not exhibit the same 
properties as the saturated one. As an example of this we may 
cite the case where the elastic properties result from surface forces 
of a capillary nature at the interface of the fluid and the solid. 

The dilatation of the specimen is measured and a coefficient of 
jacketed compressibility K is determined by 

K = -:. . . . . . . . . . . . . . . . . . . . . [4] 
P’ 

In this test the entire pressure of the fluid is transmitted to the 
solid portions of the surfaces of the specimen. 

Therefore 

uzz; = uyy = CT,, = -p’. . . . . . . . . . . . . ]51 

Furthermore, the pore pressure remains essentially constant 

u = 0 . . . . . . . . . . . . . . . . . . . . . . . [6] 

In a.ddition the solid strains will be 

t? = -Kp’ 
, 

Kp’ . . . . . . . . . . [7] 
e,, = e,, = e,, = -- 

3 i 

From Equations [l] we obtain the two relations 

_p’ = --+ NKP’ - AK~’ + QE 
. . . . . . . 181 

0 = -QK~’ + Re 

Eliminating e and p gives 

1 
-= 
K 

+N +A - -$............... WI 

thus indicating that the quantity A - (&2/R) is equivalent to the 
Lam4 coefficient x of the porous material under conditions of con- 
stant pore pressure. 

In the unjacketed compressibility test, a sample of the material 
is immersed in a fluid to which is applied a pressure p’. When the 
fluid pressure has penetrated the pores completely, the dilatation 
of the sample is then measured and an unjacketed compressibility 
coefficient 6 is determined by 

6 = -e.. . . . . . . . . . . . . . [lo] 
P’ 

In this case the pressure acts both on the solid portion (1 - f) 
and the fluid portion f of the surfaces of the specimen giving 

u = --fp’. . . . . . . [ll] 

The strains are given by 

6P’ 
e,, = eyy = e,, = -- 

3 . . . . . . . . . . WI 

e = -6~’ 

And we obtain from Equations [I] the relation 

1- (Q+),= [+N+ (A - :)]8.... [13] 

giving with Equation [S] 

( > Q+ I+ . . . . . . . . .._._. 1141 

An independent and redundant measurement of this expression 
is furnished if we consider the quantityf(e - e), which is denoted 
by { in Section 3, and represents the volume of tluid which enters 
the pores of a unit volume of bulk material. If, during a jacketed 
compressibility test the interior of the jacket is connected to the 
atmosphere by a tube the fluid volume passing through this tube 
is equal to f(e - E). Putting u = 0 in the last Equation ]l] 
yields 

Since we also have measured the solid strain e, this again yields 
the value of the quantity 

(Q + R)f 
R 

Measurements of changes in pore volume and porosity in a 
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jacketed test have been made by Hughes and Cooke (S), which 
are equivalent to measurements of f( e - e). 

To fix the properties of the system, one additional measure- 
ment is required which must involve the fluid strain. There is 
apparently no standard test which would provide a satisfactory 
measurement, and we must therefore define a new elastic co- 
efficient. Again we consider the volume of fluid which enters the 
pores of a unit volume of porous material, f(e - E), but in this 
case with reference to an unjacketed compressibility test. We 
may define a coefficent y of fluid content by 

that no air be trapped in the pores near the surface. The volume 
of fluid injected per unit pressure will be the sum of the solid 
compressibility 6,. the volume of fluid which has entered the 
pores y, and a fixed quantity depending upon the elastic proper- 
ties of the chamber and the fluid. The porous material is then 
removed from the chamber and its volume replaced by fluid. 
The volume of fluid injected per unit pressure is again measured 
and in this case will be the sum of the same fixed quantity as in 
the previous measurement, and the fluid compressibility c repre- 
senting the new unit volume occupied by the fluid. Therefore the 
difference between the volumes injected with and without the 
porous material in the chamber will be given by 

for an unjacketed compressibility test. This gives for the fluid 
AV = 6 + y - c.. . . . . . . . . . . . . . . . [22] 

strain If the fluid compressibility c is then measured independently, 
the coefficient of fluid content y may then be determined. There 

e = -y*f+e.. 
f 

. . .I171 are of course ways of avoiding this additional measurement of the .......... 
fluid compressibility, which is not directly relevant, but the pro- 
cedures involved appear to be more elaborate. 

nr 6 = - f- p’ + 6p’. .......... . . . [181 For the special case in which the material of the porous matrix 
is homogeneous and isotropic and the fluid completely saturates 

Expressions [II] and [IS] substituted into the last of Equations the pores, it is possible to determine the coefficient of &id content 

[l 1 give y directly from the fluid compressibility c. Considering the un- 
jacketed test, the pore space in this special case will undergo the 

f = &6 + R6 + R f.. . . . . . . . . . . . . [19] 
same strain as the solid matrix. Therefore the porosity f of the 
material will not undergo any strain and, if the fluid completely 

Summarizing the measurements 
saturates the pores, the fluid dilatation will be given by 

N=/.L 

f=Q6+R6+R; 
J 

These equations are easily solved for N, A, Q, and R to give 
their values in terms of the measured parameters 

N=/.L 
1 

A= 

2 
-_ 

3P 

R= 
f’ 

ys6-$ 

e = -cp’... . . . . . . . . . . . . . . . . . . [23] 

This gives for the coefficient of fluid content 

y = f(c - 6). . . . . . . . . . . . . . . . .[24] 

This relation will be strictly valid only for materials such that 
the pore volume and the bulk volume remain in constant ratio; 
i.e., the porosity does not vary when the specimen is subjected to 
fluid pressure in an unjacketed test. This of course will be true 
if the material of the porous matrix is homogeneous, isotropic, and 
elastically linear. 

However, this is not a necessary condition, and we may visualize 
cases where the matrix material is heterogeneous but behaves 
approximately like a homogeneous solid so that it undergoes ap 
proximately the same strain as the pores in an unjacketed test. 
Therefore Relation [24] may provide a satisfactory approxima- 
tion for y in many cases. On the other hand, one also could 
imagine a porous matrix which is statistically isotropic but does 
not behave in isotropic fashion when considered from the stand- 
point of the individual pores. 

Further remarks concerning the validity of Relation [24] will 
be made in Section 6 in connection with its application to incre- 
mental stresses. 

3 ELASTIC COEFFICIENTSWITHALTERNATIVEVARIABLES 

As shown in reference (3), it is possible to introduce as alterna- 
tive variables the total forces acting on the surfaces of a unit 
cube 

T*, = Q,, +o 1 , 
Tvu = =vv +a 

The coefficient of fluid content y may be determined by the 
following experiment: A unit volume of porous material contain- r*. = a,* + o 
ing fluid is placed within a closed chamber which has been filled . . . . . . . . . . . . . . . 1251 

with fluid. Fluid is then injected into the chamber under pressure rv* = a,* 

and the voIume of injected fluid is measured. Care must be exer- r*, = =,.+ 
cised that the pores of the specimen are completely saturated with 
the same fluid or mixture of fluids as existed in the original r*y = =*v 

system. In particular for a liquid-saturated solid it is important the fluid pressure p, and the fluid content, already mentioned 



f = f(e - E). . . . . . . . . . . . . . . . . . . [26] 

We use the Lamb coefficients /J and4 

h=A-$ . . . . . . . . . . . . . . .._. [27] 

and two new coefficients &f+ 

. . . . . . . . . . . . . . .[28] 

With these variables and coefficients Equations [l] may be 
written 

TZL + CUP = 21.4, + Xe 
1 

7yy + ap = 2cLe,, + Xe 

r,, + ap = 2ue,, + Xe 

TV. = pe,. 
) . . . . . . . . . . . [29] 

7 8s = pe,, 

7.Y = pe,# 

1 
b=Gp+ae 

1 

An alternate form of these equations is obtained by solving t,he 
last equation for p and substituting in the first three. We find 

r,, = 2pe,, + (X + ck%f)e - c&r ’ 

ruu = 2pe,, + (A + &M)e - crMr 

7.. = 2ue,, + (A + dM)e - arMr 

7w = pe,, ’ . . . .._[30] 

7,s = ccc*, 

T+u = cLc=, 

P= --crMe + Ml I 

These equations express the total stress components rii and 
the pore pressure p in terms of strain components e,j, e, and c. 
We note that, because the same coefficient -&I appears in the 
first three equations and the last, the matrix of coefficients is 
symmetric. This again results from the existence of an elaetir 
potential energy with p and r acting as conjugate variables. 
The elastic potential per unit volume is expressed as 

1 

Equations 1301 are equivalent to 

aw 
rii = G 

aw 
t 

. . . . . . . . . . . . . . . . . [32] 

P=dt 

We note also from Equations 1301 that X + cr*M plays the role 
of a Lam6 constant X for 1 = 0; i.e., for a “closed system.” 

As before, /.J may be measured directly as the modulus of shear. 
In the jacketed compressibility test, p = 0, giving for the fluid 

content 

4 p and X are designated by S and N in references (2) and (3). 
5 Expression [31 J is identical with that introduced in reference (1) 

in connection with the derivation of the property of symmetry of the 
coe5cients. The notations c and 0 were used instead of p and I. 

{ = (Ye..................... [33] 

Since the fluid pressure remains constant, the significance of CY 
may be seen to be the ratio of change in pore volume to dilatation 
in a jacketed teat. If the interior of the jacket is connected 
with the atmosphere by a tube we may measure the quantity f by 
the amount of fluid which is flowing through this tube. This will 
furnish the value of cr. 

If we designate the external pressure on the jacket by p’, we 
have 

r,z = -P’, r=,, = 0, . . . etc. 
1 

p=o 

e= --p’K 

giving with Equations 1291 the relation 

I . . . . . . . [34] 

I 

1 
-= 
K 

$+A.. 

In the unjacketed test 

rz* = -P’, 7”” = 0, . . 

P = P’ 

e = -lip’ 

giving with Equations [29] 

. . . . . . . . . * . . . . 1351 

etc I 

‘1 . . . . . . . [36] 

-_(l -a)p’= (gp+2)e . . . . . . . . .._ 1371 

Hence 
6 = (1 - a)~. . . . . . . . . . . . . . . . . . . [38] 

6 
Q!= I-- ( > K 

. . . . . . . . . . . . . . . . . . [39] 

which provides a further interpretation of the coefficient CY which 
is physically different from that given by Equation [33]. That 
they yield equal values for LY results from the symmetry of the co- 
efficient matrix in Equations [30] and this in turn is a consequence 
of the assumption that there exists an elastic potential energy for 
the fluid-solid system. 

An alternative interpretation of the coefficient cy which does not 
depend on the existence of a potential energy and is equivalent to 
Equation [39] is given by the first three of Equations 1291. In 
this case (Y represents the proportion of fluid pressure which will 
produce the same strains as the total stress. 

The coefficient M may be determined from the coefficient of 
fluid content y for the unjacketed t.est. In this case 

!: = yp’ = 3 p’ - CUSP’. . . . . . . . . . . . . [40] 

giving for M M= 
1 

yfS-$ 
. . . . . . . . . . . . . . . . 1411 

Another alternate way of writing Equations [29] is by intro- 
ducing a stress 7’ defined as 

r*, ,- - T,* + P 1 

Tu ’ = Tz, + P 

‘ZT 
. . . . . . . . . . . . . . .[42] 

Tu. v* 

T‘s 
)- 

- 7,s 

T*v 
)- - ‘-a,, 
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The total stress T is then represented as a superposition of hy- 
drostatic pressure p, the same as in the Auid pores and a residual 
component r’ which acts only in the solid matrix. With this 
definition the first three Equations [29] are replaced by 

r,,’ - (1 - cu)p = 2pe,, + Xe 

TUY ’ - (1 - cr)p = 2pe,, + Xe 

7,’ - (1 - ar)p = 2ye, + Xe 1 

. . . . . . . [43] 

As shown in references (1) and (3) the elastic coefficients p, 1, 
cy, and M may all be determined without reference to the porosity 
f. Furthermore if the Darcy equation for volume flow is used, 
all the equations of consolidation theory may be developed with- 
out reference to porosity. 

It is interesting to examine the limits of the coefficient CL 
Consider first the last of Equations [l] 

(T = Qe + Rs.. . . . . . . . . . . . . . . .[44] 

If a positive fluid force u is applied to the system at the same 
time that e is held fixed, a positive fluid strain e must result. 
Therefore R must be positive. Alternatively, if the fluid force is 
held constant and a positive solid force is applied, e must be 
positive. In addition there must be a net increase in the porosity, 
requiring a negative fluid strain E. Therefore, Q also must be 
positive. Since both Q and R are positive, it may be seen from 
the relation 

(IL= Q+R f ( > R 
. . . . . . . . . . . . . . . . . WI 

that a! cannot be smaller than f. Alternatively, since the un- 
jacketed compressibility 6 cannot be less than zero, it follows from 
the relation 

a= ( > 1-t . . . . . . . . . . . . . . . . . . 
K 

that (Y cannot be greater than unity. 
If the unjacketed compressibility 6 is very small compared to 

the jacketed compressibility K, we may approximate the value of 
a! by putting a! = 1. This will be true in some cases for a water- 
saturated gel or clay (1, 2).’ 

4 TRANSVERSE ISOTROPY 

For the case of transverse isotropy the stress-strain relations 

coefficients. It will therefore require eight independent measure- 
ments to fix the values of the coefficients. 

Consider the matrix 

r PA FM 1 
A P FM I I . . . . . . . . . . . . . . . . . . 1461 F F cQ 

LMMQRI 
and let its inverse be represented by 

adg h 

dug h I I. ggb m 

hhmn 

. . . . . . . . . . . . . . . . . . [471 

Also let 

1 -=s 
N 

1 

. . . . . . . . . . . . . . . . . . ]431 
1 

-_=t 
L 

The inverse stress-strain relations will then be 

may be written (2) 
_- 

oZ* = Pe,, + Aerv + Fe,, + Me 

clul = Aezz + Pe,, + Fe,, + ME 

ffzz = Fe, + Fe,, + Ce,, + QE 

gllz = Leyr . . . . . . . [45 1 

gz.z = Lezz 

Q.Y = Nezy 

u = Me,, + Me,, + Qe,, + Re 

in which P = A + 2N and there are eight independent elastic 

6 As pointed out in reference (1) the case where the solid matrix 
and the fluid are incompressible corresponds to (Y = 1, M = m. 

In reference (1) several other coefficients are used. E, G, and Y 
have their conventional significance as measured with constant pore 
pressure. The coefficient (Y has the same significance as in Equations 
[29]. The coefficient His given by I/(K - 6). The coefficients Q and 
R of reference (1) should not be confused with Q and R of Equations 
[l]. In reference (1) Q is equivalent to M and R is given by l/(-y - 
6 + a). 

es, = au&Z, + duu,, + gum + hJ 

euY = da,, + au,, + gu,, + hu 

e,, = PJ,, + gu,, + bu,, + mu 

eu, = tuvu. 

erz = tu,, 

% = suz,, 

E = ha,, + ha,, + mu,, + nu 

in which there are nine coefficients but only eight independent 
ones because of the original relation (P = A + 2N). 

For this material under conditions of constant pore pressure, it 
will be possible to measure two separate Young’s moduli by 

1 be,, be,, _ -_=-=--_a 
Er aa,, duV,, 

I 

. . . . . . . . 1591 
1 -= % 

ES au,, 
-b 

Three separate Poisson’s ratio also exist and may be measured 

by 

-Y1 = 
d 

= - = j&j 
a 

= &g 

. . . . . . 1511 
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There are only four independent coefficients between the two The ten measured values El vl~“t 6, y 
moduli and the three ratios. From the last two of Equations 

1511 
Ezvzpp& . . . . . . . . [59] 

V2 V, -=- 
E 

. . . . . . . . . . . . . . . . . . . . 
1 El 

V3 
1521 

I 

have been used. Only eight of these are independent since 

The coefficients a, b, d, and g may thereby be determined by a VP V1 
minimum of four measurements. 

-=_ 

Two shear moduli also may be measured by 
& El 

1 
-= 

( ) 

:’ = (Z) : i%) = t 

1 

and since 11 may be determined from the relation P = A + 2N. 
An alternate form of the coefficients of course could be easily 

‘..“” ‘531 

written in terms of the variables p and !: instead of o and e. 
These new coefficients will not involve the porosity f. 

PLt 

Because of the original relation in Equations [45] of P = A + 

5 COMPLETE ANISOTROPY 

The stress-strain relations may be expressed in matrix form by 

2N, the first modulus ~1 does not represent an independent (2) 

measurement and could be determined from the other measure- 
ments. 

In an unjacketed compression test 

uzz = uyy = 6,s = -(l - f)p' 
1 . . 1541 

u = -fp' J 
giving the relation8 

ezo = Kf - l)(a + d + 8) - fhlp’ = 4IP” 

%u = Kf - l)(a + d + 9) - fhlp’ = 4%~’ 

ezz = Kf - l)(g + B + b) - fmlp’ = -82p’ 

in which & represents the change in the two equal 

1 
in which Cii = Cri. 

Eliminating E by means of the last equation 

. . . . . . [60] 

principal axes and 82 the change in the third prin- 
cipal axis of the ellipsoid of revolution formed by a 
unit sphere of material strained under unit pressure 
in an unjacketed compression test. 

This measurement permits the two additional co- 
e&Gents h and m to be determined. 

‘For a final measurement the coefficient of fluid 
us. = 

content y may be used, giving for the fluid strain uu* = 

e = Kf - l)(h + Jr + m) -&I UCz = 

= -5 p’ - (213, + 61)~‘. . . . .[56] u’zy = 

from which the coefficient n may be determined. 
These measurements give for the Matrix 1471 

I 
(;) (2) (2) [F_ ($2) (+3)] 

. . . (j-) (2) [$ - (7) (’ -;,-“‘>I 

and the two relations 
1 

a=-; t=’ . . . . . . . 
PI Pz 

The individual values of the coefficients in the Matrix 
may be found by the inversion of the Matrix [571. 

. . . . . . . . . . . . . . 1 . . . [611 

... ... ... ... ... ... . 

... ... ... ... ... ... ... 

... ... ... ... ... ... ... 

in which the 21 terms 

(G-F) . . . . . . . . (c+3 . . . . . . 1621 

are the classical coefficients of anisotropic elasticity, as would be 
measured with a constant pore pressure (u = 0). 

Seven additional measured quantities are then required to fix 
the properties of the system. Six of these may be obtained from 
an unjacketed compressibility test. An original unit sphere of the 

+ (3z(l++2(l-~-r9]......1571 

1461 

porous material will be deformed into a triaxial ellipsoid. For the 
general case in which the principal axes of the ellipsoid are not 
parallel to the co-ordinate axes, the six coefficients of strain as a 
function of pressure may be measured as 



6, = - $ 

. . . . . . . . . . . . . . . . [63 1 
s,, = - e,, 

P’ 

Alternatively it would be possible to measure the mutually per- 
pendicular principal strains of the specimen 

s,=_: 1 
&= -% 

P' 
i 

. . . . . . . . . . . . . . . . 

&=-e’ 
P' I 

and three angles describing their orientation and to express the 
co-ordinate strains in terms of these. 

For the special case in which the principal axes of the ellipsoid 
are paralle1 to the co-ordinate axes, the coefficients 6,,, a,,, and 
6, are given directly by the principal strains and coefficients 6,,, 
S,,, and 6,, are zero. 

For a final measurement the coefficient of fluid content y may 
again be used, permitting the fluid dilatation in t,he unjacketed 
compressibility test to be given by 

01 

E = - p p’ - (61 + 6, + 6*)p’ 1 
. . . . . I651 

Therefore the strains in the unjacketed test may be expressed 
in terms of seven measured coefficients and the fluid pressure. 
The stresses again will be 

CZZ = oyy = o,, = -(l - f)p’ 

UU# = um = a,, = 0 

1 

. . . . . . . . [@I 

u = --fp’ 

and by substitution into Equation@ [60] seven equations relating 
the original coefficients and the measured coefficients will be ob- 
tained. These relations together with the 21 relations between 
the Expressions [62] and the classical coefficients permit the 
original coefficients to be determined. Again we may remark 
that a diierent set of coefficients not involving explicitly the 
porosity can be derived easily by introducing the variables p and 

c. 

6 ELASTIC COEFFICIENTS FOR INCREMENTAL DEFORMATIONS 
OF A PRESTRESSED MATERIAL 

In the foregoing we have assumed the strains to be small and 

linearly related to the stresses. We will now examine how the 
relations between stress and strain may be expressed if the porous 
solid-fluid system is still elastic but nonlinear. In particular we 
are interested to know if the results of the foregoing sections are 
directly applicable to the linearized problem when we consider 
small incremental stresses and strains in the vicinity of a pre- 
stressed condition. 

We shall restrict ourselves to the case where the prestress is 
isotropic. We consider an initial state 1 which is unstressed. The 
state of prestress denoted as 2 results from the application of 
isotropic stresses in the fluid and the solid. We consider the forces 
acting on the solid portion of the material per unit area of the bulk 
material in state 2. This being an isotropic stat.e of stress these 
forces are represented by the matrix u’ 0 0 

[ 1 0 u’ 0 . . . . . . . . . . . . . . . . 1671 

0 0 6’ 

Similarly the forces acting on the fluid portion per unit area of 
bulk material are represented by 

. . . . . . . . . . . . . . . . . . . . [SS] 

The prestressed state 2 is now considered as a new initial state 
and small incremental deformations eii are superimposed leading 
to state 3. The incremental strain tensor is defined in terms of the 
incremental displacements g and 0 of the solid and the fluid 
measured from state 2 as origin. The incremental strains give rise 
to a new state of stress obtained by adding incremental compo- 
nents Aui, and Au. We represent the solid stress in state 3 by 
forces acting on the solid portion of the material per unit area in 
state 2. They are 

u’ + Au,, Auzu AU,* 

Aa,, u’ + Au,, htz . . I691 

Au,, Aqt. u’ + I Au=,. 

The forces acting on the fluid in state 3 per unit area in state 2 are 

u + Au 0 0 

0 ~ u + Au 0 

I 

. . . . . . . . . 1701 

0 0 u + Au 

We now assume that the incremental stresses and strains are 
small enough so that they are related linearly. The material in 
state 2 remains isotropic and therefore the incremental stress- 
strain relations are isotropic. This requires that they be of the 
form 

Aa,, = 2Ne,, + Ae + Qe 

AUK,, = 2Ne,, + Ae + Qe I 
Au,, = 2Ne,* f Ae + Qe 

Auvr = Ns,, , . . . ...*... 1711 

Aa, = Ne, 

Au,, = Ne,, 

Au = Q’e + RE 

We see that hased on isotropy alone there are five elastic co- 
efficients for incremental stresses and strains. These coefficients 



8 

are functions of the initial stresses u and 6’. In order to simplify p’ is (1 + 1/re)2 and for p it is (f f Af)( 1 + ‘/,e)*. We note by 

the writing we may without loss of generality consider an incre- Af the increment of the porosity factor. Hence 
mental stress which is also isotropic. We put \ 

Au,, = AuUU = Aa_ = Au’ 

1 
ezr = eyy = e,, = - e 

3 

/ 

. . . . . . . .[72] 

AuyS = Au, = Au,, = o 

u’+u+Au’+Au= -(p’+Ap’)(I+$e)* 1 

Q + Au = - (P + Ap)(f + Af) 

evg = err = ezy = 0 1 Retaining only incremental terms of the first order, Equations 
Equations [71] become [78] are written 

Au’= (++++Qtj . . . . . . . . . 1731 

Au = Q’e + RE J 

We assume the existence of an elastic potential energy for in- 
cremental deformations in the vicinity of the prestressed state 2. 
If W denotes this potential energy per unit volume of the material 
in state 2 we may write 

dW = (a’ + Au’)de + (a + Au)de.. . . . . . . . [74] 

This being an exact differential we have 

$(Aut, = $ (Au). . . . . . . . . . . . . 

hence from Equations [73j 

Q = Q’. . . . . . . . . . . . . . . . . . . . .[76] 

The matrix of elastic coefficients in Equations 1711 is therefore 
symmetric and there are only four distinct coefficients. 

We must bear in mind that the quantities Au’ and Au are not 
the forces acting per unit area of the final deformed st,at,e 3 but per 
unit area of the prestressed state 2. Therefore, they are not 
represented by actual fluid pressures in a test but are related to 
them through the incremental deformations. Let us imagine a 
jacketed test with an initial state of stress such that the fluid pres- 
sure inside the jacket. is p, while a fluid pressure p’ is applied out- 
side. Our purpose here is to point out an important difference be- 
tween the test with prestress and the test without prestress. In 
the case of prestress, it is not as simple to evaluate the quantities 
Au’ and Au in terms of the fluid pressure as for the case without 
prestress. This can be seen as follows. Denoting byfthe porosity 
in the prestressed state 2 we may still write as before 

u’ + u = -p’ 1 . . . . . . . . . . . . . . . 1771 
u = -fp 

If we now apply incremental fluid pressures Ap’and Ap, these 
fluid pressures are applied to changing areas. The new area for 

AU’ + AU = - Ap - + p’e 

AU = -fAp - pAf - t fpe 

. . . ..I791 

We see that Au’ and Au are not exactly equal to (1 - f )Ap’ and 
-fAp. The correction terms, in general, will be small but never- 
theless will vanish only if the initial stress is zero. 

With these limitations the results of the previous sections may 
be applied to incremental deformations except for a reservation 
regarding the validity of Expression [24] for the coefficient of 
Ruid content y. We have remarked that, for the unstressed initial 
state, this expression holds if the material of the porous matrix is 
homogeneous and isotropic. This is a sufficient condition only if 
p = p’, i.e., if the initial pressures on the solid and on the pores are 
the same. If these initial pressures are not equal, then equal in- 
crements of t.hese pressures may produce a change in porosity 
thereby invalidating Relation [24 ]_ 
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