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SUMMARY 

The theory of static aeroelastic stability of supersonic wings 
including chordwise bending, as developed in reference 1, is fur- 
ther extended to include the influence of stresses arising from 
thermal gradients. The wing spanwise twist distribution is 

found to obey an ordinary differential equation of the fourth 
order whose coefficients depend on the thermal gradients. The 
influence of finite deformation is taken into account by the fact 
that the coefficients of the differential equation also depend on 
the amplitude of the deformation. The thermal stresses affect 
the stability in two distinct and independent ways, through its 
influence on the effective torsional stiffness and on the anticlastic 

effect. These factors act in opposite directions in such a way 
that if the thermal stress produces an increase in torsional sta- 
bility it decreases the anticlastic stability, and vice versa. It 
is possible to embody the effect of the thermal stresses in a single 
parameter. Stability curves constitute a single family in this 
thermal parameter and plots are shown for three numerical values 

of the parameter. 

EVALUATION OF THE MEMBRANE STRESS 

I N REFERENCE 1 we have investigated the aeroelastic 
stability of supersonic wings including chordwise 

bending. It was found that the stability is ex- 
tremely sensitive to the anticlastic effect-i.e., the 
tendency of the wing to acquire a saddle shape as it de- 
flects. It must be expected that thermal stresses have 
a strong influence on t.he anticlastic effect and there- 
fore also on the aeroelastic stability. Our purpose 
here is to give a simplified treatment, leading to an 
evaluation of the influence of thermal stresses on the 
wing stability, including the chordwise bending, the 
anticlastic effects, the change in effective torsional stiff- 
ness, and the nonlinear aspects due to finite deforma- 
tion. 

We follow the procedure developed in Section 7 of 
reference 1. This is a modified strip method which 
takes into account the influence of Poisson’s ratio along 
with the membrane stresses. We consider a canti- 
lever wing of rectangular plan form and double-wedge 
airfoil section (see Fig. 1). The method, however, is 
not restricted to this particular configuration. For 
simplicity, we shall assume the temperature distribu- 
tion to be parabolic along the chord and independent 
of the spanwise coordinate. As is pointed out below, 
this is an approximation which embodies the essential 
temperature parameter. The present treatment is 
easily extended to cases of nonuniform distribution 
along the span by introducing a spanwise variation of 
this parameter. Also, as is pointed out below, the 
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equivalent parameter for a nonparabolic distribution 
may be introduced by an averaging method. 

We represent the chordwise temperature distribution 

by 

I9 = { [@I + edPI - eo) w/12) + 
[(02 - edlal (x/Q + 00 (1) 

where 00 is the temperature at the midchord (x = 0) 
while el, e2 are temperatures, respectively, at the lead- 
ing edge (x = --I) and the trailing edge (x = I). These 
temperatures are taken to be average temperatures 
across the thickness. 

We denote by u,, and ully the two stress components 
in the plane of the wing. It is easily shown by pro- 
ceeding as in the theory of plates for large deformation6 
that they satisfy the equation 

V2(%z + uuff + atEe) = -Ey (2) 

where (Y~ (assumed constant) is the coefficient of thermal 
expansion and 7 is the Gaussian curvature of the de- 
flected wing surface, 

Y = w,, wzz - wzr12 (3) 

The subscripts indicate partial derivatives d2/bx2, 
a2/by2, b2/bx By of the deflection w taken positive up- 
ward in Fig. 1. We may assume the membrane stress 
to be only spanwise-i.e., uzz = 0. Moreover, we may 

Put 

ape = (at/l2) [e, + e2 - 2eo] = 6 (4) 

This is a quantity proportional to the chordwise curva- 
ture of the temperature distribution. It is the signifi- 
cant temperature parameter. Since we take uzz = 
0, we write Eq. (2) as 

b2~Jbx2 = -E(y + S) (5) 

Fro. 1. General configuration of the wing, temperatures, and 
stresses. 
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In first approximation we may assume the curvature 
7 to be consta.nt along the chord. We see immediately 
the reason for which we have assumed a parabolic vari- 
ation of the temperature since this yields a constant 
value for 6. The effect of the temperature then plays 
the same role as the curvature y, and we may therefore 
proceed exactly as Section 7 of reference 1. There is 
one difference, however, which constitutes an improve- 
ment. In the previous work we considered the total 
membrane stress-i.e., the stress mu11 integrated across 
the local thickness h’, 

u 1 = ayllh’ 

and we assumed that it satisfied the approximate equa- 
tion, Eq. (7.1) of reference 1, 

b2a,/dx2 = - Eh’y (6) 

Actually it is more correct to use Eq. (5), and we shall 
rederive the theory on the basis of Eq. (5) instead of 

Eq. (6). 
The distribution of the stress along the chord is ob- 

tained by integrating Eq. (5) and choosing the con- 
stants of integration in such a way that the total stress 
is self-equilibrating-i.e., 

S 
+i +I 

h’q,, dx = 0 and 
--I s h’a,,x dx = 0 (7) 

-1 

The wing has a double-wedge cross section of maximum 
thickness h. Hence, 

h’ = h 1 - ‘f 
[ Ill 63) 

This yields 

u 2/g = (1/2)E(~ + 6) [U2/6) - 4 (9) 

The chordwise distribution of the total membrane stress 
is 

u y = ; E(y + 6)hP 1 - ( 

DIFFERENTIAL EQUATION FOR THE WING TWIST 

We now evaluate the torque, acting on a strip of 
spanwise coordinate y. The local wing deflection is 
approximately 

w’ = w - ffx 

where w and (Y are, respectively, the deflection and 
angle of attack at the midchord.* The local spanwise 
curvature is 

WU, ‘=w YU - =%I (11) 

where (Ye,, is the second spanwise derivative of CY. The 
wing considered as a thin plate deflects under an 
equivalent load per unit area equal to 

q’ = auwr,,’ - q (12) 

* Note that ZJ is used for VJ’ in the previous section. In the 
equations below, v+,~, ZL*=, and wzu designate the second deriv- 
atives at the midchord. 

where q is the aerodynamic load [see Eq. (1. l), refer- 
ence 11. Hence, from Eq. (ll), 

q’ = a,w,, - ffyy flux + q (13) 

This load produces a torque, made up of two terms. 
One term T’ is due to the load --cY~~u~x, the other T 
is an aerodynamic torque, originating with the chord- 
wise curvature, which itself is caused by the load q’. 
We shall first evaluate T’. We find 

S 
I 

T’ = 2a,, uux2 dx = k; E(y + 6)h15q,, (14) 
0 

The torque is positive in the stalling direction. 
The chordwise curvature wz, produced by the load 

p’ is obtained as in reference 1 by a method of virtual 
work, and by assuming that wz, is constant along the 
chord. We derive 

WCrz + VW,, = -(7/3OP (1 - V2)“VU(Y + 6) x 

(14/h2) + (2/3) (kIl)a (15) 

In this expression, v is Poisson’s ratio and k is the sta- 
bility parameter defined in reference 1 as 

k = 24(M2/1/M2 - 1) [pc2(1 - v2)/E] (Z/h)3 (16) 

Eq. (15) is the same as Eq. (7.8) of reference 1, except 
for the addition of a temperature parameter 6 and the 
numerical coefficient 7/30 instead of 11/15. The latter 
difference is due to our use of Eq. (5) instead of Eq. 
(6) for the membrane stress distribution. We must 
remember that y contains w,,, hence, solving Eq. (15) 
for wz,, we obtain 

W zz = - vl’_fWvv + GV’31fh’l)a (17) 

with vi’ = v - (7/30) (1 - v”) (Z4/h2) (wzu2 - 8) (18) 

f = l/[l + (7/30) (1 - v”) (Z4/h2)wyu2] (19) 

The coefficient vi’f is an “effective” Poisson’s ratio 
which gives an immediate evaluation of the magnitude 
of the anticlastic effect associated with a spanwise 
bending w,,. The effective Poisson’s ratio is increased 
if 6 is positive-i.e., if the temperature at the midchord 
is lower than the average of the leading- and trailing- 
edge temperatures. We shall discuss the magnitude 
of this effect later. 

The chordwise curvature wz, produces an aerody- 
namic torque which is easily evaluated. Its value 
(positive in the stalling direction) is 

T = (4,‘3) (M2/1/M2 - l)pc2L2[(2,‘3)j’kcz - vi’flw,,] 

(20) 

The total torque being T’ + T, we may write a differ- 
ential equation for the spanwise distribution of the 
wing twist 

-Q(d2ar/dy2) = T’ + T (21) 

where Q is the wing torsional stiffness. Substituting 
the value of T’ from Eq. (14), we may write 

-Qi(d%/dy2) = T (22) 
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with an “effective” torsional stiffness 

Q1 = Q - (7/360) E(r + 6)hP (23) 

We see immediately that if 6 is positive-i.e., if the dis- 
tribution of temperature is concave upward-its 
effect is to lower the effective torsional rigidity. The 
effect of the twist wzs alone appears through y = 
- wzva which gives a measure of the increase of torsional 
rigidity due to finite twist. Torsional instability occurs 
for Qr = 0. For infinitesimal deformation, y = 0, and 
this gives the stability criterion in twist, 

6 = (360/7) (Q/EhF) (24) 

When 6 exceeds this value a finite y appears, the 
magnitude of which is again derived from the condition 
Qi = 0-i.e., 

-y = 6 - (360/7) (Q/EMS) (25) 

As mentioned above, the effect of the temperature on 
the aeroelastic stability appears, not only through a 
change in effective torsional rigidity, but also through 
the anticlastic effect. To evaluate the combined effect, 
we may proceed entirely as in Section 7 of reference 1, 
provided we replace Q by Qi, and v’ by vi’. We write 

PI = h”lE/24(1 - v”)Qi (26) 

R = h3Z,‘6(1 - v2)& (27) 

where II is the wing cross section moment of inertia 
about the chord. Furthermore, we put 

Hi = (8/9)k2Pp1(b2/Z2) 

Sl = (3/2) vl’R(b2/Z2) I 
(28) 

where b is the wing span. 
The differential equation for the wing twist in terms 

of a nondimensional spanwise coordinate r] = y/b is 
then identical with Eq. (7.17) of reference 1, except 
that Hand S are replaced by HI and Si-i.e., 

(d4~/dt14) + Hlf(d2a/dq2) - fH&a = 0 (29) 

DISCUSSION 

The stability diagram in the 61, Sr plane is the 
same as that given by Fig. 19 in the above reference. 
In order to discuss the effect of the temperature it is 
convenient to separate the parameter 6 in the expres- 
sions of HI and Si, 

Hi = H(Q/Qd .si = S(Vl’/V’) 

H and S are defined as in reference 1: 

‘(30) 

H = (8/9)k2P(b2/Z2) 

S = (3,‘2)v’R (b2,‘Z2) 

P = h3ZE/24(1 - v”)Q 

v’ = v - (7/30) (1 - v”) (E4/h2)WZ,2 

(31) 

Because we have used Eq. (5) instead of Eq. (6) ex- 
pressions for v’ and f are different from those of refer- 
ence 1. The temperature parameter is contained only 
in the factors Q/Q, and vi’//. The influence of the 

IH 
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S 
FIG. 2. Effect of the temperature parameter (T) on the stability 

diagram. 

- 
temperature on the 1/H S stability diagram is there- 
fore obtained by a change of scale of .the coordinate 
axes. Consider, for instance, the case of incipient in- 
stability-i.e., small deformation-then f = 1, v’ = v, 
y = 0. The torsional rigidity of the thin double wedge 
is 

Q = (1/6)Zh3G = (l/12) [lh3E/(1 + v)] (32) 

hence (with v = v’ and wzwzar = 0) 

Qu’Q = 1 - (7/‘30) (1 + v) (Z46/h2) 
Vl’/V’ = 1 + (7/30) [(l - V”)/V] (146/P) > 

(33) 

The influence of the temperature is contained in the 
nondimensional parameter 

7 = Z46/h2 = (rt[& + 82 - 2001 (E2/h2) (34) 

For steel we put ozt = 7.22 X lO-6/oF. and v = 0.3. 
If we assume (l/2) (0, + Bz) - &, = 208’F. and Z/h = 
10, this case corresponds to r = 0.3. Fig. 2 shows a plot 
of the diagram for three values 7 = 0.3, r = 0, and 7 = 
-0.3. The value of r = -0.3 corresponds to a mid- 
chord temperature in excess of the average temper- 
atures of leading and trailing edge. This can happen 
during a cooling period of a heated wing. 

Fig. 2 indicates that for positive T the effect of the 
temperature is destabilizing with regard to torsional 
rigidity and stabilizing with regard to the anticlastic 
effect. An interesting result is that for negative r 
(cooling phase) the influence of the temperature on 
the stability is reversed. 

The present treatment can easily be extended to in- 
clude spanwise variations of temperature and the 
effect of the wing tip and aspect ratio on the structural 



properties. Variational methods are suggested as a 
practical approach. 

We note that in evaluating the effect of the temper- 
ature on the torsional rigidity, it is not necessary to 
assume a parabolic distribution of the temperature 
along the chord. A refinement in the present treat- 
ment is to introduce the equivalent value of 6 giving 
the same torsional rigidity. Referring to Eqs. (14) 
and (21), we may define Q1 as* 

QI = Q + 2 l qyxz dx 

The stress uy is the total membrane stress across the 
thickness, 

* The influence of axial stress on torsional stiffness was pre- 
viously investigated by Wagner,2 Biot,3 and Goodier.’ Simpli- 
fied expressions were also derived by Budiansky and Mayersh 
and by Hoff.’ 
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