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A preliminary theory is established for the stability of e visooelastio leyer sandwiched in an 
infinitely extended medium of another visooelastio materiel when s compressive force is 
acting in a direction parallel with the layer. The instability is menifested by e folding of the 
layer. It is shown that in general there exists e lower and & higher critical load between 
which folding occurs at a finite rate with a dominant wavelength. This is the wavelength 
whose amplitude increases at the fastest rate. Special ceses are also discussed in more detail 
such es that of e purely viscous layer in a viscous fluid, an elastic lityer in e viscous fluid, e 
viscous layer in en elastic medium, end of two Maxwell materials. Results indicate that 
the ratio of the relaxation times of the two materials is an important parameter. 

1. INTR~DUOTI~N 

The problem under consideration deals with the deformation of a composite medium 

made up of a layer sandwiched in another medium of infinite extent or lying at the 

surface of another semi-infinite medium. We are also concerned with a particular 

feature of the deformation, namely, the folding of the layer as a result of instability 

when the medium is subject to a compression in a direction parallel with the layer. 

When the materials are purely elastic the theory corresponds to the buckling 

of an axially loaded beam lying on an elastic continuum. It is known in this 

case that under a critical compression load a folding of the beam occurs suddenly 

with a wavelength characteristic of the geometry and the elastic constants of 

the materials. 

It is clear that for viscoelastic materials such sudden deformation will generally 

not occur and that we shall not be able to define a unique critical load. 

We have attempted here to establish a systematic analysis of the behaviour 

under compression of the stratified viscoelastic medium, of two distinct materials. 

Before such an analysis could be undertaken on a general basis, a sufficiently general 

approach to stress relations in viscoelastic materials had to be developed. This 

was done by the writer (Biot 1954). The results are of interest to the geologist as 

they should throw some light on the mechanism of folding of sedimentary rock and 

other tectonic features of stratified geological formations, and also furnish the 

beginnings of a quantitative approach to these problems. Some technological 

applications may also result in the field of plastics and sandwich panels, and in the 

behaviour of metals under creep conditions at elevated temperature. 

Some of the cases investigated may also be considered as qualitative models for 

the approximate representation of analogous configurations encountered in 

technological problems as exemplified by the case in 0 5 which is related to the 
buckling of an oilwell drill rod. 
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445 _FoEding instability of a layered viscoelastic medium 

In 5 2 is established the basic differential equation for the layer instability. The 
procedure is based on certain approximations of the type encountered in the elastic 

beam theory. In fact the theory is formally the same, and the results are obtained 

from the elastic equation by the rule of correspondence as formulated in more 

general form by the present writer in previous publications (Biot 1955 cc, b). By this 

correspondence rule, we may replace the elastic constants by their corresponding 

operational expressions for the viscoelastic case, in a wide class of problems in- 

cluding those which have been solved by variational or elementary strength-of- 

materials methods. Also derived previously is the nature of these operational 

expressions from the general principles of irreversible thermodynamics (Biot 

1954). 
The theory is confined to the linear case from the standpoint of the physical 

properties involved as well as the assumption of infinitesimal deformations, and 

we shall have to keep this in mind when evaluating its applicability to actual con- 

figurations and materials. In addition to approximations of the beam-theory type, 

we assume that the compressive force acts only in the layer, i.e. we neglect the 

compressive pre-stress in the infinite medium. This, however, is generally justified 

if the stiffness or viscosity of the layer is sufficiently high, but in principle the stress 

in the infinite medium cannot be overlooked. The effects of adhesion and friction 

between layer and medium are also neglected. A more exact but more elaborate 

theory which does not introduce these assumptions has been developed and the 

results will be presented later. 

Section 3 discusses the general case and derives general conclusions and formulae. 

The possibility of the existence of a lower and a higher critical load is established. 

It is also shown that, in general, multiple folding can occur; by that, is meant the 

appearance of several wavelengths in the folding of the layer depending on the time 

history of the load. This in turn can lead to a folding of variable amplitude oharac- 
terized by the appearance of a beat phenomenon in the spatial distribution of the 

wave shape. 

The following sections deal with special cases. In 5 4 we assume both materials 

to be viscous fluids. Section 5 considers the folding of an elastic layer in a viscous 

fluid. This may be looked upon as a qualitative mathematical model for the stability 

of a drill rod in an oil well. Section 6 discusses the viscous layer in an elastic medium, 

and 0 7, the case of two Maxwell-type materials. One of the salient results is that the 

ratio of relaxation times of the two materials is an important parameter. If this ratio 

is unity, as it is if the materials are both elastic or incompressible viscous fluids, the 

wavelength of the folds does not depend on the magnitude of the load. If this ratio 

is not unity this is not the case and multiple folding may take place. 

The stability of an embedded layer for the case where the two materials are 

purely elastic has been the object of numerous studies in the engineering literature 

particularly in connexion with the properties of sandwich panels. The problem has 

been considered by Bijlaard (1946, 1947) who refers to its application to sandwich 

panels and the problem of wrinkling of road surfaces, and also by Gough, Elam & 

DeBruyne ( I 940). 
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2. BASIC EQUATIONS OF FLEXURAL INSTABILITY 

We shall consider a layer of viscoelastic material embedded in an infinite medium 

which is also viscoelastic. The layer of thickness h is subject to a compression P 

(figure 1). The problem is to determine the folding of this layer induced by the 

compressive stress. 

We will first establish the equations for the layer itself independently of the 

surrounding medium. The problem is that of bending of a plate under initial com- 

pression. The deformation is assumed to be cylindrical, the folding occurring 

perpendicularly to the x direction which is also the direction of the compressive 

load. The effect of the surrounding medium is represented by a lateral load q per 

unit length acting on the plate. The simplifying assumption is here introduced that 

no tangential forces are exerted between the plate and the surrounding medium. 

Ph 

FIGURE 1. Layer embedded in an infinite medium. 

The equations for the flexural deformation of a viscoelastic plate may be obtained 

(Biot 1955 a, b) from a correspondence rule, by considering first an elastic plate and 

replacing the Lame constant by the corresponding operators. The Aexural deflexion 

w of an elastic plate under a compressive P stress and a lateral load q is 

Eh3 d% -___ -+Phd$ = q, 
12( 1 - u”) dti 

(2.1) 

where E is Young’s modulus and v Poisson’s ratio. The elastic coefficients in this 

equation can be written in terms of the Lame constants h and G as follows 

4G(G+4 E _ 
l-9 2G+h ’ 

(249 

The shear modulus is designated by G to distinguish it from the viscosity 

coefficient p. 

The stress-strain relations for an isotropic material are written operationally 

(Biot 1954) ~+j = 2&(p) eii + Jij R( p) e (2.3) 

with &* the unit matrix and ei, defined in terms of the displacement Us as 

1 &hi aU* 
eij = - 

2 Z$%F ’ 

( “) e = e,,+e,,+e,. 

(2.4) 
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The operators are Q(p) = pj; ;z y(r)dr+Q+Q’p 

R(p) =r, 
s 

m R”(r) 
o p+r y(r)dr+R+R’z’, 

1 

P-5) 

According to the correspondence rule we must replace in equation (2.1) the 

Lame constants Q! and h by their corresponding operators Q(p) and R(p). Hence, 

the equation for the flexural deformation of the viscoelastic plate is 

B(p);g+Ph$ = q, 

with the operator B(p) = 4&(P) [Q(P) +R(P)l 
2&(p) + R(p) - 

(243) 

(z-7) 

The load q exerted by the surrounding medium on the plate is still unknown and 

depends on the deflexion w. In order to find an expression for this load we assume 

that the deflexion is sinusoidal along 2, 

w = w. COB lx. (29 

We must therefore determine the load -q necessary to produce such a sinusoidal 

deflexion of a half space. The load will also be sinusoidal, 

- q’ = q. 00s lx. (2.9) 

In order to find the relation between w and q’ we again consider the purely elastic 

case. This problem has been solved for two-dimensional stress (Biot 1937). The 
present case is one of two-dimensional strain which may be deduced from the result 

for two-dimensional stress by replacing E by E/( 1 - Y”). 

We derive for the elastic case 

W 2(1-v?) 
---T= -q El1 ’ 

(2.10) 

where E, and vi are Young’s modulus and Poisson’s ratio of the medium. As before, 

we use the correspondence rule and replace the Lame constants by the corre- 

sponding operators Q1( p) and R,(p) of the surrounding medium. Now q’ is the load 

exerted by the surrounding medium of one side of the layer. The total load q due 
to both sides is 

With an operator B 
1 
(p) = 4&,(p) [&I(P) +R,(P)I 

2&,(p) +R,(P) ’ 

(2.11) 

(2.12) 

we find -q = B,lw. 

Substituting q in the flexural equation (2.6) yields finally 

(2.13) 

(2.14) 
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This is an operational equation valid for sinusoidal folding of the layer with a wave- 

L = 27rjl. 

This equation contains two operators B(p) and Bl(p) which characterize respec- 

tively the viscoelastic properties of the layer and that of the surrounding medium. 

It is clear that the problem of a viscoelastic layer lying on top of a semi-infinite 

viscoelastic continuum as illustrated in figure 2 is the same as the one above, under 

the approximations introduced. The lateral restraint of the folding layer is simply 

divided by .2. The equation of the deflexion is 

(2.16) 

This is the same as equation (2.14) with the factor i introduced in the last term. 

All results obtained hereafter for the embedded layer will be applicable to the 

surface layer if we replace B,(p) by +B,(p). 

FIGURE 2. Layer lying on top of a semi-infinite medium. 

3. THE GENERAL NATURE OF THE INSTABILITY 

We shall now discuss the various types of folding instability which will arise in 

the general case. If we substitute into the differential equation (2.14) the sinusoidal 

distribution (2.8) of the deflexion w we obtain the basic characteristic equation 

&B(p) Z2h2 + T = 
B,(P) p 

, 

which is a relation between the compressive load P, the wavelength L = 27~11, and 

the time parameter p. The significance of positive values of the parameter p arises 
from the fact that such values correspond to deflexions ‘LO containing a time factor 

ept so that p is a measure of the instability and the rate of growth of the folding 

amplitude. The load P may be considered a function of lh and the parameter p. 
We now consider the physical significance of the operator B(p). It yields the 

stress cZZ = B(p) e,, for a one-dimensional deformation es2 in which e,, = 0 and 

gVld = 0. Hence from thermodynamics (Biot 1954) B(p) may be written in the 

same form as (2.5) for Q/p, with all terms positive. As a consequence B(p) and B,(p) 

are monotonically increasing functions of p. Therefore if we plot P as a function of 

lh we obtain a family of curves as illustrated in figure 3. 

This diagram shows that for a given load there is a wavelength of fastest rate of 

growth, i.e. highest value of p. This will be called the dominant wavelength L,. It is 
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determined by a value 1,h of lh for which P is minimum under constant value ofp. 
Hence, since 

l h= 3 %(p) 
d 

J B(P) ’ 
(3.2) 

the dominant wavelength is 

Ld=2nh3 pa 
J 

B(P) 

6&(P) 

The corresponding load P at which it appears is 

P = -B (P) 2” 1 3 J B(P) 
6B,(p)’ 

(3.3) 

(3.4) 

By plotting L, against P for values of p varying from 0 to co we obtain the 

dominant wavelength as a function of the load. The dominant wavelength may 

increase or decrease with the load depending on whether the ratio B,(p)/B(p) is an 

increasing or decreasing function of p. 

P 
t 

pe 

4 

p=cO 

\ #$# 
,I 

‘p=O 

--- I 
I 

I 

hih lh---+ 

FICWRE 3. Stability diagram relating the compressive load P, the wavelength 
L = Zn/l of the folding, and the rate of folding p. 

The dominant wavelength will be independent of the load if this ratio is constant. 

Such will be the case for instance if the medium is homogeneous with respect to its 

time constants. We can call this the case of a homogeneous spectrum and assume 

that the operators for the two media are of the type 

Q(P) = V(P), R = Df(p), 

QI(P) = W(P), R, = W(P), > 
(3.5) 

with constants C, C,, D, D,, and a single operator 

We have then 

f(p) = S,mp+rWdr+a+pp. 

B 

By 
C(C + D) (2Cl + DJ 

C,(c:+D,)(2C+D)’ 

(3.6) 

(3.7) 

a constant value independent of the load. 
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Let us consider the behaviour of the layer in the most general case when a com- 

pressive load is gradually applied. From small enough values of the load it is possible 

that no instability occurs. In this case incipient folding will appear at a lower 

critical load PC corresponding to p = 0. This load is 

pc=~B,(O) 3 J g$. 
1 

(343) 

For this load the instability is incipient and the rate of growth of the folding 

theoretically vanishes. As the load increases we may reach a point for whichp = co, 
i.e. the folding may occur at an infinite rate and is purely elastic.* This upper 

critical load is a buckling load. 

PI. = $B,(co) 3 J Z). , 
1 

It may happen of course that the lower dritical load is zero and that the instability 

occurs no matter how small the load. Also in some cases the upper critical load may 

be infinite and sudden buckling never appears. It is easily seen from the nature of 

the operators in which cases such behaviour will occur. For instance if for the layer 

we have 
(3.10) 

the lower critical load is zero and the folding occurs under any load no matter how 

small provided we wait a sufficiently long time. On the other hand, if either Q’ + 0 

or &I =/= 0, the upper critical load is infinite. This corresponds to the existence of a 

Newtonian viscosity term. Of course, while this may prevent the instantaneous 

buckling to occur theoretically there may be in effect a finite buckling load unless 

the viscosity is sufficiently high. 

A feature of great interest is the possibility of folding with multiple wavelength. 

n general, the dominant wavelength varies with the load, if the load is applied 

o successive steps with different values, the dominant wavelength of each load 

will both be present and will be superposed. We may envisage the appearance of 

beats in the folding if the two wavelengths are not far apart. The appearance of the 

folding will therefore depend on the time history of the load, a fact which should 

be of value in geological studies. Finally, it should be remarked that the validity 

of the theory is limited to cases where the wavelength is sufficiently large relative to 

the thickness so that the beam theory applies. According to (3.3) if the layer and 
the surrounding material are the same, B = B, we would observe a dominant wave- 

length L, = 2nh/J’6, which is a physical impossibility. However, in this case the 
wavelength is too short for the elementary beam theory to be valid. For the same 

reason the validity of the diagram of figure 3 should be limited to a region lying 

to the left of a certain vertical line whose abscissa represents a value of Zh beyond 

which the beam theory is not applicable, This point will be discussed in the more 

complete theory now under study. 

* I.e. if we neglect the inertia of the system. The dynamical effects may easily be included 
in the present theory if desired. 
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4. Two VISCOUS FLUIDS 

Consider first a layer and a surrounding medium which are both incompressible 

fluids with Newtonian viscosity. The stress-strain relations for both fluids may be 

written 
c+j - &j 0. = 2/J‘&, (4.1) 

where ,u is the viscosity and CT the hydrostatic component of the stress. This falls 

in the general case above by putting R = R, = co and e = 0 in such a way that we 

have the limiting value Re = u. Moreover, denoting by ,u and p1 the viscosity 

coefficients of the layer and the surrounding medium respectively we have 

Q(P) = PP, 

&I(P) = PIP. 
(4.2) 

The other operators become 

B(P) = ~PP> 

B,(P) = +,P. 
(4.3) 

This case belongs to what we have already called the case of a homogeneous spec- 

trum. Here the relaxation times of both media are infinite. The dominant wave- 

length is independent of the load and equal to 

The lower critical load is zero and the upper critical load infinite. The folding 

appears as soon as the load is applied and the dominant wavelength is independent 

of the load. Equation (4.4) shows that a layer viscosity six times higher than the 

medium generates a wavelength 277 times the layer thickness.* 

It is of interest to examine the effect of the compressibility of the fluids. Assuming 

perfect elasticity in compression, we denote by K and K,, the elastic bulk moduli 

of the layer and the infinite medium, respectively. We may write (Biot 1954) 

R(P) = K-~&(P) = K--$&P> 

R,(P) = K,-- 8&,(p) = K,-&P. > 
(4.5) 

Hence B(P) P (PP + 3K) (4~1~ + 3K,) 

%i = x L+P + 3K,) (~PP + 3K) ’ 
(4.6) 

leading to a slight variation of the wavelength with the load. The lower critical 

load remains zero and there is no buckling load. 

5. THE ELASTIC LAYER IN A VISCOUS FLUID 

Consider now the case of a purely elastic layer. The operators for the layer 

become the elastic moduli, i.e. the Lame constants 

Q(P) = a> 
R(p) = A. 

(5-l) 

* Results obtained from & more elaborate theory indicate that the instability becomes 
significant only for values of ,u of the order of about 60~~. 
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The constant G is the elastic shear modulus. The fluid medium is assumed incom- 

pressible of viscosity ,s~. Hence 

&I(P) = PIP> 

B,(P) = *. > 

The operator B becomes a constant modulus 

B = *G(G+h) _ E 
2G+h l-v2 

(5.3) 

where E is Young’s modulus of the layer and v its Poisson’s ratio. The operator B,, 
becomes 

B,(P) = 4~1~. (5.4) 

The dominant wavelength (3.3) becomes 

L, = nh 3 
J 

B 
- 
3kP 

and the corresponding load 

P = & B+lp)t (5.6) 

(5.5) 

Eliminating p we find L = n-h 
B 

d 
J F’ (5.7) 

The dominant wavelength depends on the load. With increasing load it decreases 

like l/JP. The higher the load the shorter the wavelength. This effect is further 

accentuated if we take into account plasticity in the layer, so that the effective 

modulus B decreases with the load. We note that the dominant wavelength is 

independent of the viscosity of the fluid. Unless P is large, i.e. of the order of the 
elastic molulus B the wavelength will also be large. 

We may compare (5.7) with the Euler formula for the two-dimensional buckling 

of a pinned plate of length Le with no lateral restraint. The buckling of such a plate 

requires a load P satisfying the relation 

(5.8) 

Comparing with (5.7) we see that the dominant wavelength is ,/3 times the wave- 

length 2L, of the Euler buckling of the free plate under the same load. 

6. THE VISCOUS LAYER IN AN ELASTIC MEDIUM 

This is the reverse of the previous case. We assume a layer of incompressible 

fluid with Newtonian viscosity ,u embedded in a purely elastic medium. The 

operator B,, reduces to a characteristic modulus of the elastic medium expressed 

in terms of the Lame constants A,, G,, or Young’s modulus E,, and Poisson’s ratio 

The operator B(p) 
in (2.7); hence, 

for the layer 

B = 4%(G, +A,) El 
1 

2C,+=iq 

is obtained by 
.l A. .A. 

B(p) 5 4/+ 

putting B(P) = ~0 and Q(P) 

(6.1) 

= PP 

(6.2) 
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The dominant wavelength as given by (3.3) becomes 

L d = 2&& 3 
J 

3 (6.3) 
1 

and the corresponding load (3.4) is 

p=#B,3 2. 
J 

(6.4) 
1 

Elimination of p gives L, = +nh;. (6.5) 
1 

In this case the dominant wavelength increases proportionately to the load. Of 

course, for this theory to be valid the wavelength must be sufficiently large com- 

pared to the thickness, which requires the modulus B, of the elastic medium to be 

sufficiently low compared to the load P. This also requires the viscosity ,u of the 

layer to be large enough to sustain the load P without collapse. Withthese limitations 

in mind we may state that as the load is gradually increased the instability first 

appears when the dominant wavelength becomes appreciably larger than the 

thickness. From then on the folding will continue with the possible appearance of 

increasing wavelengths. 

7. Two MAXWELL-TYPE MEDIA 

Finally, we shall consider the case where both the layer and the surrounding 
medium are incompressible Maxwell-type materials. Their stress-strain relations 

are written respectively. 
2Gp > 

Cr,j-~~j~ = - 

$) +$5’ 

aij-8ija = F!Q!e. 

p+r, %j 

. 

i 

This is equivalent to putting 

Q(p) = -?k = - GPp 

p-+-r ,up+G’ 

(7.1) 

I &l(r)) = sl = +$$$, 
(7.2) 

with R = R, = co. 

These materials are elastic for fast deformations (p = CO). The shear moduli for 

fast deformation are G and G,. For slow deformations (p small) these materials 
exhibit Newtonian viscosity with corresponding viscosity coefficients ,u and ,ur. 

The relaxation constants are 
G 

r=--, Gl 
P 

t-1=-. 

Pl 

The relaxation times are the inverse of these quantities. 

The characteristic operators are 
4Gp ’ 

B(P) = - 
p+r’ 

(7.3) 

(7.4) 
B,(p) = %!. 

p+fi 


	Foreword
	Papers:
	Titles
	Full Citation
	Abstracts

	About M.A.Biot
	Domains
	Keywords
	Copyrights
	Acknowledgments
	List of Papers:
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	20a
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179


