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SUMMARY 

New methods are presented for the analysis of transient heat 
flow in complex structures, leading to drastic simplifications in 
the calculation and the possibility of including nonlinear and sur- 
face effects. These methods are in part a direct application of 
some general variational principles developed earlier for linear 
thermodynamics.1-3 They are further developed in the par- 
ticular case of purely thermal problems to include surface and 
boundary-layer heat transfer, nonlinear systems with temper- 
ature-dependent parameters, and radiation. The concepts of 
thermal potential, dissipation function, and generalized thermal 
force are introduced, leading to ordinary differential equations 
of the Lagrangian type for the thermal flow field. Because of the 
particular nature of heat flow phenomena, compared with dynam- 
ics, suitable procedures must be developed in order to formulate 
each problem in the simplest way. This is done by treating a 
number of examples. The concepts of penetration depth and 
transit time are introduced and discussed in connection with one- 
dimensional flow. Application of the general method to the 
heating of a slab, with temperature-dependent heat capacity, 
shows a substantial difference between the heating and cooling 
processes. An example of heat flow analysis of a supersonic wing 
structure by the present method is also given and requires only 
extremely simple calculations. The results are found to be in 
good agreement with those obtained by the classical and much 
more elaborate procedures. 

(1) INTRODUCTION 

T HE ADVENT of supersonic flight has brought a new 

importance to heat conduction problems in engi- 

neering. The temperature ranges involved and the 

highly transient character of the phenomena require 

a new frame of reference and the development of 

methods more suited to the new problems. 

It is our purpose here to initiate the development of 

a new approach to heat flow analysis. The expression 
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heat $0~ is used in its broad sense and encompasses 

heat conduction and heat transfer, convection phe- 

nomena, and radiation. The substance of the method 

has been outlined in earlier publications on irreversible 

thermodynamics by this writer.‘, 2 The principles 

were given more specific formulation in reference 3 in 

the particular field of thermoelasticity and heat con- 

duction. In those papers general methods are out- 

lined by which the elasticity and the thermal conduc- 

tion problem are treated in a unified way. The thermo- 

elastic response to thermal excitation is considered to 

result from the application of generalized thermal forces, 

defined in the same way as the mechanical forces and 

leading to Lagrangian equations for the coupled elastic 

and thermal coordinates. The thermostatic and ther- 

modynamic properties are completely defined by a 

thermoelastic potential and a generalized dissipation 

function. 

The scope of the present study includes first a re- 

formulation, in the special domain of thermal flow, of 

the previously established principles and methods. 

We make use of the concept of thermal force and of the 

dissipation function defined as previously except for a 

constant factor. We also introduce a thermal poten- 

tial. We further extend these principles to include 

boundary-layer conduction, nonlinear phenomena with 

temperature dependent parameters, and radiation. 

In addition, several entirely different methods of apply- 

ing the general principles are presented, by the treat- 

ment of specific examples, in an attempt to develop 

the art of solving complex problems of thermal flow 

analysis by procedures best suitable for each type 

of problem. It is, of course, not possible in such a 

short space to examine the innumerable variations and 

refinements of the method. We have therefore picked 

a limited number of examples and illustrations of a 

typical treatment. The heat flow in extremely com- 
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plex structures is open to analysis by such methods 
without undue complications and with suitable flexi- 
bility with regard to the introduction of intuitive and 
experimental knowledge into the formulation. 

While the mathematical basis of this new formula- 
tion is presented in the variational language, it is not 
a straightforward application of the variational calculus 
to the heat conduction equations. The physical phe- 
nomenon is considered to be represented by a vector 
field instead of a temperature field. This opens the 
way to new concepts such as generalized thermal force 
and to straightforward procedures for the interconnec- 
tion of thermal networks. 

From the standpoint of simplicity, compared to the 
classical treatment of heat conduction, the new ap- 
proach bears similarity to the powerful simplification 
which was achieved in the vibration analysis of com- 
plex structures by the introduction of Lagrangian 
methods. We must bear in mind, however, that the 
steps are far from identical because of the essential 
physical difference between the nature of the phenom- 
ena of diffusion and dynamics. One of our purposes 
here is to show how special adaptation of the methods 
to heat flow phenomena lead to remarkable simplifi- 
cations. An unexpected result is a simplification which 
leads to a nonlinear differential equation with a single 
unknown even in a physically linear problem. Another 
special feature of interest lies in the use of time- 
dependent approximate solutions, instead of the usual 
static distributions which are of standard use in the 
Rayleigh-Ritz solutions of dynamical problems. This 
also leads, of course, to a method of successive approxi- 
mations, whereby a previous solution may be intro- 
duced in the following step and ordinary differential 
equations established for the correction. This con- 

stitutes, by the same token, a procedure for testing the 
accuracy of an approximate solution. 

The basic principles in variational form as applied to 
a thermal flow field are introduced in Section (2). 
They are a direct consequence of the more general 
theories developed in references 1,2, and 3. It is shown 
how boundary-layer heat transfer may be included. 

The description of the flow field by means of general- 
ized coordinates and the concept of thermal force are 
introduced in Section (3). By means of a thermal po- 
tential and a dissipation function, it is shown how the 
thermal flow problem may be formulated by differential 
equations of the Lagrangian type. The inclusion of 
surface and boundary-layer heat transfer is also dis- 
cussed. Section (4) deals with linear systems and dis- 
cusses thermal modes, normal coordinates, orthogo- 
nality, and general expressions for the thermal ad- 
mittance in operational form. The basic mathematical 
and thermodynamic background for these concepts and 
their properties was established in references 1 and 2. 
Various ways of applying the general equations to ther- 
mal flow problems are discussed in a general vein in 
Section (5). Specific procedures for one-dimensional 
problems are developed in Section (6). One example 
uses normal coordinates and a modification of the latter 

for flows deviating only slightly from the steady state. 
Simpson’s method of integration is used to write the 
equation directly in matrix form particularly suited 
to solution by methods of iteration, as in vibration 
analysis. A particularly simple way of analyzing heat 
conduction in a slab is illustrated in Section (7). This 
leads to a simple differential equation with one un- 
known. Comparison of the results with the exact 
series solution shows the method to be surprisingly 
accurate considering its simplicity. 

The principles are further extended in Section (8) to 
include systems where dependence of the heat capacity 
and conductivity on the temperature leads to nonlinear 
equations. Temperature-dependent heat-transfer co- 
efficients as well as surface radiation conditions are 
included in the formulation. This is illustrated in 
Section (9) by the example of heat conduction in a slab 
with temperature-dependent heat capacity. It is 
found that, because of the nonlinearity, the cooling 
proceeds quite differently from the heating. 

As a final example, in Section (10) we treat the prob- 
lem of a typical portion of a supersonic wing structure 
under aerodynamic heating. The example was solved 
previously by Pohle and Oliver.6 The present results, 
obtained with very little effort, are compared with 
those calculated by the exact and considerably more 
elaborate procedure, and their accuracy is found to be 
quite satisfactory. Various methods of refinement of 
the solution of this particular problem are also dis- 
cussed. 

(2) FUNDAMENTAL VARIATIONAL PRINCIPLES IN HEAT 
CONDUCTION 

Consider an isotropic body, with a thermal conduc- 
tivity K(x, y, z) and a heat capacity c(x, y, z) per unit 
volume as functions of the coordinates. For our pur- 
pose it is convenient to introduce an excess temper- 
ature 0 = T - TO over an equilibrium temperature To. 
The temperature 0 satisfies the equation of heat con- 
duction, 

(b/ax) [k(d@) i + (b/by) [k(be/+) 3 + 

(djb2) [k(be/d2)] = c(de/bt) (2.1) 

We shall formulate a variational principle which is 
equivalent to this equation. To this effect we intro- 
duce a heat flow vector field H such that the rate of 
heat flow at every point is bH/bt per unit area, normal 
to H. Energy conservation is expressed by the relation 

ce = -div H (2.2) 

We define a thermal potential 

v = (l/2) 
sss 

&dr 
7 

(2.3) 

obtained by integration in the volume r. We also 
define a variational invariant 

6D = sss (l/k) @H/at) -6Hdr (2.4) 
7 
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We shall see that V plays a role analogous to a poten- 
tial energy while SD is related to the concept of dissipa- 
tion function. Except for a constant factor they are 
identical with the functions introduced by the writer 
in references 1, 2, and 3 in connection with linear irre- 
versible thermodynamics. It was shown in these 
references that V may be considered as a generalization 
of the free energy for systems which are not in thermal 
equilibrium. The relation of 6D to a dissipation func- 
tion will appear more clearly in the next section dealing 
with generalized coordinates. 

With these definitions we state the variational prin- 
ciple as 

SV+SD = 
ss 

en. GHdS (2.5) 
s 

This equation is to be verified identically for all 
arbitrary variations 6H of the heat flow field in the 
volume 7. The surface integral is extended to the 
boundary S of the domain with the unit normal n 
to the boundary taken positive inward. To show that 
Eq. (2.5) is equivalent to the heat conduction equation, 
we evaluate 

6V = sss cesed7 = - sss 86(div H)d7 (2.6) 
I 7 

Integrating by parts, we find 

6V= 
sss 

6Hegrad t?dr + 
T ss 

en.GHdS (2.7) 
s 

Substituting Eqs. (2.4) and (2.7) in Eq. (2.5) and 
putting the coefficient of 6H equal to zero yields 

grad 0 + (l/K) (bH/bt) = 0 (2.8) 

From Eqs. (2.8) and (2.2) 

div (K grad 0) = c(bO/bt) (2.9) 

which is identical with Eq. (2.1). The validity of the 
variational principle (2.5) is thus established. 

The above derivation assumes a body of isotropic 
thermal conductivity. In the more general case of 
anisotropy the thermal conductivity is defined by a 
symmetric tensor 

&, = R,t (2.10) 

and the law of thermal conduction is written 

5 k,(de/bx,) = - (m,/bt) (2.11) 

Eq. (2.1) is replaced by 

2 (b/dx,) [k,(de/bx,)] = c(de/bt) (2.12) 

Proceeding as above for the isotropic case, it can be 
shown that the variational principle (2.5) is also valid 
for the general anisotropic case, provided 6D is replaced 

by 

6D = 
sss 

2 X,,(bHJbt) .SHjdr (2.13) 
7 

In this expression Xu is the inverse matrix of k$, and 
represents the thermal resistivity 

Xu = Ikul-1 (2.14) 

The law of thermal conduction is then 

be/ax, = - 2 X,,(dH,/bt) (2.15) 

The principles as stated above may be readily ex- 
tended to include the effect of surface and boundary- 
layer heat transfer. This can be seen immediately 
since the heat-transfer layer is equivalent to a material 
with zero heat capacity. This will be developed more 
explicitly in the next section. The question of radiation 
loss will be discussed in Section (8) in connection with 
nonlinear problems. 

From an intuitive viewpoint, it is interesting to point 
out the complete analogy of heat conduction and the 
seepage of a compressible viscous fluid through a porous 
solid. Such an analogy was discussed in reference 3. 
The mass Aow rate corresponds to the rate of heat 
flow bH/dt, the pressure to the temperature 0, and the 
increase of fluid mass per unit volume to the heat 
content. The fluid compressibility represents the 
heat capacity and the permeability is the equivalent 
of the thermal conductivity. The analogy holds for 
nonisotropic media and may be extended to nonlinear 
systems, as will be demonstrated in Section (8). It 
also indicates that such concepts of mechanics as gener- 
alized forces and coordinates may be introduced in 
thermal problems. It can be done directly without 
referring to the mechanical model, as will be shown in 
the following section by applying the variational prin- 
ciple demonstrated above. 

(3) GENERALIZED COORDINATES AND THERMAL 
FORCE-SURFACEHEATTRANSFER 

We now introduce the concept of generalized coor- 
dinates in conjunction with the variational principle. 
There are many ways in which these generalized coor- 
dinates may be defined. We may express the flow 
field H as a sum of fixed configurations Hi(x, y, z) with 
a variable amplitude of each configuration 

H = 2 eJ& (3.1) 

The unknown amplitudes IJ~ are the generalized coor- 
dinates. However, these coordinates need not be re- 
lated linearly to the field H. More generally, we could 
write 

H = H(p, . . . qn, x, Y, 4 (3.2) 

In this case the generalized coordinates are simply a set 
of n parameters defining the field configuration. AS 
we shall see in the examples [Section (7)] it is advan- 
tageous sometimes even in linear problems to choose 
generalized coordinates which are related nonlinearly 
to the unknown thermal variables. 

Consider now the variational relation (2.5) and let 
us apply it first to an isotropic medium. 
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The variations 6H in this case are due entirely to the 
variations of pi, 

6H = 2 W/W&zc (3.3) 

Also we may write 

Hence, 

(b/NH = 2 @H&O& (3.4) 

(d/b&) (bH/bt) = bH/bqi (3.5) 

The invariant (bH/bt) .6H in Eq. (2.4) may, therefore, 
be written 

@H/at) .6H = (bH/bt). k (bH/bq,)Gq, = 

or 

(dH/bt).6H = 2 6q,(B/dg,) [(l/2) @H/W] (3.7) 

With these results the variational equation (2.5) be- 
comes 

CID/@, = 
sss 

(l/k) x 
T 

(biTI/&) - (b/d&) (dH/dt)d~ (3.9) 

Hence, we may introduce the invariant 

D = (l/2).02- (l/k) (?~H/bt)~ dr (3.10) 

Finally, we put 

PP 

JJ Bn.GHdS = 5 Q& (3.11) 
* 

with 

Qi = sl On. W/WdS (3.12) 

6 I’ = 2 (~~/&z&c (3.13) 

The variational principle, therefore, yields n equa- 
tions for the field parameters q,-namely, 

@IrlbqJ + Wl&?3 = Q1: (3.14) 

These are the analog of the Lagrangian equations for 
a mechanical dissipative system with a potential energy 
V and a dissipation function D. The above equations 
have been derived for an isotropic medium. In the 
anisotropic case, it is easily verified that the same 
equations hold provided we define D as 

D = (l/2) sss 2 Xu(bH&) (dH,/bt)dT (3.15) 
7 

This expression for P as well as Eq. (3.10) shows its 

physical significance as it is related to the rate of en- 
tropy production.2 We shall refer to D as a dissi#a- 
tion function also in purely thermal problems. 

The generalized force Q( will be referred to as the 
thermal force. It can be seen that Eq. (3.11) defines 
it in exactly the same way as a mechanical force-i.e., 
as the work done by a temperature 0 on a virtual dis- 
placement 6H. 

The above derivation does not require that the field 
H be completely defined by the coordinates qr as in 
Eq. (3.2). It is possible to have the time appear 
explicitly in the description and write 

H = H(q, . . . qn, x, y, 2, 0 (3.16) 

This will lead to the same differential equations (3.14) 
for the coordinates pz but with the time variable appear- 
ing explicitly in the equations. This point is of im- 
portance in applications as it leads very often to con- 
siderable simplification to adopt a time-dependent 
description of the field. 

Let us now consider the case of a surface heat- 
transfer effect and show how it may be included in the 
above formulation. We denote the temperature out- 
side of the layer by 8, and the temperature of the sur- 
face of the body by 8. With a heat-transfer coefh- 
cient K for the layer, the local rate of heat flow across 
the layer is 

dH,Jbt = K(B, - e> (3.17) 

The normal component of the heat flow into the body 
is denoted by H,. From Eqs. (3.12) and (3.17) the 
thermal force at the surface of the body is 

Qt = ss O(bHnlbqJdS = -ss (l/K) @f&h% X 
s s 

wn/aqiw + JJ t@U%i~d~ (3.18) 
s 

Because of Eq. (3.5) we may write 

aD,/dg, = ss (l/K) (bH,/bt) (bH,Jdqi)dS = 
s 

ss 
(l/K) (bH,/bt) (b/b&) @H,@)dS (3.19) 

s 

With a surface dissipation function, 

D, = (l/2) s&K) (=&t)2dS (3.20) 
s 

Hence, Eqs. (3.14) may again be applied to the total 
system including the surface layer provided we include 
D, in the total dissipation function and write 

D = (l/2) sss, (l/k) @H/W2d7 + 

(l/2) ss (l/K) @H,z/W2dS (3.21) 
s 

We must &o use a definition of the thermal force by 
means of the temperature outside the layer and write 
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(3.22) 

When the surface layer is a moving fluid boundary 
layer, 19~ is the so-called “adiabatic wall temperature.” 

It is of interest to point out that in Eq. (3.21) the 
boundary heat-transfer coefficient K may be time de- 
pendent. This is particularly useful in problems of 
heat transfer through boundary layers with variable 
fluid velocity. 

(4) THERMAL ADMITTANCE AND NORMAL COORDINATES 

The case where Eqs. (3.14) are linear is of particular 
interest. This will happen, of course, if the physical 
problem is linear and if the generalized coordinates are 
related to the thermal field by a linear expression of 
the type (3.1). The thermal potential V and the dis- 
sipation function D are then positive definite quadratic 
forms 

and Eqs. (3.14) read 

(4.1) 

(4.2) 

with symmetric matrices, aU = ajt, b, = bjt. 
We consider first the case where no thermal forces are 

applied (QI. = 0). Solution of the homogeneous equa- 
tions requires the solution of the characteristic deter- 
minant 

de& + $b,( = 0 (4.3) 

with p as unknown. It can be shown that the roots 
-X, are real and never p0sitive.l The characteristic 
solutions are 

G (8) = C(8)+,(s)e-Xsf (4.4) 

where the +j(S) are normalized modal distributions and 
Us) arbitrary constants. We refer to these character- 
istic solutions as thermal modes. These modes satisfy 
orthogonality relations (Y # s) 

5 a&i(s)@) = 5 b,~,,(+,” = 0 (4.5) 

The proof of these relations is identical with that given 
in reference 1 in connection with relaxation phenomena. 

Whether the roots X, are zero or infinite or multiple, 
there are always n such orthogonal modes in a system 
of n coordinates. 

These mathematical properties are identical with 
those of a dynamic system with inertia and elasticity. 
The well-known numerical methods used in vibration 
analysis, such as iteration, for instance, may be applied 
to the evaluation of the thermal modes. 

We should note that, in general, a thermal system 
will contain heat flow configurations with conservative 
fields-i.e., such that div H = 0. The thermal po- 
tential V is independent of the particular generalized 

coordinates corresponding to these fields, while D de- 
pends on these coordinates. These fields also consti- 
tute thermal modes of infinite relaxation time-i.e., of 
zero roots X,. The case is analogous to that of ignorable 
coordinates in dynamics, such as, for instance, the 
coordinate corresponding to the free motion of a solid. 

Once the thermal modes are known, the basic equa- 
tions (4.2) may be expressed in terms of normal coordi- 
nates defined by the relations 

4r = ;i: 9PEs (4.6) 

With these coordinates all equations are uncoupled 
since V and D reduce to sums of squares. Using 
properly normalized modal distributions, Eqs. (4.2) 
become 

X& + $8 = 2, 

The generalized forces are 

X, = 5 #“‘Q, 

The operational solution of Eq. (4.7) reads 

(4.7) 

(4.3) 

5s = W(P + b> 

with p = d/dt 

Substituting Eqs. (4.8) and (4.9) 
obtain the operational solution of 
(4.2) as 

qc= hL,Q, 

with an operational matrix 

(4.9) 

into Eq. (4.6) we 
the original Eqs. 

(4.10) 

-4, = Ajt = 2 [C,(")/(P + &II (4.11) 

which constitutes the thermal admittance of the system. 
The coefficients Cu@) are 

CJ8) = $+&S)&(S) (4.12) 

If there are multiple roots, we may collect all the terms 
corresponding to the same root into one single term 
so that the summation in Eq. (4.11) for C$ may be 
taken to extend to all distinct roots only. 

In a thermal system there are no infinite values of 
X,-i.e., all relaxation constants are finite. However, 
as pointed out above there may be zero roots X, corre- 
sponding to steady heat flow through the system. This 
may be expressed by separating the zero root term in 
the admittance, 

Aij = 2 [C,@)l(P + &)I + (Co/P) (4.13) 

The significance of these operators is brought out by 
considering the case where all thermal forces vanish 
except Qj. Assuming the time dependence such that 
Qj corresponds to a sudden rise in temperature at t = 0 
expressed by a Heaviside step function, we write 

in ttn 
- - -- Qj=l(t)= 

1 t20 
(4.14) 
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The coordinate qr is then 

Pr = 

[ 
2 GP 

pfx 1w (4.15) 
s 

+ 7 
1 

From the significance of these operators4 we obtain 

qr = 2 (Ctj(“)/X,) (1 - eBxar) + Cot (4.16) 

The bracketed term corresponds to the establishment 
of an equilibrium temperature distribution, while the 
term proportional to t represents the steady-state heat 
flow through the system after the equilibrium temper- 
atures are established. 

(5) SOME GENERAL PROPERTIES AND PROCEDURES 

There are certain general properties of the temper- 
atures and thermal flow fields which are worthy of a 
closer scrutiny because of their bearing on basic meth- 
ods of solution of the equations. 

It was pointed out above that, in general, a thermal 
system will contain a divergence-free field of flow cor- 
responding to ignorable coordinates. Let us examine 
this point more closely by separating the flow field into 
a divergence free field H, and a remainder HB. 

H = H, + Ho (5.1) 

The field Ho is associated with temperature changes 
while H, is not. Each field may be represented by its 
own set of generalized coordinates qr and ft 

H, = f: FJ,, Ho = 2 osgf (5.2) 

The fi’s represent the ignorable coordinates. By defi- 
nition, 

div H, = div F, = 0 

Since the temperature is 

(5.3) 

0 = -(l/c) div H = -(l/c) 2 qi div Of (5.4) 

the thermal potential V is independent of the fi co- 
ordinates. The dissipation function including the sur- 
face heat transfer is 

(5.5) 

or D = (l/2) 2 b/j& + 

(l/2) 5 b&4, + (l/2) 5 &3.Q& (5.6) 

with 

b,” = sss ‘Ft. F,dr $ 
.k ss 

s + Ft,F&S 1 
bl,’ = sss ’ F,-@dr + 

I 
,k ss 

s ; F&,,dS (5.7) 

bij = 
sss 

‘@,-@,d7+ 

i 

.k ss 
’ 8&,dS 

,K 

The subscript n indicates normal components of the 
vectors. Now we may choose the fields Fi and 0, in 
such a way that 

b,’ = 
sss 

(l/k)F,-@dr + 
7 

ss 
(l/K)F&,,dS = 0 (5.8) 

s 

i.e., such that the ai’s are orthogonal to the divergence- 
free field Ft. The thermal potential I/ is independent 
off (. We have 

v = (l/2) JJJ (l/c) (div H)2d7 (5.9) 
T 

. . 

or v = (l/2) $? aij!7iPf (5.10) 

with aij = 
sss 

(l/c) (div 0,) (div @j)dr (5.11) 
r 

Under these conditions the equations for qr are inde- 
pendent of the coordinates fit and we may write 

j j 
c aijqj + c b,q, = Qi (5.12) 

The question arises of how to establish such a coordi- 
nate system. This may be done by introducing scalar 
field distributions tir associated with a thermal flow 
field by 

Of = k grad fii (5.13)* 

Then by Green’s formula, and taking into account 
Eq. (5.3), we find 

sss IF,.@d = r k .i 7 ss s Weds (5.14) 

where n is the normal to the boundary taken positive 
outward. Condition (5.8) becomes 

ss 
FinM, + WKhJdS = 0 (5.15) 

* 

This is satisfied if the scalar #Jo satisfies the following 
condition at the boundary: 

tij + (k/K) grad, $j = 0 (5.16) 

Because of Eq. (5.3) we may also substitute a constant 
on the right-hand side of this condition instead of 
zero. With such a coordinate system we have to solve 
the differential equations (5.12) for qt, each of which is 
associated with a particular temperature configuration. 
The equations for .ft are irrelevant as far as tempera- 
ture is concerned and are only of importance if we wish 
to calculate the heat flow. The equations forfi are 

2 b,‘$ zz Qi” (5.17) 

where Qi” is the thermal force associated with ft. The 
solution of this system is trivial. As we have pointed 

* If k is discontinuous, we must choose $r in such a way that the 
normal component k grad, +i is continuous across the surface of 
discontinuity of k, as well as the corresponding temperature. 
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out, these ignorable coordinates are the analog of those 
representing the free body motion in the vibration anal- 
ysis of an elastic structure. They are eliminated here 
by a similar condition of orthogonality. 

The differential system (5.12) with a reduced number 
of unknowns possesses the same properties as the gen- 
eral system with its own characteristic values, all dif- 
ferent from zero. If the system is represented by its 
normal coordinates, the matrices ajj and b, are diago- 
nalized. Two normal coordinates t, and .$, correspond 
to fields 

&W = @W.&, &C”) = @W,& (5.18) 

The vanishing of the nondiagonal term a,, means 

aTs = US (l/c) (div W)) (div 0@))& = 0 (5.19) 
7 

The temperature fields associated with the modes ,$ 
and & are 

t$ = -(l/c) div W), es = -(l/c) div W) (5.20) 

In terms of the temperature fields the orthogonality 
condition (5.19) becomes 

sss 
ce,e,dr = 0 (5.21) 

7 

This condition is valid for nonisotropic media. The 
orthogonality condition in terms of the flow fields is 
obtained by putting the nondiagonal coefficients b,, 
equal to zero. We find 

sss 
(l/k) O(T) . O(S)& + 

7 

ss 
(l/K)0,%,%LS = 0 (5.22) 

s 

For an anisotropic medium it is easily verified by using 
Eq. (3.15) that the orthogonality condition becomes 

sss 
X&Wj%? + 

7 

ss 
(l/K)0,(‘)0,@)dS = 0 (5.23) 

s 

where Oi(l) and ei@) are the Cartesian components of 
the flow field. 

In solving Eqs. (5.12) for the coordinates we may 
first calculate the normal coordinates. The normal 
coordinates may be conveniently obtained by an iter- 
ation procedure applied to the homogeneous system- 
i.e., putting Qt = 0. The homogeneous equations in 
matrix form are 

M hl = hl kl (5.24) 

For an exponential solution of the type ePX1[aj] we write 

(l/X) kl = W-‘[bl kd (5.25) 

The iteration procedure is the same as the well-known 
one used in vibration analysis.4 Substituting a column 
4, on the right-hand side, we obtain a new column 
which is again substituted. This process converges 

toward the thermal mode of smallest value of the re- 
laxation constant X. Use of the orthogonality condi- 
tion yields successively the modes of higher X. 

We notice that if we use the thermal modes as the 
coordinates, the steady-state solution is represented 
by a superposition of a complete set of modal distribu- 
tions. 

In many problems with slowly varying temperatures 
the deviation from the steady state may be small and 
only a small number of relaxation modes with slow 
decay are excited. In such a case it is preferable to 
proceed as follows. Assume we have calculated the 
normal coordinates of the system. The equations 
then are 

X,& + $, = Z, (5.26) 

If the forces were applied very slowly, the solution for 
&would be 

r, = (l/L) x, (5.27) 

We may separate the solution into an instantaneous 
steady state p, and a correction &--i.e., replace & by 
& + IT. This yields 

XL, + i, = -fr = -(l/X,)& (5.28) 

The force &, is found by calculating the virtual work of 
the time derivative of the boundary temperature 4 on 
each relaxation mode. It is seen that if the tempera- 
ture varies slowly, only a small number of modes are 
excited. This is particularly advantageous if we evalu- 
ate the modes by iteration since only a few modes of 
lowest value of X, need be calculated. The steady-state 
solution {? is not evaluated by normal coordinates, but 
the temperature field may be calculated directly. 
This is best illustrated by the example in the following 
section. 

Before closing this discussion, attention should be 
called to an important feature. With the exception of 
normal coordinates the methods discussed above are 
not restricted to component field configurations 0, 
which are constant. We may introduce variable fields 
such as 

Ho = @ok, Y, 2, t) + 2 oi(x, y, z, t)q, (5.29) 

This is extremely important since it opens the way to a 
method of successive approximation where 00 is an 
approximate solution to which qc terms are added as a 
correction. In this case the differential equations for 
qi may or may not have time-dependent coefficients. 

Another important point, already mentioned before, 
is the possibility of including boundary heat-transfer 
coefficients K which are time dependent. Such is the 
case, for instance, in aerodynamic heating. 

Methods outlined here all lead to linear equations. 
They are not the only ones available. In some prob- 
lems it is preferable to choose the generalized coordi- 
nates in a way different from the above. This will be 
illustrated in Section (7). 
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(6) APPLICATION TO SOME ONE-DIMENSIONAL 
PROBLEMS 

We shall now illustrate the methods of thermal flow 
analysis, outlined in the previous section, by formu- 
lating them more precisely on some problems of one- 
dimensional flow. Other methods relative to one- 
dimensional flow will be introduced in the following 
section. 

In the present approach the unknown variables rep- 
resent the amplitudes of certain given field configu- 
rations. In reference 3 we have discussed the solution 
of a plate problem by means of normal coordinates. 
This was the problem of a plate brought suddenly to a 
temperature B0 on one face and kept at temperature 
6 = 0 on the other. Here we shall discuss the case 
where the plate is thermally insulated on the other 
face. The temperature is represented as a Fourier 
series, 

h = c0 = $ qn sin [n + (l/2)] (?ry/Z) (6.1)* 

and the corresponding heat flow is derived by integra- 
tion. Since H = 0 at y = 1, we write 

H = 2 qnl 
0 a[?2 + (l/2)] cos 

(6.2) 

This corresponds to distributions of the scalar +n 

$,, = sin [n + (l/2)1 (TY/) (6.3) 

satisfying condition (5.16). 
The thermal potential and dissipation function are 

h2dy = ; $ qn2 I 

(6.4) m 

dy = $ c ‘n2 
73 0 [n + (l/2>]” 

These forms reduce to sums of squares because the 
component field configurations satisfy the orthogonality 
relations (5.19) and (5.22). The thermal force Qn 
associated with each coordinate is derived from the 
variation 6H due to 6q, at y = 0, 

601 
Q&n = @H = ?r,n + c1,2jl kz (6.5) 

Hence, the differential equation (3.14) in the present 
case takes the form 

4 Pn + 
13 eel 

.2c 2K7r2[n + (l/2)]” & = r[n + O/2)1 (6.6) 

These are uncoupled equations as should be since we 
have chosen normal coordinates. * The equations are 
valid, of course, for any arbitrary variation of B. with 
time. In our particular example, we have 

* These sine functions are chosen because they are the natural 
thermal modes of the system. It can be inferred from results 
of the previous section that they constitute a complete orthogonal 
set of functions. 

e,(t) = eoi(t) (6.7) 

where l(t) is the Heaviside step function, 

i 

0 t<o 
1(t) = 

1 t>_o 

In more general cases the choice of normal coordi- 
nates as above will have the inconvenience of the uni- 
formly distributed temperature at equilibrium being 
represented by a slowly convergent Fourier series. It 
may be preferable therefore to proceed as already sug- 
gested in the general discussion of Section (5). The 
temperature is represented by a term 00(t) independent 
of y, corresponding to the instantaneous steady state 
and a residue &, 

0 = e,(t) + e1 (6.3) 

We apply the procedure leading to Eq. (5.28). The 
residue 0i is represented by normal coordinates pn satis- 
fying the same Eq. (6.6) except that the generalized 
force is now due to e. and is divided by the character- 
istic value 

X, = (k?r2/cZ2) [n + (1/2)12 (6.9) 

The equations are 

1 
Fc 412 + $ Pn = - 

1 

Ldn + (WI 
iI,, (6.10) 

12 

In the present case, where $ is given by Eq. (6.7), the 
solution is 

2~ e. 
4n = - 7r[n + (l/2)] e 

--X7&t (6.11) 

The temperature t9i associated with this coordinate is 
given by Eq. (6.1) 

cel = - 2 2~ e. 
0 ?r[n + (m)l e 

-X”tsin 

The total temperature field is 

e = e. + e1 = e. - $ {2e0/n[n + (1/N) x 

e -M sin [n f (l/2)] (ry/Z) (6.13) 

which is the classical solution for this problem. 
It is, of course, possible to use any type of function, 

such as trigonometric functions, which are not neces- 
sarily orthogonal, and polynomials. For instance, we 
could use a polynomial 

0 = $ GY* (6.14) 

This might be particularly useful for a heterogeneous 
material, such as a slab made up of layers of different 
materials. 

A convenient method for numerical work is to take 
advantage of the accuracy of Simpson’s rule in per- 
forming the integrations by adapting it to the present 
case. The slab is divided into an even number, 2N, 
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of intervals and the temperatures at the point of sub- heat flow is obtained by integration of the parabolic 

division are Bt(i = 0, 1, . . . 2N). In pairs of intervals area. * By integrating4 in the successive intervals, the 

the temperature is represented by a parabola passing heat How vectors Hi at the various points of sub- 

through the three ordinates of the two intervals. The division are given by 

-I CAY 1 HZN--H~N-~ Hr Hz - -- - - Ho Hr I[ = -5/12 l/12 - 0 0 -2/3 -2/3 - 0 0 -5/12 -5/12 l/12 l/12 - -2/3 -2/3 - 0 0 -5/12 l/12 - 0 0 - - - - - I[ '92N, 60’ 81 . . 

by addition of successive lines 

1 

CAY 

By putting 

this may also be written 

HI - H,, 
Hz - Ho 

- 
- 

HZN - Ho. 

I -5,‘12 -2/3 l/12 0 0 i 

- l/3 -4/3 -l/3 0 0 - 
= -l/3 -4/3 - 3/4 -2/3 l/12 - 

- l/3 -4/3 -2/3 -4/3 --l/3 - 
- - - - - - 

A I- 

q-1 = Ho/c& 

with WI = 

Ho 

1 . -I I = 
CAY ' 

II,, 

1 0 0 
1 -5/12 -2/3 

0 0 
l/12 0 

0 -- 
0 - 
0 - 1 - l/3 -4/3 -l/3 0 

1 --l/3 -4/3 -3/4 -2/3 l/12 - 

1 - l/3 -4/3 -2/3 -4/3 -l/3 - 
- - - - - - - 

The dissipation function is evaluated by Simpson’s method expressed in matrix form. 

D = (1/2k) f(t~H/ht)~dy = (Ay/2k) [tit]’ [S] Iti,] (6.19) 
0 

where 

VLI’ = [Ijo.. . l&N1 

and [S] is the diagonal matrix corresponding to Simpson’s rule 

[S] = ; 

1 1 4 0 2 

4 
2 

0 
4 

1. 

- &I. 
81 

.e2N. 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.20) 

(6.21) 

* This integration of a continuous distribution of temperature in order to calculate the coefficients of the differential equation is the 
reason for the considerably increased accuracy of the present method over the usual finite difference methods of solution. 
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FIG. 1. Distribution of h = C0 for &rst phase (l), and second 
phase (2), in the heating of a slab. 

Substituting in the expression for D 

D = (c2/2k) CAY)" rail’ Bl kc1 (6.22) 

with the matrix = kIi1 (6.23) 

1’ 1 e2N 

We have introduced the transposed [QJ of [g2] and 

PI = Ml’ [Sl [Al (6.24) 

where [A]’ is the transposed of IA]. The thermal po- 
tential is again by Simpson’s rule 

I 
v = (c/2) 

s 
ezdy = @7’2)~~b3,1’ [Sl [&I (6.25) 

0 

We may consider the 2N + 2 parameters q-1, $0 . , . 
OzN as the generalized coordinates and proceed as in the 
general case. We must evaluate the corresponding 
generalized forces. Let us assume that the temper- 
ature eZN is given while the surface at i = 0 is insulated. 
This means Ho = 0. In this case there are 2N + 1 
coordmates t&t+ . . . OzN and the matrix [A] is reduced 
to that in relation (6.16). The generalized forces are 
evaluated by the expressions 

8mSHm = Q&A (6.26) 

The differential equations are 

K-7 Pi1 + (4~) CAY)* PI [&I = [Qil (6.27) 

Since [S] is diagonal, the thermal modes may be ob- 
tained immediately by iteration. 

This method is quite general. If we are dealing with 
a composite slab, the procedure is identical. 

The case where there is a coefficient of heat transfer 
K at the surface of the slab is easily taken care of by 
adding a term to the dissipation function in accordance 
with Eq. (3.21). 

The additional term is 

D = (1/2K)atN2 

The thermal potential remains unchanged. 

(6.28) 

(7) HEATING OF A SLAB WITH COGTANT 
PARAMETERS-THECONCEPTS OFPENETRATION 

DEPTH AND TRANSIT TIME 

In the previous section we have outlined procedures 
for the analysis of one-dimensional problems leading to 
linear differential equations for a sequence of unknown 
parameters representing the amplitudes of component 
flow fields. The flexibility of the present method is well 
illustrated by the possibility of using an entirely differ- 
ent approach where only one unknown parameter is 
used to represent the unknown field. Although the 
problem is physically linear, the parameter is found to 
satisfy a nonlinear differential equation of the first 
order. The nonlinearity in this case is compensated 
by the simplicity of the field representation. This 
approach also leads to two very useful concepts in 
practical applications-i.e., penetration depth and transit 
time. 

Consider a plate of thickness 1 with constant values 
of the thermal conductivity K and heat capacity c (see 
Fig. 1). 

One face at y = 0 is heated suddenly to the tem- 
perature 80 at t = 0. The other face at y = 1 is ther- 
mally insulated so that no heat flows across it. 

We shall assume the temperature distribution to be 
represented by a parabola and consider two phases in 
the phenomenon. In the first phase, the temperature 
has not yet begun to rise at the opposite wall and 
everything occurs as if the wall thickness were infinite. 
During this phase the heat content distribution h, 
which is proportional to the temperature, is approxi- 
mated by 

h = ho [I - (y/qd12 for Y < 41 
(7.1) 

h=O for y > PI 

with h = ce, ho = ceo 

The parameter Q is the generalized coordinate and may 
be called the penetration depth. The problem is to es- 
tablish the value of 41 as a function of time. 

The thermal potential is 

V = (c/2) J; e2dy = (1/2c) Jc@ h2dy (7.2) 

hence, V = (l/10) (ho2/c)q, (7.3) 

In order to determine the dissipation function we 
must introduce the heat flow vector H. This is ob- 
tained from h by integrating (2.2)-i.e., from 

-dH/dy = h (7.4) 

Taking into account the condition H = 0 at y = pi we 
find 

H = (1/3)hoql - hoy + ho(y2/pl) - I 

ir = (1/3)hoP1 
(7.5) 

- ho(y2/q12)G1 + 

CWWo(y3/q13k J 
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The dissipation function is 

D = (1/2k)Jo*’ (i?)%iy = 

(l/2) * (13/315) * (h0~/k)q,4,~ (7.6) 

Finally, we must evaluate the generalized force. This 
is obtained by considering the virtual displacement 
6H at y = 0. From Eq. (7.5) we have 

6H = (1/3)hoS41 (7.7) 

By definition, 

Q&I = OoSH = (1/3)hoBoS~1 (7.8) 

Hence, Qi = (1/3)hof?o = (1/3c)ho2 (7.9) 

The differential equation for q1 is 

@V&i) + @D/b&) = QI (7.10) 

or (l/10) (ho2/c) + (13/315) (h~~/k)q& = 

(1/3)ho2 (7.11) 

This is a first-order differential equation for 41, which is 
easily integrated. With the initial condition q1 = 0 

fort = Owefind 

ql = 3.362/(k/c)t (7.12) 

In the first phase the penetration depth is proportional 
to dt. It will be noted that we have treated a linear 
problem by a nonlinear differential equation. The non- 
linearity in this case is of a purely geometrical nature 
and is introduced by the fact that the generalized co- 
ordinate is related nonlinearly to the physical variable 
to be determined. The general disadvantage of non- 
linearity is, in this case, largely outweighed by the re- 
markable simplicity of the solution. 

From Eqs. (7.1) and (7.12) we derive the temperature 
distribution during the first phase 

z 

(7.13) 

This phase ends when the temperature begins to rise at 
the boundary-i.e., at a time when pi = 1 or 

tl = 0.0885 G/k (7.14) 

We shall call this the transit time. With this transit 
time we may also write 

= zvt/t, i;s, = [l - (y/z)*-J 
(7.15) 

In the second phase the heat content cc9 at y = 1 is 
used as generalized coordinate 42 and the heat content 
distribution is again approximated by a parabola 

h = (ho - 42) [1 - (Y/O12 + q2 (7.16) 

The thermal potential is 

1 

v = (1/2c) S h2dy = (1/2c)ho2Z + 

(41/15c)‘(@ - ho)2 + (2Uzo/3c) (q2 - ho) (7.17) 

e 
s, 

0 

FIG. 2. Temperature distribution at various times in a slab. 

The heat flow vector is found by integrating Eq. 
(7.4) with the boundary condition H = 0 at y = 1. 
We find 

--H = (ho - ~72) [Y - (y2/0 + (y3/3J2) - (Z/3)1 + 

P~(Y - 0 (7.18) 

ir = P2[- (y2/0 + (y3/3i2) + (2/3Pl (7.19) 

Hence the dissipation function is 

D = (1/2k) dfi2dy = (34/315) (Z3/k)&2 S (7.20) 

We must finally evaluate the generalized force Q2 by 
considering the value of 6H at y = 0. We write 

Q2$2 = 19oaH = (2/3)th&qz (7.21) 

Hence, Q2 = (2/3)001 = (2/3) (ho/G (7.22) 

The differential equation for p2 is 

@V&z) + Wlbg2) = Q2 (7.23) 

or explicitly, after simplification and introduction of 
the transit time tl, 

q2 + 4.67@ = ho (7.24) 

The solution with initial conditions p2 = 0 at t = tl is 

(q2/ho) = 1 - exp { -0.214[(f/tJ - 11) (7.25) 

With this value of p2/ho the temperature distribution 
in the second phase is given by 

o/00 = [l - Who)1 [I - (y/O12 + WhoI (7.26) 

This expression, along with Eq. (7.13), gives the com- 
plete time history of the temperature. The distribu- 
tions B/00 thus obtained are plotted in Fig. 2 as func- 
tions of y/l for three values of the time ratio 

t/t1 = 0.2, 1.0, 4.0 

The dotted line shows the results obtained by the 
classical Fourier series expansion and is taken from 
reference 5. Agreement of the present method with 
the exact solution is seen to be quite satisfactory. 

It is of interest to evaluate the order of magnitude 
of the transit time tI [see Eq. (7.14)]. The value of 
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the diffusivity K = k/c is K = 0.12 cm.‘/sec. for steel. 
Considering a steel plate 1 in. thick, 1 = 2.5 cm. and ti = 
4.6 sec. For a dural plate of same thickness K = 0.86 
cm.2/sec., ti = 0.62 sec. 

This concept of transit time is useful in many ways. 
It gives immediately the order of magnitude of specific 
transient I effects in complex structures and indicates 
which features of the thermal flow may be neglected 
in comparison with other time constants. 

The solution obtained here for the sudden rise in 
temperature at the wall involves very simple functions. 
It is, therefore, very simple to express in closed form 
the temperature field originating when the wall tem- 
perature is an arbitrary function of time using Duha- 
mel’s integral.4 This will be applied in the example 
of Section (10). 

We may then proceed exactly as in the linear case sub- 
stituting c?V in Eq. (2.5) and deriving the differential 
equation of heat conduction from the variational prin- 
ciple. 

For the anisotropic nonlinear case the definition of V 
is the same as for the isotropic case and 6D remains 
formally identical with the linear definition. The only 
difference lies in the fact that the thermal resistivity 
matrix Xi, is now a function of the temperature 0. 

The analogy of heat conduction to fluid flow in a 
porous material holds for the nonlinear case. The 
compressibility of the fluid and the permeability are 
functions of the pressure. The mechanical potential 
V is then given by the same Eq. (8.3), where F is de- 
fined as 

(8.8) 
(8) EXTENSIONTONONLINEARSYSTEMSWITH 

TEMPERATURE DEPENDENT PARAMETERS AND SURFACE 
RADIATION 

F= 
J 

Pdk 
0 

In a medium where the heat capacity c(x, y, .a, 0) and 
thermal conductivity k(x, y, z, 0) are functions of the 
temperature 0, the thermal conduction is governed by a 
nonlinear equation identical in form with Eq. (2.1). 
We will show that the variational principle as ex- 
pressed by Eq. (2.5) is still valid in this case, provided 
we define the thermal potential in an appropriate way. 
We introduce 

The incremental fluid pressure is p and h is the incre- 
mental mass of fluid acquired by the pores per unit 
volume of bulk material. It is related to the mass flow 
field H by relation (8.5). The definition of the dissi- 
pation function is identical with Eq. (3.10) and is pro- 
portional to the energy dissipated through friction. 

It should be noted that an equivalent formulation of 
the variational principle is obtained in the isotropic 
case when the heat conductivity is a function only of 
the temperature. By a well-known transformation we 
introduce the variable 

S 
0 e, Y, 2, 0) = de (8.1) 

0 S 
e 

ZL= k(e)de 
0 

(8.9) 

the total heat acquired by the unit volume. Further, 
we define a density function as 

F(x, y, 2, h) = Je’ edh = le cede (8.2) 

Finally, the thermal potential is defined for the volume 
7 as 

We may write 

k (de/b) 

c(be/bt) 

Eq. (2.1) then reads 

Vu = 

= (du/bx), etc. 

= (c/k) (bu/bt) 

(c/k) (bulb0 

(8.10) 

(8.11) 

(8.12) 

v= 
sss 

Fdr (8.3) 
7 

Comparing with the definition in the linear case we see 
that F replaces the quantity (1/2)ce2 which is obtained 
from Eq. (8.2) if c is independent of the temperature. 

With this definition we evaluate the variational 
quantity 

The problem is then mathematically identical with the 
case of a temperature distribution u in a medium of 
thermal conductivity equal to unity and a heat capacity 
c/k function of u. 

8V = j-j-j- (bF/bh)GhdT 

Conservation of energy requires 

h = -div H 

Then, from Eq. (8.2), bF/bh = 0 

Hence, 

(8.4) 

(8.5) 

(8.6) 

6V= - 
sss 

0 div (sH)dT (8.7) 
7 

The extension of the variational principle and the 
associated differential equations (3.14) for the general- 
ized coordinates is completely general. It includes 
the case where the surface heat-transfer coefficient K 
is a function of both the outside temperature and the 
wall temperature. Moreover, it may also be a given 
function of time. This feature leads to an exact 
treatment of problems which involve boundary-layer 
heat transfer under variable flow conditions and in- 
cluding radiation losses in the high temperature range. 
This is in addition to the inclusion of temperature de- 
pendence of heat capacity and thermal conductivity 
of the materials in cases where they vary widely in the 
considered temperature range. 

which is formally identical with Eq. (2.6). The vari- Surface radiation effects may be incorporated in the 
ation 6D is defined in the same way as for the linear case. general expression for the dissipation function. We 
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may visualize a heat flow bifurcation at the surface. 
The heat flowing into the surface per unit area may be 
written Ho - H, when Ha is the flow through the 
boundary layer and H, the heat flow lost by radiation. 
The radiation is equivalent to an additional branch of 
the thermal flow network. The radiation loss may be 
written 

ir, = aT[(T + ep - TJ] (8.13) 

where T + e is the absolute temperature of the surface, 
E the emissivity, and u the Stefan constant. This is 
equivalent to 

ti, = K,B (8.14) 

with a temperature-dependent heat-transfer coefficient 

K, = (u/e) [(T + e)l - T4] (8.15) 

If we wish to include radiation, the dissipation function 
(3.21) is replaced by 

1 

ss 2 I 
s -+Q2dS (8.16) 

where Kb is the boundary-layer heat-transfer coeffi- 
cient . Note that the use of a reference temperature 
T is purely a matter of convenience. We could very 
well have put T = 0, in which case 0 becomes the abso- 
lute temperature. 

(9) HEATING AND COOLING OF A SLAB WITH 
TEMPERATURE DEPENDENT PARAMETERS 

As an application of the method to a nonlinear 
problem let us consider a homogeneous slab with heat 
capacity and conductivity dependent on the temper- 
ature. We have shown that the problem may be re- 
duced to one of constant conductivity. Therefore, 
we shall consider the case where the heat capacity alone 
is a function of the temperature. This being a non- 
linear problem, different results will be obtained for 
heating and cooling. 

We first assume that the face at y = 0 is brought 
suddenly to a higher temperature 80 and that the heat 
capacity varies by a factor of two within the range of 
temperatures considered. 

c = co[l + (e/e,) I (9.1) 

In Section (7) we have seen that there is a first phase 
where the temperature is approximately the same as 
in an infinitely thick slab. Using again the parabolic 
approximation we put 

e/e0 = [l - (~/4i)i2 (9.2) 

where pi is the depth of penetration of the temperature 
rise. Following the general procedure of Section (8) 
for the nonlinear case we evaluate 

S 
e 

h= cde = co8 + (co/2) (ez/e,) (9.3) 
0 

S 
e 

F= cede = (i/2)coe2 + (co/3) (eye,) (9.4) 
0 

The thermal potential is 

v= *I S Fdy = (31/210)co002q, (9.5) 
0 

The heat flow His obtained from 

H = S “hdy (9.6) 3 
Putting r = 1 - (Y/al) (9.7) 

we find 

H = 41 S ' hdl = q1c080[(1/3)P3 + (l/10)!?] (9.8) 
0 

Since s’ = (YIn12)Pl = -0 - r> (Pi/@) (9.9) 

the dissipation function is 

DE’ 2k I’ fi2dy = $ pl 
S S 

r 
iPd[ = 

0 

0.0648 
~ co2e02~,p,2 (9.10) 

2K 

The thermal force is obtained from 6H at y = 0 

Q&l = eom = (13/3O)c&%9, (9.11) 

Hence; QI = (13/30)coBo2 (9.12) 

The differential equation for q1 is 

(31/210)coeo2 + (0.0648/k)co~eo2p,p, = 

(13/3O)cc&o2 (9.13) 

The solution with initial conditions pl = 0 at t = 0 is 

~1 = 2.97 2/kt/co 

The transit time is found by putting pl = 1, 

(9.14) 

tl = 0.106 c&/k) (9.15) 

We notice that the transit time for the present case 
where the heat capacity varies in the ratio of two to one 
is obtained by putting c = 1.28~0 in Eq. (7.14) for the 
linear case. This is appreciably lower than the average 
value c = 1.5~0, indicating that the heat propagation is 
controlled more by the value of c in the region of lower 
temperature. 

It is of interest for comparison to consider the prob- 
lem of cooling instead of heating. In this case the face 
of the wall at y = 0 is cooled suddenly to a temperature 
e = -e. at time t = 0. We assume again a variation 
of the heat capacity from c = CO to c = 2~0 between the 
extremes of temperature. This is expressed by the 
formula 

c = 2co[l + (l/2) (e/e,)1 (9.16) 

Because the problem is nonlinear the cooling problem 
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FIG. 3. Cross section of wing structure. 

is different from that of heating even if it occurs between 
the same temperature limits. 

Proceeding exactly as above, we find 

V = (16/105)~&,~~~ (9.17) 

II = 2c0~041[(1/20)P6 - (1/3){31 (9.18) 

D = 0.0634 (~o~/k)0&,Q,~ (9.19) 

The t$ermal force is found by forming 6H at y = 0 or 
{= 1; 

Q&l = -6+&H = (17/30)coBo26q, 

Hence the equation 

%@1 = 6.5(k/co) 

(9.20) 

(9.21) 

or al = 2.552/kt/c0 (9.22) 

The transit time tl-i.e., the time at which the opposite 
wall begins to cool off- is 

tl = 0.154(co/k)Z2 (9.23) 

If we compare this with Eq. (9.15) for the heating 
problem, we notice that it is quite a bit larger. In 
other words, the cooling takes about 40 per cent 
longer. Further comparison with the value (7.14) for 
the linear problem shows that the heat capacity be- 
haves as if it had a constant value 1.74 CO which is higher 
than the average value 1.5 CO. Therefore, the cooling 
occurs as if the heat capacity were higher than the 
average value while in the heating it is lower. In 
either case, the effective heat capacity tends to be 
closer to its value at the initial wall temperature. * 

(10) APPLICATION TO SUPERSONIC WING STRUCTURES 

We consider the supersonic wing structure whose 

cross section is shown in Fig. 3. It is heated on both 

sides by air brought suddenly at a temperature 00 

above the reference level 0 = 0 at time t = 0. The 
heat is transmitted through the boundary layer to the 
flange and the web. We propose to calculate the tem- 
perature field in this structure as a function of time. 

* In general, we may conclude that the effective heat capacity 
will correspond to a temperature about midway between the 
average and the initial values. 

In order to shorten the present calculation, certain 
simplifying assumptions are introduced. The simpli- 
fications are by no means essential to the method. 
However, they do lead to answers which are of accept- 
able accuracy in our problem. 

The present numerical solution must be considered 
as a first approximation which, although quite satis- 
factory to our purpose, may be improved to include 
any of the more complex features of the actual problems 
as pointed out in more detail below. 

We assume the heat flow to be one-dimensional-i.e., 
the temperature is uniform across the thickness in both 
web and flange. This assumption is equivalent to 
stating that the transit time across the thickness is a small 
fraction of the total time history of the system. The 
transit time for a steel plate of l/2 in. thickness is of 
the order of 1 sec. The boundary-layer heat-transfer 
coefficient is taken to be a constant K. We consider 
the case where the wing is heated equally from both 
sides so that the problem is symmetric and no heat 
flow occurs at point M middle of the web. The pro- 
cedure is easily adapted to the case of unsymmetric 
heating. The equivalent one-dimensional system is 
shown in Fig. 4. 

A first step is to calculate the temperature history for 
the flange alone in the absence of any web. If a de- 
notes the flange thickness and c its heat capacity per 
unit volume, the temperature of the Aange 82 obeys the 
differential equation 

ac & = K(O0 - 0,) (10.1) 

The solution with the initial condition 02 = 0 is 

ez = eo[i - e-“‘1 (10.2) 

We have introduced the relaxation time of the flange 
boundary-layer system 

r = at/K (10.3) 

In the numerical case considered below this relaxation 
time is found to be T = 86 sec. We now introduce the 
influence of the web. In the one-dimensional system 
of Fig. 4, the web of actual thickness 2al is represented 
by a plate of half the thickness, ul, attached end-on to 

FIG. 4. Equivalent one-dimensional system with approxi- 
mate temperature distribution 0 and heat inflow Hb through the 
boundary layer. 
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a plate representing the flange. In the first phase of 
the thermal history the heat has not yet had time to 
reach the mid-web M. This phase occurs when the 
elapsed time t is smaller than the transit time ti asso- 
ciated with the half length 1 of the web. This transit 
time according to Eq. (7.14) is 

ti = 0.0885(12/K) (10.4) 

where K is the diffusivity of the web. In the numerical 
example below the half length of the steel web is 4.69 in. 
and the transit time of the half web is ti = 105 sec. 

In the first phase we take advantage of a general 
feature exhibited by the approximate solution developed 
in Section (7) for the penetration of heat in a slab. 

We shall assume that in the web the penetration of 
heat is of a similar nature and that the temperature 
distribution in the web begins to rise at a moving point 
PI whose distance from the joint A of web and flange is 
determined by Eq. (7.12) for the penetration depth- 
i.e., 

PIA = p = 3.364; (10.5) 

Furthermore, we assume that the distribution of tem- 
perature in the web between the moving point PI and 
the joint A is parabolic. This temperature in the web 
is 

e = &(y2/q2) (10.6) 

where 6i is the temperature at point A and y is counted 
from PI as origin. Similarly, we assume that the in- 
fluence of the web on the temperature in the flange 
is to produce a drop below the temperature & calcu- 
lated above for the isolated flange, and that this drop 
penetrates to a point P whose distance from A is deter- 
mined by the same Eq. (10.5) for the penetration 
depth-i.e., PA = p. The temperature distribution 
in the flange between P and A is again assumed para- 
bolic. We write for this temperature 

e = e2 + (ei - 0,) (~2/q2) (10.7) 

where y is counted from P as origin. Finally, we also 
assume a parabolic distribution for the total heat Ha 
per unit length which has flowed through the boundary 
layer between points A and P. We write 

Ho = HZ + (H3 - Hz) (y2/q2) (10.8) 

The quantity Hz represents the heat which has flowed 
into the flange without the web-i.e., outside of the 
region AP. It is given by 

Hz = ace2 (10.9) 

It is a known function of time through Eq. (10.2) for 
e2. The unknown quantities in the above expressions 
are H3, which’is the value of Ha at the joint A, and 81. 
However, these two quantities are related by the law of 
conservation of total heat. We state that the total 
heat, which has flowed through the boundary layer be- 
tween A and PI, is equal to the amount of heat stored 
in the web and flange between PI and P. This is ex- 

pressed by 

s 

A 
S 

A 
S 

A 
H&y = ac edy + ale edy (10.10) 

P P PI 
Substituting the values (10.6) and (10.7) for @ and (10.8) 
for Hb gives Hz as a function of 81, 

H3 = ac/?el (10.11) 

with P = 1 + Y, Y = al/a 

We are thus left with a single unknown, the temperature 
8i of the joint. A differential equation for this quan- 
tity may be found by applying the general principles 
developed in the previous sections. The dissipation 
function of the boundary layer is 

D = (1/2K) S ‘fib2dy = (1/2K)ti~~p + (l/3) X 

(J&/K) (& ” &)a + (l/lOK)(& - ir,)2a (10.12) 

Substituting Eq. (10.9) and Eq. (10.11) yields 

D = (a2c2/K)4[(1/2)& + (1/3)&(P& - 82) + 

(l/10) (pe, - 42)2] (10.13) 

The generalized force 01 associated with the coordinate 
e1 is found by evaluating the virtual work of the tem- 
perature on both sides of the boundary layer for a vir- 
tual change of heat flow. From Eqs. (10.8) and (10.11) 
we derive 

SH, = (y2/q2)6H3 = acp(y2/q2)6er (10.14) 

The thermal force 01 is defined by 

S 
A 

e16e1 = (e. - e)6Hb& (10.15) 
P 

where 0 is given by Eq. (10.7). Hence, 

e1 = (1/3)ac&(eo - e,) - (1/5)acp&& - e2) (10.16) 

The differential equation for 81 is 

bD/b& = 81 (10.17) 

or 

(ac/3K)e2 + (1/5K)ac(& - 42) = 

(i/3) (e. - e2) - (i/5) (e, - e2> (10.18) 

There are cancellations of terms due to Eq. (10.1). 
Moreover, by putting 80 - f3i = z and introducing r 
from Eq. (10.3), Eq. (10.18) reduces to 

z + pri; = y782 (10.19) 

With the initial condition z = 0 at t = 0 and the value 
(10.2) for e2, the solution of this equation is 

s = eo[e-f/fl+ - e-t/T] (10.20) 

This may be written 

e1 = eo(l - eml’@‘) (10.21) 

At this point it is of interest to introduce numerical 
values. The dimensions are taken to be 
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Temperature 01 at the joint A and e3 at the midweb M. 

1 = 4.69 in., half length of web 
a = 0.375 in., thickness of flange 
2ai = 0.1 in., thickness of web 

The material is steel, for which 

K = k/c = 0.0186 in.2/sec. diffusivity 
c = 68.6 B.t.u./ft.3 “F. heat capacity per tuft. 

The heat-transfer coefficient of the boundary layer is 
assumed to be 

K = 90 B.t.u./hour ft.2 “F. 

With these values the relaxation time of the flange- 
boundary-layer system is 

7 = aC/K = 86 sec. 

The air is assumed to rise at t = 0 to a temperature 
00 = 540°F. above the initial level. We introduce the 
value /? = 1 + (al/a) = 1.133. The numerical value 
of the joint temperature 01 as a function of time calcu- 
lated from (10.21) is plotted in Fig. 5. The present 
numerical values are the same as in the example treated 
by Pohle and Oliver (see reference 6),* who solved the 
heat conduction problem in the one-dimensional model 
by the exact method using the series and Laplace trans- 
form solutions of the corresponding partial differential 
equations. The procedure is quite elaborate. The 
exact value of 01 taken from reference 6 is also plotted 
for comparison in Fig. 5. It is seen to be in excellent 
agreement with our approximation. 

The result also points to the fact, which could have 
been surmised, that the influence on the temperature 
19~ of the boundary condition at the mid-web M is 
not preponderant in this case. The assumption intro- 
duced for the first phase (t < tl) is practically valid 
for the complete time history of 01. We may therefore 

* The transient heat flow for the same geometry was also in- 
vestigated by Hoff,’ Parkes,a and Schuh.9 

use the approximate value (10.21) of 8i to compute the 
time history of the temperature at any point in the web 
by applying the Duhamel integral to the approximate 
solution developed in Section (7). For instance, let us 
calculate the temperature at the mid-web M in that 
manner. According to Eqs. (7.25) and (7.26) a sudden 
unit rise of temperature at A at time t = 0 produces 
no rise of temperature at the mid;web M until t > tl. 
After that at time t = tl + At the temperature is 

0 = 1 _ ,-aAt (10.22) 

where 6 = 0.214/t1. The transit time tl for the half 
web as given by Eq. (7.14) is 

tl = 0.0885(1’/~) = 105 sec. 

By Duhamel’s integral the temperature & at M is at 
time tl + At 

83 = 
s 

At [l - e-“@“-t’)]&dt’ (10.23) 
0 

Introducing the value (10.21) for 0i we find 

19~ = &[l - 1.25eCBAt + 0.25e-At’B’] (10.24) 

This is plotted for times t = tl + At in Fig. 5 and com- 
pared with the exact value from reference 6. Again 
the two plots are in excellent agreement. 

Before terminating this example we shall briefly 
outline how the present method may be used to improve 
the accuracy of the solution and to include more com- 
plex features and refinements. 

A first step in this direction is to use the temperature 
history of the web calculated by expressions such as 
Eq. (10.23) instead of the parabolic distribution assumed 
above. The whole procedure is then repeated leading 
to an improved differential equation for 01. A further 
improvement would take into account the calculated 
temperatures in the flange. This will lead, in general, 
to a differential equation with variable coefficients. 

Another improvement would be to get rid of the as- 
sumption of one-dimensional flow. For instance, we 
would start with the isolated flange problem and intro- 
duce instead of 02 two unknown temperatures, one on 
the side of the boundary layer, the other on the inside, 
with a parabolic temperature distribution across the 
thickness. We may then proceed further along similar 
lines. Two-dimensional flow in the web may also be 
introduced by a parabolic correction term for the tem- 
perature across the thickness along with a correction 
term for the nonuniformity of the heat flow near the 
joint. 

In the present example we have not mentioned the 
influence of the distance between webs. This effect 
may, of course, be taken into account by separating 
the problem into a third phase corresponding to the 
transit time associated with the distance between the 
webs. 

Antisymmetric heat flow results in the temperature 
03 being kept zero. A parabolic approximation may be 
introduced in the second phase. It will tend exponen- 
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tially to the straight line distribution corresponding to 
steady-state heat flow along the web. 

Leakage from radiation and convection is also easily 
corrected for by introducing additional coordinates 
corresponding to the approximate leakage flow dis- 
tribution. 

Nonlinear problems, as we have seen by the example 
of Section (9), may be handled by the present methods. 
For instance, if in the present example we wish to take 
into account the dependence of heat capacity and con- 
duction on temperature, we could first assume that 
points P and PI move at speeds determined by approxi- 
mate nonlinear solutions obtained as in Section (9). 
Nonlinear leakage due to high temperature radiation 
may also be introduced. 

In many cases the heat-transfer coefficients of the 
boundary layer will be a function of both the time and 
temperature. This again imposes no restriction on the 
application of the method, the difference being simply 
that the differential equations in such a case will gen- 
erally have nonconstant coefficients. 

It may happen in such structures as we have con- 
sidered here that we must take into account the effect 
of a thermal resistance between the flange and the 
web. In such a case we should introduce the tem- 
peratures 0i and 64 of each side of the resistance. Pro- 
ceeding as above leads to one differential equation for 
these two unknowns. Another equation is obtained 
from the relation between the temperature drop through 
the resistance and the total rate of heat flow. We 
write 

&(& - 04) = (1/3)c@/~0 @4d (10.25) 

where K1 is the heat-transfer coefficient of the resistance. 
Finally we wish to call attention to the generality 

of the method of successive approximation illustrated 

by the present example. We have just calculated the 
temperature 02 in the flange without the web and then 
introduced the influence of the web. In general it will 
be possible to proceed in a similar way by first calcu- 
lating the temperature fields in simple parts of the 
structure and introduce gradually various complexities 
and refinements. Each step will involve the solution 
of relatively simple first-order ordinary differential 
equations. 
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