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The reflection of a plane-electromagnetic wave from a rough perfect conductor is investigated. The 
roughness is represented by hemispherical bosses whose radii and mutual distances are small relative to the 
wavelength. This problem is solved taking into account the electromagnetic interaction of the bosses. Aside 
from throwing some light on the limitations of approximate methods, the present solution reveals some 
effects not known before. For grazing incidence and vertical polarization the interaction has a drastic 
influence in that it causes a complete phase reversal of the reflected wave, near a 4.5 degree incidence the 
influence of the roughness vanishes. These effects do not occur for horizontal polarization. An approximate 
treatment for the case of the imperfect conductor is indicated. The analogous case for the acoustic wave is 
also developed and shows similar behavior. The effect of the roughness is shown to be equivalent to a 
boundary condition for the wave equation. Extension of the method to a more general type of roughness, 
and to the case of statistical and asymmetric shapes and distributions, is briefly discussed. 

1. INTRODUCTION 

T HE problem of reflection of an electromagnetic 
wave from a rough surface may be conveniently 

treated if we represent the roughness by hemispherical 
bosses distributed over the surface. An exact solution 
for the problem of a single hemispherical boss on a 
perfect conductor is immediately derived from that of 
scatter of plane waves by an isolated sphere. It is 
easily seen that the problem is solved by an image 
method in the plane of reflection. The problem is 
considerably simplified if we introduce the assumption 
that the radius of the sphere is small relative to the 
wavelength. In Sec. 2, it is pointed out that the wave 
scattered by the sphere is identical with that radiated 
by an electrical and a magnetic dipole located at its 
center. Small hemispherical bosses on a reflecting sur- 
face are then equivalent to a distribution of electric and 
magnetic dipoles. The problem of reflection of a plane 
wave form such a surface implies the solution of an 
integral equation, which expresses the fact that the 
radiation of a single boss depends on the integrated 
radiation of all the others. It is shown in Sec. 3 how 
an exact solution of the integral equation may be found 
when the distribution of the roughness is uniform, and 
when it is dense; i.e., when the distance between the 
bosses is small relative to the wavelength. Section 7 
discusses the extension of the theory for the case where 
the mutual distance of the bosses is of the order of their 
radii. In such a case the phenomenon is not properly in 
the nature of a scatter, and there is no energy dispersion. 
The main effect may be described as caused by an 
induced electric and magnetic polarization of the surface 
roughness, which produces a phase shift of the reflected 
wave. 

* The contents of this paper first appeared as part of Cornell 
Aeronautical Laboratory, Inc. report No. BE-745-T-129 dated 
March, 1955 {see reference 1). The work was performed under 
contract DA-30-11%ORD-47, with the Rochester Ordnance 
District Department of the Army. 

t Consultant. 

The case of vertical polarization of the incident wave, 
treated in Sec. 4, shows that for grazing incidence the 
effect is quite drastic, and that the phase shift reaches 
180 degrees. At 4.5 degrees incidence a cancellation of 
the effect of the roughness takes place. Section 5 deals 
with the case of horizontal polarization where no such 
effect is found for grazing incidence. 

The method of the present paper may be extended to 
find approximate solutions for the reflection on an 
imperfect conductor or dielectric. For instance, in the 
case of vertical polarization and grazing incidence, 
vertical electric dipoles are induced at the surface, the 
magnitudes of which are evaluated in reference 1, 
(Appendix B). This approximate evaluation is carried 
out in Sec. 6, and leads to properties of the reflected 
waves quite similar to that of the perfect conductor, and 
the same grazing angle effect. 

That the above features are not restricted to electro- 
magnetic phenomena is shown by treating the analogous 
case of an acoustic wave falling upon a rough surface of 
small, densely distributed, hemispherical bosses. It is 
shown that this is identical with the case of electro- 
magnetic waves when vertical electric dipoles only are 
induced in the roughness. The same complete phase 
reversal is also exhibited by an acoustic wave at grazing 
incidence. 

These results indicate that this grazing incidence 
effect, which is a direct consequence of the interaction 
between the roughness elements, represents some kind 
of resonance between the incident wave and the 
propagating interactions. The fact that it occurs at 
grazing incidence is understood if we consider that for 
such incidence the phase velocity of the incident wave 
along the reflecting surface is nearly equal to the 

1 M. A. Biot, Reflection of an electromagnetic wave from a 
surface with small roughness, Cornell Aeronautical Laboratory, 
Inc. Report No. BE-745-T-129, March, 1955, Appendix A, 
“General discussion of electrodynamics when dimensions are small 
relative to the wavelength,” Appendix B, “Scatter of a plane 
wave by a spherical imperfect conductor.” 
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characteristic velocity of propagation of the medium. 
The signals generated by the roughness will tend to 
accumulate in the direction of propagation. 

The methods introduced here are easily extended to 
other cases than plane waves. As further applications, 
the reflection of electromagnetic dipole radiation from a 
rough surface has been expressed in closed form,2 as 
well as the reflection on a rough surface from an acoustic 
point-source.3 

The representation of roughness by hemispherical 
bosses on a perfect conductor has been used by Twersky4 
who derived the energy scattered by one hemisphere, 
and integrated the effect of a sparse distribution of 
scattering centers neglecting the interaction between 
bosses. A different approach was made by Rice6 who 
considers a slightly rough surface of random distribution 
and approximates the solutions up to the second order 
in the magnitude of the roughness. The present exact 
solution, although restricted to the case of a dense and 
uniform distribution of roughness, throws some light 
on the limitations of the approximate methods, par- 
ticularly at grazing incidence. 

As indicated in Sec. 7, the present theory is easily 
extended to more general’ types of roughness than 
hemispherical bosses by taking into account the local 
geometry. This local geometry appears in the form of 
coefficients which depend on the shape and mutual 
distances of the protuberances, and on the statistical 
correlation of these parameters. Higher order induced 
multipoles which appear in a more general theory may 
also be introduced by generalizing the boundary condi- 
tion to include higher derivatives. The effect of ani- 
sotropy due to either shape or statistical distribution 
and causing directional properties may also be intro- 
duced. It is pointed out that this should lead to interest- 
ing conclusions regarding the effect of ocean waves on 
radio transmission. The present theory also separates 
clearly the coherent and noncoherent scatter. It sug- 
gests the possibility of treating the latter as a perturba- 
tion superposed on the coherent field derived hereafter, 
and it should improve the physical interpretation of the 
mathematical treatment of the more general problem. 

that its conductivity is infinite. Because of the assump- 
tion of a small radius, the incident field may be con- 
sidered uniform in the vicinity of the sphere. The 
problem is then to add a perturbation field such that at 
the surface of the sphere to total magnetic field be 
tangent to the surface, and the total electric field be 
normal. We will show that this condition is satisfied if 
we locate at the center of the sphere a radiating electric 
dipole parallel to the incident electric field, and a 
radiating magnetic dipole parallel to the incident 
magnetic field. The electric Hertz vector 7e, caused by 
the electric dipole, is oriented along z, 

7F= (O,O,?rJ. (2.1) 

The magnetic Hertz vector P*, caused by the magnetic 
dipole is oriented along y, 

‘x* = (0,7ru*,o). (2.2) 

As a function of the distance r from the origin and the 
dipole moments M and M* we have 

?~.=M(e-~~‘/r), 

q/* = M* (e-i”‘/r) . 
(2.3) 

The field radiated by these dipoles is given by6 

E’=grad divrr+k2z-ik curl%*, 

H’= grad div?e*+Pc*+ik curl%. 
(2.4) 

The following quantities are introduced : k = w/c= 27r/X 
= wave number ; w = circular frequency; X = wavelength ; 
c=velocity of light. The dielectric constant of the 
surroundings is assumed to be that of vacuum. Since the 
sphere radius is assumed to be small, we are interested 
only in the near field, i.e., the field in the vicinity of the 
origin. It is readily verified that the near field is the 
same as for .a static dipole (case k = 0). This is discussed 
more extensively in reference 1 (Appendix A). Hence 
this field is 

with 

E’= grad divz, 

H’= grad diva*, 
(2.5) 

2. FIELD SCATTERED BY A PERFECTLY s-z = M/r, 
CONDUCTING SPHERE 

rU,* = M*/r. 
(2.6) 

Consider a plane electromagnetic wave propagating 

in the x direction, the plane of polarization being xz 
(Fig. 1). A sphere of radius a located at the origin 

E 

b 
H 

produces a scattered wave. We assume that the radius 4 
of the sphere is small relative to the wavelength, and FIG. 1. Plane-wave incident 

e upon a sphere. 
2 M. A. Biot, “A closed-form solution for the reflection of 

electromagnetic dipole radiation on a rough surface,” Cornell 
Aeronautical Laboratory, Inc., Report (March, 19.55) (to be 
published). Y 

3 M. A. Biot, J. Acoust. Sot. Am. 29, 1193-1200 (1957). x A 

* V. Twersky, J. Appl. Phys. 22,825-835 (1951). 
6 S. 0. Rice, “Reflection of electroma 

rough surfaces” in Symposium on the F 
netic waves from slightly 6 J. A. Stratton, Electromagnelic Theory (McGraw-Hill Book 
heory of Electromagnetic Corn 

Wanes (Interscience Publishers, Inc., New York, 1951). 
any, Inc., New York, 1941), p. 31 (converting to Gaussian 

units . P 
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We have 

dive = - (Mz/ti) = - (M/r2) co@, 

divn*= - (My*/r”) = - (M*/P) cosO*, 
(2.7) 

where 0 and 0* are azimuthal angles of r with the z and 
y axes, respectively (Fig. 2). From (2.5) the tangential 
component of the electric dipole field at Y= a is 

Ee’= (M/d) sine, (2.8) 

and the normal component of the magnetic field 

a:= (2M*/u3) case*. (2.9) 

From these expressions we see that it is possible to 
cancel the tangential component of the electric field and 
the normal component of the magnetic field by putting 

M = Ea3, 

M*= +Ha3. 
(2.10) 

It can be shown that the field scattered by these two 
dipoles leads to the expression obtained by Twersky by 
a more elaborate derivation.4 

A similar reasoning will yield the scatter by a 
dielectric or imperfectly conducting sphere. The im- 
perfect conductibility cancels the magnetic dipole and 
we are left with only the electric dipole of the well- 
known Rayleigh solution. For the Rayleigh solution to 
apply, the so-called skin depth (which is a measure of 
the depth of penetration of the wave) must be large 
relative to the sphere radius.’ If this condition is not 
fulfilled, a magnetic dipole must be added of a mag- 
nitude intermediate between zero and the full value 
(2.10). This is discussed more extensively in reference 
1 (Appendix B) . 

3. REFLECTING PROPERTIES OF DENSELY 
DISTRIBUTED HEMISPHERICAL BOSSES 

ON A PERFECTLY CONDUCTING 
SURFACE 

It is easily verified that the field scattered by a 
hemispherical boss on a plane perfect conductor is the 
same as that scattered by a complete sphere under the 
incident wave and its image with respect to the plane. 
Consider the total imposed field, incident plus reflected, 
near the plane conductor in the absence of the boss. This 

FIG. 2. Components of 
the near-field. 

7 M. A. Biot, Doctoral dissertation, Louvain University, 1931; 
Ann. sot. sci. Bruxelles Ser. B, 51,94-127 (1931). 

FIG. 3. Hemispher- 
ical boss on a re- 
flecting plane. 

is an approximately uniform field with a normal 
electric component E and a tangential magnetic 
component H (Fig. 3). The boundary condition at the 
surface of the hemispherical boss will be satisfied by 
placing at the center of the sphere a tangential magnetic 
dipole of moment M* parallel and opposite to H, and a 
normal electric dipole of moment M parallel and in the 
same direction as E. The magnitudes of these moments 
are given by (2.10) with the addition of the proper sign. 

M = Ed, 

M*= - (Hu3/2). 
(3.1) 

We assume now that there is a dense distribution of 
hemispherical bosses such that the number of scattering 
centers per unit area is N. The electric and magnetic 
Hertz vectors are given respectively by the integrals 
over the surface S of the reflecting plane 

n=N 
ss 

M ( e+kr/‘lr)dS, 

(3.2) 

z*=N 
ss 

M* ( e-ikr/‘/r)dS. 

However, the dipole moments are not known since they 
depend on the values of both the imposed field and the 
field induced by the dipoles themselves. Hence, 

M= (E+E’)u3, 

M*= -+(H+H’)a3, 
(3.3) 

when E’ and H’ represent the field radiated by the 
dipoles themselves. Equations (3.2) and (3.3) together 
amount to a pair of integral equations for the unknown 
distribution of the dipole density. The problem of 
solving these integral equations may be transformed 
into one of solving the wave equation with a boundary 
condition on the reflecting surface, which we shall now 
derive. The vectors 7e and Z* both satisfy the wave 
equation, 

q Z= q 9c*=o. (3.4) 

If we now consider a general integral of the type (3.2) 
(which satisfies the wave equation) 

and is taken over the plane x, y, we may verify that the 









6. APPROXIMATE TREATMENT FOR FINITE 
CONDUCTIVITY AND THE ANALOGOUS 

effect of the roughness does not disappear for an in- 

ACOUSTIC CASE 
cidence of 45 degrees. 

It is of interest to consider the corresponding acoustic 

It is possible to use the methods developed above to case of a plane-acoustic wave falling upon a rough 

treat approximately the case of a nonperfect conductor. surface with a dense and uniform distribution of small 

In order to illustrate this let us assume that we are hemispherical bosses of radius a. It turns out that the 

dealing with a case of grazing incidence and vertical treatment of this problem is exactly the same as the 

polarization, and that the wave system existing in the electromagnetic case when only electric dipoles are 

absence of roughness is such that the energy is com- induced. Consider a velocity potential, 

pletely reflected in first approximation. This wave 
system is then represented by the scalar (4.5), and the 

+= av/ax, (6.8) 

amplitude of the incident wave is represented by D. for the incident and reflected wave in the case of a 
The difference of this case with that of the perfect smooth surface where V is given by (4.5) and where c 
conductor lies in the fact that the magnetic dipole now characterizes the velocity of sound. Near the 
induced by the field in the hemispherical boss will be reflecting surface (z=O) the tangential velocity com- 
reduced in magnitude and will completely vanish if the ponent is in the x direction and its value is 
conductivity or frequency is low enough, so that the 
skin depth is much larger than the hemispherical boss. 

u = a4/ax = a2v/aX2. (6.9) 

Then only a vertical electric dipole is induced in the Consider, now, a hemispherical boss in a total velocity 
roughness. The moment of this dipole for low con- field U parallel with the x direction. The boundary 
ductivity or frequency is the same as that given by the condition to be satisfied that the normal velocity be 
first expression (3.1) (see reference 1, Appendix B). zero at the surface of the hemisphere requires that a 

M = E,a3. (6.1) 
dipole source be placed at the center of the boss, with 
its axis along the x direction. The field radiated by this 

In the case of a material of high dielectric constant K dipole is represented by the velocity potential 
the electric moment induced is ,?j @kr 

M=[(K-l)/(K+2)]E,a3. (6.2) &=-$f- __ 

( > ’ 
(6.10) 

ax Y 
Equations (4.7) and (4.9) for the boundary conditions where 
are then replaced by M=+lJa3, 

a?r;/as=a(E,+E;), and r is the distance to the dipole source. Therefore, N 

av’/a2= -a(a2/ax2)(v+v’), 
(6.3) such dipoles per unit area over the plane z= 0 radiate a 

field represented by the velocity potential 
where 

v = 2nNa3, 
or 

K-l 

b’= -NJJM;(F)dS. (6.11) 

Q = 2?rN-as 
Kf2 ’ 

(6.4) This is also represented by the scalar 

depending on whether we use expression (6.1) or (6.2). SS 
e-i!0 

V’ = -N 
The wave radiated by the roughness is V’ as in Eq. 

AI-----dS, 
Y 

(6.12) 

(4.1), and its amplitude C is found by substitution in 
the boundary condition (6.3). We find for the total with rp’=dV’/ax. As pointed out in Sec. 3 we have the 

reflected wave property 
(a v’/a2> = - 2rNM (6.13) 

m+ifJ12 
CfD=------ D. (6.5) at z=O. Now the velocity U is the sum of the compo- 

m - iul2 nents due to V and V’, namely 

This may be written u= (a2/ax2)(v+v’). (6.14) 

C+D= De2iQ, (6.6) 
Substituting in the expression for M and in (6.13) we 

with find the boundary condition 

tanp= ck(sin%/coscu). (6.7) (av’/a2>=-a(az/axz)(v+v’), (6.15) 

We notice that in this case too there is a drastic influence 
with 

of the roughness at grazing incidence where the phase 
u = ?rNa3. 

angle of the reflected wave changes by 180 degrees. This is identical with (6.3). Hence, the case of the 
However, in contrast to the perfect conductor, the acoustic wave is the same as the electromagnetic 

ELECTROMAGNETIC WAVES ON A ROUGH SURFACE 1461 
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problem treated in this section. It leads to expression 
(6.7) for the phase of the reflected wave. The same 
drastic phase reversal occurs at grazing incidence, and 
this feature is therefore not restricted to electro- 
magnetic phenomena. 

7. INFLUENCE OF NONRADIATIVE CLOSE 
RANGE INTERACTION 

In the preceeding derivation we have assumed that 
the bosses are sufficiently far apart so that the non- 
radiative interaction, electrostatic and magnetostatic, 
may be neglected. We shall now briefly investigate the 
magnitude of this interaction and show that it may 
easily be introduced into the present treatment without 
modifying substantially the theory. We continue to 
assume that the wavelength is large relative to the size 
of the bosses and their distance from each other. If this 
is not the case the results may still be considered as 
approximate within certain limits. The principle applied 
here is derived from a well-known property, which is 
discussed at length in reference 1, that in a region 
sufficiently small, relative to the wavelength, the field 
may be evaluated entirely by magnetostatic and 
electrostatic theory. The singularities, dipoles and 
multipoles induced in the roughness by the local field 
are completely determined by the local geometry. 
We shall calculate only the dipole singularities which 
constitute the major contribution for hemispherical 
bosses which are not extremely close together. In 
principle there is no difficulty in including in the present 
theory the effect of higher order multipoles associated 
with other shapes than the hemisphere, or with very 
close proximity. Consider then an electric field E normal 
to the plane of reflection. This field considered as a 
uniform electrostatic field induces vertical electric 
moments of the same direction and of magnitude M in 
the bosses. Let us assume that the center of the bosses 
are located at an average distance b from each other. 
Then a particular boss located at a point P is surrounded 
on the average by six electric moments located on a 
circle of radius b. The vertical electric field induced at 
P by the six surrounding moments is directed in opposite 
direction to M and has the magnitude 6M/b3. The next 
row of induced moments is on the circle of radius 26. 

Further rows are on the circles of radius nb and contain 

n moments. The total induced field at P, plus the 
imposed field E is therefore,8 

(7.1) 

Substituting the value 

M= E’a3 (7.2) 

* For the values of the series z(l/~?) see Jahnke and Emde, 
Table of Functions (B. G. Teubner, Berlin, 1933), p. 322. 

E& (7.3) 
K1 

for the induced dipole we find, 

with 
KI = 1 + (n2a3/b3). 

A similar argument applies to the magnetic field. The 
value of this field N’ induced at the center of a boss by 
the imposed field and the interaction of nearby dipoles is 

with 

&%1H, 
KZ 

?r2 a3 
K2=1+--. 

4 b3 

(7.4) 

The derivation and value of ~2 is identical with the 
value obtained for the acoustic case and is discussed 
extensively in reference 3. 

The reflection theory may then be developed exactly 
along previous lines except that Eqs. (3.3) are re- 
placed by, ’ 

a3 

M = (E+E’)--, 
KI 

M*= -+(H+&f. 
K2 

The boundary condition (4.9) is replaced by 

;=-i(;+;>)(V+V). 

If we take into account the relations 

and 
dV/&=O at z=O 

( ;+;+P (v+v’)=o. 
> 

we may write the boundary condition (7.6) as 

z=;[;+P( l-2 Z)]K, 

Vi = v+ V’. 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

This is a relation between the first and second normal 
derivatives on the reflecting surface. Relations (4.12) 
and (4.15) are replaced respectively by, 

2+?%+:[ m?-P+k2( p- l)] 

C+D=D- , (7.9) 

2i?+?+P+k’(~-l)] 
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and 

cos2a+z- 1 
k K2 

tancp= -$u- 
(7.10) 

K1 coso 

The numerical example considered in Sec. 4 is a rather 
extreme case where u/6= l/3. In this case KI= 1.36, 
K2= 1.09. The angle at which the effect of the roughness 
disappears is not 45 degrees but a=52 degrees. The 
curves in Fig. 6 are slightly modified, but the difference 
becomes smaller as a/x tends to zero. The angle at 
which the influence of the roughness vanishes is now 
slightly dependent on K1/K2, i.e., on the close range 
geometry of the roughness. It tends rapidly to 45 
degrees as u3/b3+0. The dissappearance of the effect 
of the roughness depends on the mutual cancellation 
of the radiation because of the electric and magnetic 
dipoles. The magnitude of these induced dipoles de- 
pends on K1 and K2, and the formula indicates that the 
effect is a function of the ratio KI/K~. 

In general, the calculation of induced dipoles derived 
from the nonradiative local interaction, i.e., by solving 
Laplace’s equation, yields a method of evaluating the 
radiation resulting from any type of small roughness, 
and is not restricted to hemispherical bosses. Induced 
multipoles may also be considered if we introduce a 
boundary condition of the wave equation which is more 
general than relation (7.8) and involves derivatives 
higher than the second. 

Close range correlation between size and distance of 
the bosses may be introduced in the calculation of ~1 and 
K2 if the distribution of the roughness is statistical. 
Finally, asymmetry may be considered both in the 
statistical distribution and the shape of the roughness 
by introducing tensor relationships between the local 
field and the induced moments. The latter case should 
be of practical importance in determining the direc- 
tional effect of ocean waves on radio transmission at 
grazing incidence. 

8. RESULTS AND CONCLUSIONS 

(1) A simple theory has been developed for the 
reflection of electromagnetic waves on a rough surface. 
The roughness is represented by hemispherical bosses 
on a plane, the size and mutual distance of the bosses 
being small relative to the wavelength. The case of an 
acoustic plane wave is also discussed and shown to be 
analogous to the reflection on an imperfect conductor. 

(2) The theory is also extended to show that the non- 
radiative interaction between bosses may be taken into 
account by the introduction of parameters which 
depend on the short range geometry. 

(3) The effect of the roughness is found to be 
equivalent to a new type of boundary condition for the 
wave equation. This opens the possibility of treatment 
of reflection problems for nonplanar waves, such as 
those emanating from sources at finite distance, and 

diffraction around bodies with a rough surface. In 
particular it yields the solution for the reflection on a 
rough surface for waves emanating from a Hertzian 
dipole. This solution was developed in reference 2 and 
will be published at a later date. The case of an acoustic 
point source was treated in reference 3. 

(4) The reflected wave has a phase which depends on 
the roughness and the angle of incidence. Simple 
formulas are given for this phase angle for the cases of 
vertical and horizontal polarization. 

(5) For the case of vertical polarization and grazing 
incidence, the roughness, even if it is small, causes a 
drastic phase reversal of the reflected wave. The 
grazing angles within which this effect is appreciable 
can be evaluated from Fig. 6. This effect does not occur 
for horizontal polarization. 

(6) At normal incidence, contrary to expectation, 
the effect of the roughness is to lower the effective 
surface of reflection below the original smooth plane. 
This is a consequence of the fact that only induced 
dipoles are taken into account, and that the induced 
electric dipole disappears for this case while the mag- 
netic dipole remains. A modification of this effect would 
occur in the expected direction if we took into account 
the higher-order, induced-electric multipoles as sug- 
gested in Sec. 7. 

(7) At a critical angle of incidence in the vicinity of 
45 degrees, for vertical polarization and perfect con- 
ductivity, the effect of the roughness disappears. This 
is due to mutual cancellation of the radiation of the 
electric and magnetic dipoles induced in the roughness 
by the incident field. The critical angle is exactly 45 
degrees if the bosses are sufliciently far apart, and 
somewhat higher than 4.5 degrees if this is not the case, 
depending on the%hort range geometry and distribution 
of the roughness. 

(8) The present treatment is readily applicable not 
only to a roughness represented by hemispherical 
bosses but to much more general types. Bosses which 
are not circular in shape will introduce different dipoles 
in each principal direction leading to anisotropy of the 
reflection. Short range interaction and its dependence 
on the correlation function for the distance between 
protuberance may be introduced. This may include 
anisotropic reflection due to anisotropy in the statistical 
distribution. Radio transmission as influenced by gravity 
waves at the ocean surface is open to simple treatment 
by such methods. Higher order multipoles induced in 
nonspherical shapes, or by close proximity may also be 
introduced in the theory. This would lead to a boundary 
condition involving derivatives higher than the second 
in finite or infinite number, or to transcendental 
functions of the derivative operators. 

(9) The coherent scatter is the object of the present 
treatment. Its separation from the incoherent scatter 
achieves a clarification of the more general mathematical 
treatment, and suggests the possibility of evaluating the 
latter as a perturbation of the present simple results. 
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