
LINEAR THERMODYNAMICS 
AND THE MECHANICS OF SOLIDS 

The Thermodynamics of linear irreversible processes is presented from a unified 

viewpoint. This provides a new and synthetic approach to the linear mechanics of 

deformation of solids, which includes as particular cases the classical theory of 

Elasticity, Thermoelasticity and Viscoelasticity. The first two sections constitute an 

introduction to the general concepts and principles of linear Thermodynamics as 

developed in the writer’s earlier work and presented in somewhat more detail. This is 

followed by the application of the general thermodynamic theory to Thermoelasticity 

which combines the theories of Elasticity, Heat Transfer, and their coupled effects 

into a single treatment. Some immediate consequences are derived such as the property 

of diffusion of entropy and certain fundamental relations with reference to thermal 

stresses. The introduction of inertia forces leads to a general formulation of thermo- 

elastic dissipation of dynamical systems by Lagrangian methods. The second order 

heat produced by the dissipation is evaluated. Linear Viscoelasticity and Relaxation 

Phenomena are also a particular case of the thermodynamic theory. The resulting 

stress-strain relations with heredity properties are discussed. The operational 

formulation of these relations leads naturally to a formal correspondence with the 

theory of Elasticity and to an operational-variational principle. The latter provides a 

generalization of Lagrange’s equations in integro-differential form to the dynamics and 

stress analysis of viscoelastic structures. Some specific applications of these 

principles are presented. 

L 

Introduction 

In recent years new and remarkably fruitful concepts 

and methods have been introduced in Thermodynamics 

which lead to a phenomenological approach for irreversi- 

ble phenomena. Th e major contribution was made by 

Onsager in 1931 when he introduced his now famous 

reciprocity relations. In the realm of linear phenomena 

the treatment of thermodynamics can be made completely 

systematic and general. Application of this general 

thermodynamics is of considerable interest in the field of 

linear mechanics of solids. In the course of a general 

research program on the mechanical properties of rock we 

developed a general f r o mulation of irreversible phenom- 

ena which uses generalized coordinates and Lagrangian 

concepts and is applicable to a very wide class of 

Ph enomena. The th eor was subsequently applied to y 

Viscoelasticity, Thermoelasticity and Heat Transfer and 

the mechanics of porous media bringing these phenomena 

within the scotue of a single more general theory. It also 

provides a new foundation for the classical theory of 

Elasticity. 

We have attempted to present a perspective of this 

development. Some new results are also included. We 

have dwelt in somewhat more detail than in the original 
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papers on the derivation of the basic thermodynamic 

equations, which is the object of Sections 2 and 3. The 

concept of hidden coordinates and the “black box” ap- 

proach to a thermodynamic system lead directly to relaxa- 

tion and heredity laws. The resulting expression for the 

impedance matrix is readily applied to the stress-strain 

relations of viscoelasticity as presented later in Section 

6. The symbolism of the operational calculus has been 

preferred since it is most convenient in applications. 

The field of Thermoelasticity which is understood here 

to include thermal stresses, thermoelastic damping and 

heat transfer is treated in Secttons 4 and 5. It constitutes 

an excellent subject for illustrating the new principles. 

A general formulation of linear viscoelasticity, i.e. the 

mechanics of materials which exhibit relaxation and 

heredity effects, follows immediately from the general 

thermodynamic theory, particularly from the expression 

developed for the thermodynamic impedance. This is 

discussed in Section 6 and special emphasis is put on 

the specific features of the operators which depend on 

thermodynamics. We conclude in Section 7 with applica- 

tions to the stress analysis and dynamics of viscoelastic 

structures and review some general properties which are 

direct consequences of a correspondence rule and an 

operational-variational principle. 
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Generalized Concepts of Free Energy and 

Dissipation Function 

We shall first introduce the conceptual and mathe- 

matical foundation of the linear thermodynamics of ir- 

reversible processes and elaborate somewhat beyond the 

original presentation as developed in several earlier 

papers [ll, El, f_31. 
Throughout the text we shall use the word thermo- 

dynamics as referring to irreversible processes and 

reserve the term thermostatics for the description of 

equilibrium states. 

Let us consider a thermodynamic system designated as 

system I and whose thermodynamic state is defined by a 

number of state variables, qi- 
We now introduce a heat reservoir as system II. It is 

assumed that systems I and II can exchange heat but that 

system II is large enough so that its temperature Tr re- 

mains constant, (Fig. 1). 

The total system I.+ II is then considered as an iso- 

lated system, and the state variables qi are chosen in 

such a way that qi = 0 corresponds to thermostatic 

equilibrium. For th is equiIibrium condition the systems 

I and II is at a uniform temperature T, which may then be 

called the refereazce temperature. Values of qi different 

from zero measure the departure of the system from its 

equilibrium state. 

In general it will be assumed that the departure from 

equilibrium is small and that the system is linear in the 

sense that the principle of super-position applies. The 

variables qi considered here are of an extremely general 

nature; they may be scalars, such as distributed tem- 

peratures, pressure concentration of chemical species or 

vector fields such as geometric displacements, mass and 

heat displacements, etc. 

In the following we shal1 taIk about the entropy of a 

thermodynamic system which is not in equilibrium. This 

is, of course, justified if we use the Boltzman definition 

of entropy based on statistical mechanics, On the other 

hand, the classical thermodynamic definition while apply 

ing strictly only to a system in equilibrium may be ex- 

tended as an approximation to systems in the vicinity of 

equilibrium. Th’ h b is as een further justified by Prigogine 

141’ on the basis of gas-kinetic theory. In this definition 

it is assumed that Iocal temperature and entropy may be 

defined on the basis of thermostatic definitions and the 

total entropy is the total sum of the local values. It has 

been found that these concepts apply to a very wide 

class of phenomena some of which are not necessarily 

restricted to small departures from equilibrium, In addi- 

tion the thermostatic concepts may even be used sepa- 

rately to describe internal degrees of freedom which are 

on the same geometrical location but are not in mutual 

equilibrium such as the moIecuIar or electronic degrees 

of freedom of a gas. 
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FIGURE 1. PRIMARY SYSTEM AND HEAT RESERVOIR. 

The next step is to consider the system I + II as 

disturbed from equilibrium. The departure from equilib- 

rium is defined by the values of the state variables qi 

and for each configuration of the system away from 

equilibrium there is a velocity vector whose components 

qi in the configuration space are the time derivatives of 

qi. These components are also called “fluxes.” From 

the classical principles of thermostatics we know that 

the entropy of an isolated system in stable equilibrium is 

a maximum. Hence the entropy S’of the isolated system 

I + II is a maximum which may be arbitrarily chosen as 

zero. Limiting the expansion to the quadratic terms we 

may therefore write 

(2 .l) 

which is a non-negative quadratic form. 

We have written the expansion for -TrS’rather than S 

because, as will be seen below -T,s’turns out to be the 

generalization of the concept of potential energy in 

classical mechanics. The derivatives Z”rdS’/aqi are a 

measure of the departure of the system from equilibrium 

and pIay the roIe of “restoring forces.” The assumption 

of linearity leads to linear relations between the rate 

variables ii and qi. They may be written 

as 
T r-== b * 

aqi 
ijqj (2.2) 

At this point the reprocity relations established by On- 

sager [5] I_61 may b e introduced. In the present formula- 

tion they are equivalent to the statement that the matrix 

of bij’s is symmetric, 

b bji ij = (2.3) 

This important property leads immediately to the exist- 

ence of a quadratic form 

D P ~bij~irij 

such that (2.2) may now be written 

as ao 
Tr----=_ 

eqi aqi 
(2.5) 
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As pointed out above the function - T,S’ plays the same 

role as the potential energy in the more restricted field 

of mechanics. We put 

(2.6) 

and (2,5) become 

av a0 
-+-_a==0 
aqi a4i 

(2.7) 

What is the significance of the function D? Multiplying 

(2.5) by ii and adding we derive, 

as dD 
Trx-,ii'2D 

aqi 
(2.8) 

In the process of returning to equilibrium the entropy S 

of the isolated system cannot decrease, therefore 

&‘/at 3 0 and D is a non-negative quadratic function of 

the velocities Qi Equations (2.7) are identical with those 

of a mechanical system composed of springs and dash- 

pots. The function D is proportional to the rate of dis- 

sipation of energy in the dashpots. The term dissipation 

function is borrowed from mechanics to designate the 

function D in the more general thermodynamic case. 

Since W/& ,is the rate of production of entropy in the 

system I + II the dissipation function is 

D = f T, x (rate of entropy production) (2.9) 

As regards the function V an important aspect of its 

thermodynamic significance is added if we express the 

entropy S’ of the system I + II in terms of the thermo- 

dynamic functions of the system I alone. We may write 

S’=S+S, (2.10) 

where S is the entropy of system I and S, the entropy of 

the heat reservoir II. Denoting by h the heat transferred 

from system I to system II, conservation of energy re- 

quires that 

U h IE- (2.11) 

where U is the internal energy of system I chosen so that 

u = -h = 0 at equilibrium. The entropy SR of the reser- 

voir II is also chosen to be zero at equilibrium, hence, 

h U 
SR iE-----I_- 

Tr Tr 
(2.12) 

Substituting in (2,lO) we find 

V = - T,s’z U - T,S (2.13) 

We recognize here an expression which looks very much 

like the free energy of classical thermodynamics. There 

is, however, one difference in the fact that T, does not 

refer to the temperature of system I but to the reference 

temperature of the heat reservoir II. Expression (2,13) is 

much more general than the classical free energy since 

the system I may have an arbitrary distribution of non- 

uniform temperature. Of course if the transformation is 

isothermal and occurs at the temperature Tr itself, (2.13) 

coincides with its classical definition. For want of a 

better term we have referred to V as the generalized free 

energy. 

An alternate expressian for V which is of considerable 

interest in applications was derived in [3]. We denote by 

V,= U,- T,S, (2.14) 

the classical value of the free energy corresponding to a 

uniform temperature T, and by V, the amount by which V 

increases when the initial temperature T, at any particu- 

lar point is raised to T, + 8 i.e, when a non-uniform dis- 

tribution of temperature increments 8 is imposed on the 

system without changing the other state variables. We 

may write 

v = v, + v, (2.15) 

and 

vc = U, - TJ, (2J6) 

or 

(2.17) 

vc = 

The above expressions refer to the volume integral over 

the volume r of system I and c is the specific heat per 

unit volume for all variables constant except the tempera- 

ture. For small variations 6 we may write 

Hence 

(2.18) 

(2.19) 

The term Vr represents the classical free energy for iso- 

thermal transformations at the reference temperature T, 
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i.e. when T, represents the temperature of the system 

itself instead of just that at the heat reservoir. It is the 

Helmholtz free energy familiar to the physical chemist. 

The additional term represents the thermodynamics of 

power engineering i.e. the heat which may be transformed 

into useful work. It can be seen that it is an integrated 
expression for the product of the heat cd0 by the Carnot 

efficiency 0/( T, + 0) g O/T, Our expression (2.13) and 

(2.19) may, therefore, be considered as a generalization 

of the Helmholtz free energy to systems at non-uniform 
temperature. 

With reference to Onsager’s relations we should point 

out that theoretically they are valid only for systems 

which exhibit microreversibility. In the presence of 

magnetic and Coriolis fields of sufficient intensity they 

are not applicable. Known examples of this are the Hall 

effect for electrical conductivity and the Rhigi-Leduc 

effect for thermal conductivity. 

We should also bear in mind that the adjunction of the 

heat reservoir II does not mean that there is necessarily 

a heat exchange between I and II. This will depend on 

the thermodynamic constraints and adiabatic transforma- 

tions are therefore not excluded. However, the con- 

straints must respect energy conservation. Further de- 

velopment on the statistical foundations of the Onsager 

relations were the object of more recent studies by On- 

sager and Machlup [?I, Machlup and Onsager 181, Callen 

Barasch and Jackson [9] and Greene and Callen [lo]. An 

introduction to the subject will also be found in [ll] [I21 

[131 and [141. 

Response of a System to Arbitrary Perturbations 

In a system of springs and dashpots differential equa- 

tions for the motion of’the system may be written im- 

mediately by adding to the right-hand side of (2.7) 

definite functions of time which represent the generalized 

perturbing forces applied to the system. The question is 

FIGURE 2. PRIMARY SYSTEM, BEAT RESERVOIR AND PERTUR- 
BATION OF PRIMARY SYSTEM. 

how to establish the validity of this procedure when 

disturbances of a general thermodynamic nature are ap- 

plied to the system I + II composed of system I and its 

adjoined heat reservoir II at the constant temperature T,. 
Let us adjoin to system I a large energy reservoir I,, 

and assume that I, is made up of a large spring exerting 

a constant force F on system I through a piston, the dis- 

placement of the piston being x. The entropy S’of the 

total system I + II + I,, may be evaluated by writing the 

equation of energy conservation for the system. If we 

denote by h the heat acquired by II, conservation of 

energy requires 

U=Fx-h (3.1) 

where U is the internal energy acquired by I, Hence the 

entropy acquired by II is 

h Fx-U 

SR=?=p r T, 
(3.2) 

The entropy increase S’of the total system I + II + I,, 

is 

Fr - 0 
S=S+SR=S+-- 

T, 
(3.3) 

where S is the entropy increase of I. We derive 

T,S=-V+ Fx (3.4) 

Similarly if instead of adjoining I,, we adjoin a heat 

reservoir I, at a temperature T, + 8 and call h, the heat 

floluing in from I, into I, conservation of energy requires 

U=h,-h (3.5) 

The total increase of entropy of I + II + I, is then 

s’=s 
ha h -- +_ 

T, + 8 T, 

or 

S-S-;+h(;-&) 

If 8 << T, we may write, 

T,s’c - v+y 
r 

Denoting by 

(3.6) 

(3.7) 

(3.8) 
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the entropy inflow from I, into I we finally have 

T,s’=- v+s,e (3.9) 

We see that S, and 13 play the same role as the conjugate 

coordinates F and x for the applied force. When the two 

reservoirs I, and I, are added simultaneously the total 

entropy S’of I + II + I, t I, is given by 

T,s’=- V+Fx+S,O (3.10) 

An alternate definition of the disturbing force is also ob- 

tained by considering the expression (3.15) below. This 

expression is quite general and if we add any number of 

energy reservoirs disturbing the original system we may 

write 

TJ’= -V+Qiqi (3.11) 

where Qi is an intensive quantity representing a force 

and qi its conjugate extensive coordinate. As a further 

example the force could be an electromotive force E and 
the quantity of electricity q flowing through the system 

is then the conjugate coordinate leading to a term Eq in 

expressions Qi qi. In the case of a chemical reaction the 

mass M of constituent injected from a reservoir into a 

particular phase or chemical species is the extensive 

coordinate while the chemical potential P of this con- 

stituent is the conjugate force. The corresponding term 

in Qiqi is PM. The theory is therefore applicable to an 

“open system.” 

We may now apply the same reasoning as in the 

previous section and assume that Onsager’s relations 

apply to the total isolated system I + II + I, + I, + . . . Ii. 
We may then write as above (2.5), 

(3.12) 

Substituting (3.11) we derive 

dV cYD 
-++-=Qi 
aqi %i 

(3.13) 

These equations are derived for constant Qi but they 

obviously apply for arbitrary time variations of Qi since 

the rates ii of all state variables must depend only on 

the instantaneous configuration and forces. 

Equations (3.13) are the fundamental equations for the 

time history of the thermodynamic system, under the 

external forces,Qi. We have derived them in less detail 

in [l] and [21. In these same papers we also derived a 

number of important properties which are straightforward 

consequences of (3.13) and which we now briefly 

describe. 

The existence of normal coordinates follows from the 

existence of the quadratic invariants V and D. Relaxa- 

tion modes satisfying orthogonality relations are derived 

from the corresponding eigenvalue problem. If the system 

is in the vicinity of stable equilibrium V is positive 

definite and all relaxation modes are proportional to an 

exponential time decay. If the system is unstable (e.g. 

under conditions of buckling) V is then indefinite and 

there exist modes proportional to increasing exponentials. 

The exponentials are always real because they corre- 

spond to eigenvalues of two quadratic forms one of which, 

D, is positive definite. 

The dissipation function D is proportional to the 

entropy production and we have shown [2] that the . 
instantaneous velocity vector qi of the system minimizes 

the entropy production for all vectors satisfying the con- 

dition that the power input of the disequilibrium forces 

X,=yi_$ is constant i.e. if 
i 

. 
Xiqi = const. (3.14) 

An important expression is derived by considering a 

system in equilibrium under the forces 0s”. We may 

then write 

and from the properties of quadratic forms 

v = $qiQ!") 

(3.15) 

(3.16) 

This expression is convenient in practical applications 

to obtain V when relations such as (3.15) are known. 

General expressions for the solutions of the funda- 

mental equations in terms of the applied forces Qi as 

given functions of time are easily obtained in operational 

form [l]. We write 

qi = A:iQj (3.17) 

where ATj = ATi is a symmetric admittance operator 

(s) C!P) 
ATj= ~ c 11 

P +A, 
+ Cij (3.18) 

with p a time derivative operator 

d 
P=z (3.19) 

and X, are characteristic roots of the differential equa- 

tions (3.13) changed in sign. For a stable system the 
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h, are real and non-negative. The diagonal coefficients 

C$f’ and Cii are non-negative. The significance of the 

operational expression is a multiple one*. In the case of 

forces which are simple harmonic functions of time, say 

Qiexp (iot) with a constant amplitude Qi, the amplitudes 

qi of the response Qiexp (iat> are given by (3.18) after 

putting p = io. Equations (3.18) may therefore be con- 

sidered as relations between Fourier or Laplace trans- 

forms of Qi ad qi. They may also be considered as 

integral expressions when the forces are arbitrary func- 

tions of time since we may write 

*Qi(t) = e-‘st 
s 

*eAs7dQi(r) (3.20) 
s 0 

The reader’s attention is called to the advantages of 

generality and flexibility attached to the use of the 

operational notation throughout. 
Important relations of the impedance type are derived 

if we introduce the concept of “hidden coordinates.” 

The thermodynamic system is considered as a “black 

box” with a large number of coordinates which are un- 

observed qs. Perturbations (i.e. forces) are only applied 

to observed coordinates qi while the forces applied to 

the hidden coordinates qs are zero. A model for this is 

a large resistance-capacity network with certain numbers 

of outlet terminal pairs. We are interested in the rela- 

tions between the applied forces Qi and the compounding 

observed coordinates qi. This introduces the impedance 

matrix of the thermodynamic system. We have shown 

[l] that 

Qi = Z*i qi (3.21) 

where Z;j = ZTi is a symmetric impedance operator 

(3.22) 

The relaxation constants r, and all diagonal terms D$‘, 

Dii, D:i are non-negative. Expressions (3.20) and (3.22) 

are completely general and are valid whether the matrices 

of the original differential equations are singular or not 

or whether they have any number of multiple characteris- 

tic roots. Attention is called to the fact that in the 

derivation of (3.22), [l], we must invoke the non-negative 

character of the dissipation function otherwise a term 

in p* would appear in that expression. 

A very useful variational principle equivalent to the 

Lagrangian equations (3.13) is obtained by introducing 

an operational form of the dissipation function 

D* = ~pbijqiqj (3.23) 

*For an introduction to operational methods see e.g. [IS], [161. 

We may then write the variational principle as 

SV + SD* = QiSqi (3.24) 

This principle will be used later and also generalized in 

Section 7. 

Thermoelasticity 

An excellent illustration of the new methods and 

principles presented above is provided by their applica- 

tion to Thermoelasticity as we have already pointed out 

in [l] and [2] and developed more explicitly in the later 

papers [3] and [I?]. 

It should be understood that the word Thermoelasticity 

is used here in its broadest meaning and embraces as 

particular cases the classical theory of Elasticity, the 

effect of temperature distribution on thermal stresses in 

elastic bodies, the theory of heat conduction and heat 

transfer and the coupled interaction between the de- 

formation and the temperature field which results in 

thermoelastic damping. 

The subject of Thermoelasticity has been the object 

of well known discussions in the literature for over a 

century among others by Duhamel [18], Neumann 1191 and 

Voigt [20]. Duhamel’s equations which were reproduced 

by Neumann are not based on thermodynamic principles 

and are restricted to isotropy. They are based on the 

experimentally known difference between the two specific 

heats. Thermoelastic damping was studied extensively 

both theoretically and experimentally by Zener 1211, 

[221, 1231, 1241. Th e p resent treatment brings all these 

phenomena into the general frame of linear thermody- 

namics and its variational treatment as outlined above. 

In addition it leads to new concepts and methods, in 

particular to the concepts of thermoelastic potential, a 

general dissipation function which includes surface 

heat transfer, and a thermal force defined by a method of 

virtual work in analogy with mechanics. Finally, as we 

have shown in [17], which deals specifically with the 

heat transfer aspects of the theory, the methods are 

susceptible of considerable extension beyond the scope 

of the present outline to include non-linear phenomena 

and new procedures of numerical analysis. 

The concept of thermoelastic potential which we have 

proposed is entirely different from the expression used 

by P&ler 1251 and which has been mistakenly referred to 

as a thermoelastic potential. Not only is the expression 

essentially different from ours, but the temperature plays 

the singular role of a parameter not subject to variation 

leading to a theory which does not contain heat transfer 

processes in variational form and does not fit in the 

scheme of the present general thermodynamic formulation. 

The potential used by PIsler is expression (4.32) below 
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and referred to by Voigt [lo] as the first thermodynamic Withthe vector Sthe classical equations (4.1) may also 

potential. be put in an equivalent form by writing 

The classical equations for the coupled elastic and 

thermal fields are 

dopFrv 

dx,= 
0 (4.1) 

aqLv -= 0 ax, 
k,. ?f= T as, 

81 axi - r at 

T*divS= -CO - TrBijeij 

(4.5) 

& kij $ = c z + T,pij 2 

[ 1 i 
The stress tensor is Us,,, the strain is 

1 dUi auj 
e..- - 

( ) 

-+- 
“- 2 dXj C3Xi 

(4.2) 

and 6’ is the excess temperature above the reference 

temperature T,.. The th ermal conductivity tensor is kij, 

c is the specific heat per unit volume, for zero strain, 

pij is related to the thermal dilatation properties of the 

material, and C$ are the elastic moduli for isothermal 

deformations (0 = 0). We have the following symmetry 

properties 

Cij = C~JJ = C:P= Ccv 
!-QJ II 

pij = Pji 

kij = kji 

(4.3) 

The latter is only true in the absence of a strong mag- 

netic field or Coriolis forces, as a consequence of On- 

sager’s relations. Experimental confirmation of the 

symmetry of kij was found by Voigt [ll]. 

A rederivation of the classical equations (4.1) may be 

found in the introductory part of 131 or in 1271. 

Thermoelastic phenomena obviously must obey the 

laws of linear thermodynamics. We have shown 131 that 

they obey the general variational formulation represented 

by the principle of minimum dissipation and the corre- 

sponding Lagrangian equations (3.13). 

In order to show this we must of course choose the 
variables which define the thermodynamic state of the 

systems and correspond to the coordinates qi of the 

general theory. The coordinate system chosen is the 

field of displacement vectors uof the solid and in addi- 

tion the vector field Sof entropy displacement. The 

vector Sis the time integral of the rate of heat flow 

divided by T,.. In this choice we are guided by expres- 

sion (3.8). Hence, 

where c@/dt is the 

aS 1 an 
at=r,at 

rate of heat flow. 

(4.4) 

The components of Sare designated by Si. The third 

equation expresses the law of heat conduction while the 

fourth is derived from the thermostatic definition of 

entropy [3] assumed to be valid for non-equilibrium 

phenomena following the assumptions of linear thermo- 

dynamics (Section 2). 

Let us evaluate the generalized free energy J’. Ac- 

cording to (2.19) this may be written 

1 
v=vr+- 

2 
(4.6) 

The isothermal free energy V is nothing but the well 

known isothermal strain energy of the classical theory of 

Elasticity. 

where 

w = lcii e 

2 pu ijepv (4.8) 

and C$ are the isothermal elastic moduli. 

(4.9) 

This is the particular form assumed by the generalized 

free energy 131. S ince it embodies completely the thermo- 

static and elastic properties of the systems we have 

referred to expression (4.9) as the thermoelastic potential. 

Substituting the value of 8 derived from (4.5) we express 

this thermoelastic potential in terms of the fields cand 

Sas follows. 

v= + z(divS+ /3ijeii)2 dr 1 (4.10) 
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The dissipation function is easily found by using its 

definition (2.9) in terms of entropy production. We found 

131 [171, 

;TrSS, f (%)‘dz4 (4.11) 

In this expression the matrix of hi, is the thermal resis- 

tivity matrix i.e. the inverse of the conductivity matrix 

kij 

[Xijl = [kij]” 

The first integral is proportional to the entropy produc- 

tion inside the system. The second integral taken over 

the boundary A of the system corresponds to the entropy 

production in the heat transfer layer at the boundary. 

The heat transfer coefficient at the boundary is denoted 
by K and S, is the normal component of Sat the bound- 

ary. We may also use the alternate operational definition 

of the dissipation function following (3.23) and write 

XijSiSjdr+ :Tr $dA (4.13) 

Finally we must evaluate what corresponds to the 

generalized virtual work QiSqi in the general variational 

relation (3.24). This is the work performed on the sys- 

tem by the “externally” applied forces and temperatures. 

Here we must point out that while the force F is applied 

to the solid boundary, the “external” temperature 8, is 

that existing outside the heat transfer layer at the bound- 

ary. The generalized virtual work is the surface integral 

Qi8qi = (P*Sii+ O,SS,)dA (4.14) 

where S, is the normal component of Sat the boundary 

directed positively inwarP. The variational principle 

corresponding to (3.24) is then 

6V + 6D* = (F.&i+ 6,6S,) dA (4.15) 
A 

where V is the thermoelastic potential (4.10) and o* the 

operational dissipation function (4.13). This relation 

must be verified for all variations of the fields cand 

Sand as we have shown [3] [17] this leads to the classi- 

cal equations in the form (4.5) for the thermoelastic 

‘An additional term for body fuces may be ad&d as done in [3]. [Jf22 - MLM;;‘Md qs + Nis = Q, - M;,Mr,‘Qi (4.20) 

field including the boundary conditions in the heat trans- 

fer layer. Conversely, the variational principle (4.15) 

also follows from (4.5). Hence if these equations are 

taken to represent experimentally verified laws of elas- 

ticity and heat conduction then the variational equution 
(4.15) is also true independently of the assumptions 

peculiar to linear thermodynamics. In particular they 

will be true without having to assume 8 << T,. This is 

valuable in heat conduction when the methods and 

principles then become applicable for variations of 6’ 

in a large range [l?]. 

The variational principle makes it possible to express 

the thermoelastic equations for homogeneous or in- 

homogeneous bodies, isotropic or anisotropic, in any 

system of curvilinear or generalized coordinates. If we 

use generalized coordinates qi we may describe the 

fields uand Sin terms of fixed configurations iii and 

5,. We write, 

The set of generalized coordinates is qi and qS. As we 

have shown 131 the differential equations for these co- 

ordinates may then be written in the form (3.13) as 

with partitioned matrices, Qi representing the mechanical 

forces and QS the thermal forces (Mi, is the transpose of 

M,J. We may restrict ourselves to applying a certain 

number of mechanical forces Qi and observe the corre- 

sponding coordinates qi (qs being “hidden”), all other 

forces being zero. We may then write 

Qi = -Gj qj 

with a thermoelastic impedance 

P D$y’ + Dij 
P + rs 

(4.19) 

This expression is a particular case of (3.22) and may be 

derived by following the general procedure which we 

used in [l]. They are a consequence of the particular 

nature of the matrices in (4.17). In the derivation use 

must be made of the fact that the generalized free energy 

is non-negative. 

An important property of thermoelastic systems is 

derived from (4.17). Eliminating qi by matrix multiplica- 

tion yields 
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Since the matrices multiplying qS and is are symmetric 

this may be considered to represent a pure relaxation 
unit volume is the integrand in (4.9) i.e. 

phenomenon for the entropy field. The entropy therefore 1 co2 T, 
obeys quite generally diffusion type equations. This (4.25) 

may be verified directly in the case of a homogeneous 

2, = rV + - -= rd/ + g (/!?ijeij - S)’ 

2 Tr 

isotropic body. In th is case the stress-strain law is’ This may be written 

oij = 2 PLeij + 6ij (Xe - /30) 
(4.21) 

(e = Gijeij) 

v = +Clijeij + +OS (4.26) 

and the thermal conductivity is 

kii = 6ii k 

an expression identical in form with (3.16) of the general 

theory. For adiabatic deformations we must put s = 0 and 

the generalized free energy becomes 
(4.22) 

We have shown [3] that the entropy per unit volume or 

specific entropy 
or 

s = -divs (4.23) 

satisfies the diffusion equation 

This means that if we suddenly deform an isotropic elas- 

tic body the specific entropy does not initially vary in- 

side. It remains constant until it has had time to change 

by diffusion from the boundaries. It is interesting to in- 

terpret this in terms of the analogy which we have demon- 

strated to exist between thermoelasticity and the iso- 

thermal mechanics of elastic porous media containing a 

viscous compressible fluid 131. The specific entropy 

plays the role of what we have called the fluid content 

5 [28] [30]. When we suddenly form such a porous body 

there is generally an instantaneous flow of the fluid but 

there is at first no change in fluid content 6 inside the 

body until it diffuses from the boundaries. Complete iso- 

morphism exist between the two theories and the general 

solutions of the equations of consolidation of porous 

media of reference [28] apply to thermoelasticity and the 

evaluation of thermal stresses by a simple change in 

notation. The isomorphism is a consequence of the fact 

that both phenomena obey the same basic thermodynamic 

principles. 
It is of considerable interest to point out that for iso- 

tropic bodies the thermal conductivity as expressed by 

(4.22) automatically satisfies rhlsager’s relations purely 

on the basis of geometric symmetry. 

We shall add a remark concerning the significance of 

the thermoelastic potential (4.9). Its specific value per 

4h and P are the isothermal Lam; constants. From (4.28) the 
adiabatic La& constants are h + ,~‘T,/c and p. 

T, 
V = W + c (pijeij)' (4.27) 

1 
e..e 

81 w (4.28) 

This represents the elastic strain energy for adiabatic 

deformations and the expressions in the bracket are the 

adiabatic elastic mod&. They are derived here very 

simply from the generalized free energy. The same 
procedure may be used to derive the adiabatic com- 

pliance coefficients. It is interesting to compare (4.26) 

with the concept of thermodynamic potential which in 

case the stress is a hydrostatic pressure p, is u - ST + 

pe. Generalized to the stress tensor this is written5 

(4.29) 

In our notation with T = T, + 8 it becomes 

(4.30) 

Taking into account (2.13) and (4.26) we find 

5=-v (4.31) 

The quantity 5 is mentioned by Voigt [20] who refers to 

it as the second thermodynamic potential. Although it 

differs only in sign from our generalized free energy it is 

a very different physical concept, which refers only to 

isothermal properties at the temperature T = T, + 8. 

Voigt also considers the classical isothermal free energy 

t= 
1 ce2 

a-s(T,+O)=F’---- 2 T, @ijeij (4.32) 

which he refers to as the first thermodynamic potential. 

Expression (4.32) was used by PIsler [25]. 

5u is the internal energy per unit volume. 
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rated into two groups 

= Qi 

av a0 
-+-y=o 
ah ah 

multiplying the first equations by ii and the second by . 
q s and adding, we obtain 

(5.13) 

The right hand side represents the power input of the 

mechanical forces. On the left the term 2 D equal to 

twice the dissipation function is non-negative and 

represents the irreversible conversion of mechanical 

power into heat. This dissipation function D is given 

by (4.11). This heat g eneration produced by the dissipa- 

tion is a quantity of the second order which in a first 

order theory is neglected in comparison with the first 

order entropy flow vector Sas defined above. Over a 

certain period of time this second order heat may of 

course accumulate and if not diffused out will produce 

an increase of temperature comparable to first order 

effects. A direct verification of the conversion of the 

dissipated power into heat is obtained by writing the first 

law of thermodynamics in the form 

dh du deii 
-- dt = - z + oij 7 (5.14) 

dh 
where - - 

dt 
is the heat exuded per unit volume and unit 

time and u is the internal energy per unit volume. Re- 

placing oPLv by its expression from the equation of state 

i.e. the first equation (4.5); further, using the last 

equation (4.5) and introducing the value, v from (4.26) we 

find, 

dh d -- 
dt =-dt 

(u- (5.15) 

The irreversible part of the power is obviously con- 

tained in the second term. A simple calculation gives 

the volume integral of this second term as 

JJJT(9div ($jdr = 20 (5.16) 

where D is given by (4.11). In order to establish this 

last relation we integrate by parts and introduce the as- 

sumption that the externally applied temperature 8, is 

zero (Q, = 0). H ence in that case 2 D represents the 

total heat exuded irreversibly from the volume. 

Viscoelasticity 

Viscous and relaxation phenomena in the linear range 

may in general be assumed to obey the thermodynamic 

equations formulated above. Strictly speaking of course 

we must deal with a system which is initially in equilib- 

rium and undergoing small disturbances from this state. 

Actually we may expect the equations in certain specific 

cases to be verified in a much wider range while in some 

other instances non-linearities will appear even for 

physically very small disturbances. Furthermore be- 

cause of their wide validity the thermodynamic principles 

lead to expression which in many cases give a first 
. . 

approximation to the physical properties in the same 

sense that Hooke’s law in Elasticity yields a widely 

valid approximation to the actual properties of materials. 

In this connection and as already pointed out in Section 

1 we should remember that linearity does not insure the 

validity of Onsager’s relations as they do not neces- 

sarily apply in the presence of a magnetic field or a 

field of Coriolis forces. However, in practice the actual 

restrictions of this type to the validity of the equations 

will appear only in exceptional cases. 

Application of Onsager’s relations to viscoelasticity 

were made by Staverman and Schwarzl 1321 [33] and 

Meixner [Ml [35I. Simultaneously a very general ap- 

proach to viscoelasticity based on linear thermodynamics 

as presented here was developed by this writer [ll [2]. 

Our treatment appears to be more general since, as 

illustrated in the case of thermoelasticity (Section 4), it 

includes heat conduction as a particular case and the 

coupling of thermomechanical effects with physico- 

chemical, electrical, and other thermodynamic degrees of 

freedom”. We also derived the general form of the 

operational moduli relating stress and strain and made it 

the object of a rigorous proof El]. We subsequently in- 

cluded the treatment of a fluid-saturated porous visco- 

elastic anisotropic solids 1361, and the application to the 

dynamics of viscoelastic structures of some variational 

principles which we had developed earlier for linear 

thermodynamics [2]. This leads to a vuriational- 

operational method and to Lagrangian equations with 

operational coefficients [37] [38]. 

The operational relations between stress and strain 

are an immediate consequence of expressions (3.17) and 

(3.21). Consider an element of solid of unit volume. 

The nine stress components oPLLYmay be identified with 

the nine applied forces Qi to the system and the nine 

components eij of the strain tensor are the corresponding 

‘%t includes for instance a. a partlculpr case the theory of therm.1 
stresses of viscoclastlc media with temperature independent atress- 
strain relations. This is formally ldentlcal with the treatment of 
paroua viscoelnstlc media [36]. 
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observed coordinates qi. The solid is assumed to con- 

tain hidden coordinates which may be finite or infinite in 

number. The strain is then expressed in terms of the 

stress by an operational compliance matrix A*,$ which 

corresponds to the general admittance (3.18). 

Solving the system for cr:i brings out operational moduli 

which correspond to the impedance (3.22). 

The operators are 

pii _ s Oa c;v A) dx  + c,, 

pv- ~ I’ 

0 P+X 

(6.2) 

(6.3) 

s 00 

Z*ii= 
W LD;,,(r) dr + D$, + pD,$ (6.4) 

0 p+r 

The summations in expressions (3.18) and (3.22) are 

replaced by integrals. This of course is more convenient 

as an approximation if there are a great number of hidden 

coordinates. In doing so we must take care of the fact 

that C?,,(h) and D&,(r) may be highly discontinuous 

functions. These discontinuities are due to the fact that 

these functions include a spectral density factor for the 

relaxation constants X and r and also because the co- 

efficients Csj and DiT’ themselves in expressions (S) 

(3.13) and (3.22) may be d iscontinuous functions of X, 

and rS. The discontinuities may be of the Dirac function 

type. The discreet spectrum in expressions (3.18) (3.22) 

is included in the integral representations (6.3) (6.4) by 

the introduction of Dirac functions. Further properties 

of the operators (6.3) and (6.4) are 

1. The operators satisfy the symmetry properties 

A*ij_A*ij_A*ji 
PV VP - w 

z* ij _ z* ij = z* ji 
PV - VP PV 

which are consequence of the symmetry of oii and eij 

2. In addition they satisfy the symmetry property 

(6.5) 

A* ii = A*PV 
pv il 

(6.6) 
z*ii = Z*pV 

pv 81 

which is a consequence of the Onsager reciprocity 

relations. 

3. The variables X and rare real and non-negative. 

They are real because of Onsager’s relations and the 

non-negative diseipation functions D. They are non- 

negative because we have assumed the system to be 

disturbed in the vicinity of stable equilibrium, hence 
such that the generalized free energy V is non-negative. 

4. All diagonal terms C!{(x), C$, and D:;(r), D$, 0:;’ 

are non-negative. This is also a consequence of On- 

sager’s relations and the non-negative character of the 

generalized free energy and the dissipation function. 

This non-negative character of the diagonal terms is an 

invariant property which must be valid for all linear 

transformations of the six independent variables eij. 

It follows that the coefficients C and D must be such . . . . 
that D&(r) eijepv, D&eiie&,$eije~v, C&((h) eijepv, 

and C& eij epv are all non-negative quadratic forms. 

As already mentioned above (Section 3), a more subtle 

point in deriving expression Z>z is that from a purely 

algebraic viewpoint there arises the possibility of an 

additional term DLi’ pa which would introduce a depend- 

ence on the strain acceleration. However, because we 

are dealing with a positive-definite dissipation function 

we were able to show [ll that the term in p* must vanish. 

This point is an important one and although it was intro- 

duced explicitly in [l] it was not given due emphasis. 

We have assumed implicitly that the thermodynamic 

equations involve the hidden coordinates only in V and 

D. If this is not the case, i.e. if hidden coordinates 

appear also in the kinetic energy we still derive the 

symmetry properties 1 and 2 but the nature of the opera- 

tors is affected by the possible introduction of complex 

conjugate quantities. This will also affect the nature 

of the heredity functions below (6.8) 

We have written the above relations as operational 

equations. The reader is reminded of the significance 

of these equations. They may be considered as direct 

relations between the Laplace transforms of the time 

dependent functions. We may also introduce explicitly 

differential and integral operation represented by the 

operators in accordance with expressions (3.19) and 

(3.20). Hence the stress-strain relations (6.2) may be 

written as, 

upv = s ‘h$(t - r) deij(r) + D$ + D;L 2 (6.7) 
0 

with an heredity tensor 

h:,,(t) = Do Dzv(r) emrt dr. (6.8) 

The function D:,,(r) is a “spectral tensor” of the 

fourth rank. In this sense the spectrum depends on the 

particular choice of the coordinate system for represent- 
ing the stress and the strain and on the particular con- 

straints imposed on the system. We may manipulate (6.1) 

or (6.2) as if the coefficients were algebraic quantities 
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and thus obtain the matrix relating any choice of stress 

components with the corresponding strain. The new 
operators of course are not obtained in the form (6.4). 

But it should always be possible to do so. If we call 
B(P) that part of the new operators which corresponds to 

the integrals in (6.3) and (6.4), the problem amounts to 

finding a function F(r) which satisfies the integral 

equation 

B(p) = Cm PF(r)dr. 
Jo P-fr 

(6.9) 

A very simple solution for this integral equation was 

given by Fuoss and Kirkwood [39] in connection with 

problems of dielectric relaxation of polymers. A discus- 

sion of this integral equation in connection with one 

dimensional problems of viscoelasticity has been given 

by Gross 1401. Th e integral equation may be considered 
nf Pl-l,,F.&?P 5aa I lT,x”Pl.PI;Ic.t;,m nf .D” epn”“Gn” :” r.o.401 "Z ""..."I Y" Y ~"""'U"'U~'"Y "I uu ~CAUU'YL. 1nl pnlAcu 

fractions. Once we know F(r) the operator B(p) may be 

expressed immediately in terms of an heredity operator 

by following the procedure outlined above. We may write 

and the “operational Young’s modulus” is 

F(r) dr + D + D> (6.14) 

These relations show that the material is represented 

by a model of springs and dashpots. Equations (6.12) 

and (6.13) correspond to two equivalent models which are 

respectively a Voigt model (Fig. 3) and a Maxwell model 

(Fig. 4). We can see that the possibility of representing 
,bP mnt,M.:al br m..-1. -a-lz.l” * CL*” .L_bb1LcaL “J ou\ru uvucj~u i8 63 CGiIS~pii~iIC~ Of the 

Onsager relations and the non-negative character of the 

generalized free energy and the dissipation function. 

It is of interest to point out how thermodynamics 

restricts the nature of the general type of operators which 

would otherwise result from a purely mathematical ap- 

proach to linear theory. A general linear relation be- 

tween stress and strain would read 

d 
where p = - is again the time derivative. We could 

dt 

B(p) = s 'h(t - r)d solve the system for opv and obtain a relation of the 

0 form 

with 

h(t) = s O” F(r) e-"dr 
0 

(6.16) 

(6.10) 
where the elements of the matrix P*ij 
polynomials in p. Expanding these 

sly are quotients of 
algebraic functions 

As an example we can use this method to derive the 
moduli Z* ‘ifrom the compliance matrix A$and vice 

pu 
versa. One matrix is the inverse of the other 

we shall obtain expression which are in general quite 

different from (6.4) because 

1. The roots I of the denominator may be complex 

conjugates. 

r7*iii _ rd*iil-l L-l$LyJ - L‘-pLV J 

2. There may be terms in the expression of the type 

(6 I?) . l/(P + r)” due to multiple roots. 

3. The matrix is not in general symmetric except for 

isotropic media. 

Then any term of the inverse matrix may be written in 

the form (6.4) by first separating the terms D$, + PD’~~ 
then representing the remainder in the spectral form i; 

solving an integral equation of the type (6.9). 

In the one dimensional case corresponding to a simple 

tension test the stress o and the strain e are related by 

either 

e=A”o 

o=Z*e 
(6.12) 

where the compliance operator is 

A* = rw E(X) 

J 
-----a+C 

0 P+x 
(6.13) 

4. The diagonal terms may be negative. 

5. Acceleration terms and higher order derivatives may 

be present. 

For a thermodynamic system as we have already 

pointed out complex conjugate quantities may arise only 

if there are hidden coordinates with kinetic energy. 

We have pointed out iii isj that an important conse- 

quence of the symmetry properties of the operational 
moduli is that they may be manipulated algebraically as 

elastic moduli. This estabIishes a rule by which the 

great generality of the equations of the classical theory 

of Elasticity may be immediately extended to Visco- 

elasticity by simply replacing the elastic moduli by their 

corresponding operators. We have also shown 121 1371 

1381 that the property extends to the variational and 

energy methods replacing the strain invariants of the 

theory of Elasticity by their corresponding operational 
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expressions. W e h ave referred to this as the corre- 
spondence rule. An immediate application of this rule 

refers to properties of geometric symmetry [l]. An iso- 

tropic material will be characterized by two operators, 

cubic symmetry by three operators, transverse isotropy 

by five operators, and so on. We have pointed out that 

the frequency dependence of the operators leads to a 

property which does not occur in the theory of Elasticity 

i.e. that a material may change porn one type ofsym- 

metry to another depending on the frequency range 

considered. 

In general this correspondence rule is a consequence 

of the Onsager relations. However for an isotropic 
material this is not necessary since the geometric sym- 

metry in this case insures the symmetry of the matrix of 

the moduli. The stress-strain relations in this case are 

aij = 2 Q* eii + ZiiiR* e 

(e = Giieii) 

with two distinct operators 

Q(r) dr + Q + PQ’ 

R*= O” s ’ -R(r)dr+R+pR’ 
0 P+r 

(6.17) 

(6.181 

corresponding to the Lam& constants ,a and X. However, 

the particular form above of the operators Q* and R* are 

a consequence of thermodynamics and not of the iso- 

tropy. 
A restricted form of correspondence has been known 

for the incompressible isotropic case (41) (42) and has 

been referred to sometimes as the “viscoelastic 

analogy.” The general correspondence rule in the 
context of thermodynamics for both isotropic and aniso- 

tropic media was first formulated by this writer [l]. For 

the isotropic case it is clearly independent of Onsager’s 

relations since geometric symmetry alone implies that 

the compliance matrix is diagonal. We further developed 

its corrollary, an operational-variational principle and 
other applications [37] [38] (see Section 7). We have 

also extended the correspondence rule to isotropic and 

anisotropic porous viscoelastic media [36]. In this case 

Onsager’s relations are required even in the isotropic 

case. 

I 

I I 
I 
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As mentioned above the term Viscoelasticity is used 

here in a very broad sense to include all viscous and 

relaxation phenomena including thermoelasticity. One 

might ask, therefore, how the operational stress-strain 

relations (6.1) (6.2) written above are related to the 

treatment of Thermoelasticity in Sections 4 and 5. The 

difference lies in the fact that in the present Section we 

have considered the strain to be the only relevant ob- 
CI PPVP rl coordinate of the materia! element* “__ ..,- The stress- 

strain relations (6.1) (6.2) are valid for Thermoelasticity 

and correspond to hidden coordinates which represent 

thermal changes inside an inhomogeneous polycrystalline 

material. Other hidden degrees of freedom would be 

represented for instance by viscous slip at intergrain 

boundaries or by the phenomenon of solution and re- 

crystallization due to local stresses and the correspond- 

ing associated diffusion process. 

Dynamics and Stress Analysis of Viscoelastic Structures 

For “small” oscillations it may be expected that many 

engineering structures obey linear viscoelastic laws. 

This has been observed not only in continuous solids but 

also in riveted structures such as bridges and aircraft 

frames. Recent vibration tests of granular materials by 

Duffy and Mindlin [43] 1 a so indicate properties closer to 

a linear relaxation process rather than a Coulomb type 

friction. 
The dynamics and stress analysis of viscoelastic 

structures may be conveniently carried out by using 

generalized coordinates. As we have shown 121 1191 [ZOI 

an important aspect of the correspondence rule is the 

possibility of introducing an operational-variational 

method. We mean by this the use of a variational method 
on invariants with onPFatinna1 rnPffiriPntQ_ lr--------l- -__-- * _-_-_ “I. The n”PPa- -r--- 
tional invariant which corresponds to the elastic strain 

energy is 

Z:~epveii dr (7.1) 

to Lagrangian equations in operational form 

-t- T*) = Qi 

Explicitly the equations are 

( YTi + pzmij) qj = Qi 

(7.4) 

(7.5) 

In general the theorem of Fuoss and Kirkwood will be 
applicable leading to a spectral representation of the 

operator as 

- YTj = s -!- Fij(r) dr + Yi j + Y;j p (7.6) 
() P+r 

This operator is equivalent to the integro-differentiai 

operations 

YTj Qj = s thij(‘- r) dqj(‘) + Yij + Y:j ~ (7.7) 
0 

with the heredity functions 

hii = 
s 

m emrtFij(r)dr 

0 

(7.8) 

Equations (7.5) therefore represent a generalization of 

Lagrange’s equations to integro-differential form. 

The function hii will be of the form (7.8) if On- 

sager’s relations are applicable but it may also be of a 

more general form since the operator is defined as La- 

place transforms independently of any thermodynamics. 

Furthermore the variational method above is valid for 

isotropic media and in that case is also not dependent 

on thermodynamics. 

An interesting case in the dynamics of structures is 

when the operators Zy: may be written, 

The invariant corresponding to the kinetic energy has 

already been introduced above as 
Z*ii = cFvf* 

PV (7.9) 

l 10-c T*L= --P JJJ /+& (7 2) 
where f* is an invariant operator and Cf!,,are constants 

. 
which may depend on the location. We K&e referred to 

this as the case of an homogeneous spectrum [38]. In 

As we have shown [2] [37] [38], if we represent the de- 
this case the invariant J* becomes 

formation field by generalized coordinates qi we obtain 

the equations for qi by writing the variational principle _I* = ff* C$e,,eijdr (7.10) 

&I* + ST* = Qisqi (7.3) 
7 

A where t-he right--hand side represents the virtuai work of With normai coordinates qi the two quadratic forms ap- 

all forces applied externally to the system. This leads pearing in J* and T * may be reduced to a sum of squares 
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i.e. we may write 

.I* = $f*dq; 

T* = +p’q; 

and the operational Lagrangian equations reduce to 

independent equations 

(7.11) 

(7.12) 

We have referred to such modes as partial modes 1371. 

They may be calculated by the same method as in the 

usual vibration analysis of elastic structures. All modes 

have the same relaxation spectrum. 

The same property- extends to cases where the ma- 

terials are not necessarily represented by operators of 

the type (7.9). Actually it is sufficient that for some 

reason the invariant J* contain a single operator co- 
efficient. Such is the case for instance for an isotropic 

incompressible material. In this case variations must be 

constrained by the condition of incompressibility. More- 

over, if there are boundary constraints they must be such 

that no work is done, i.e. they are either free of stress or 

have no displacement. In general this will be accom- 
-11-L-3 tt rr._ J_f__-_L:__ I_ ____r__:__Xl :_ _.._1. ^ _..^_. pllsueu ‘I Lilt: Uel”cL~aLI”II 1s ~“UJLLaIIIeU 11‘ JULll a war 

that a single operator may be factorized. Such is the 
case for instance in the bending of a thin rod with end 

conditions either clamped, pinned, or free. The invariant 

J* in that case contains only a single operator E*. We 

write 

(7.13) 

where w is the deflection of the rod as a function of the 

coordinate x and I the cross-section moment of inertia. 

The operator E * is obtained from the expression of 

Young’s modulus in terms of the Lam& constants and re- ., 
placing the latter by R* 

correspondence rule. 

We find 

E* = 

and Q* in accordance with the 

O*(.?R* -c ~.ti\ c \--- . -x , 

Q* + R* 
(7.14) 

We may, therefore, analyze the bending vibrations of 

such a viscoelastic rod by the use of normal coordinates 

and for ends which are free, clamped, or pinned. The 

same separation in normal coordinates may of course be 

accomplished if the structure is composed of elements of 

homogeneous material in which a rod type bending and 

elongation is the predominant deformation. 

If we neglect the inertia forces a structure composed 

of an isotropic material may be analyzed by normal co- 

ordinates since the invariant is separated into two terms 

each multiplied by a different operator. 

I* = ~JJJ[2Q* eijeij + R* e’]dr (7.15) 

This constitutes the generalization of a procedure 

suggested by Cosserat about sixty years ago for elastic 

systems [441. 

We shall end with a short remark on the nature of solid 

friction. In problems of flutter analysis of aircraft struc- 

tures it has been customary to take care of the solid 

friction by replacing the rigidity moduli by complex 

frequency-independent quantities. This may be approxi- 

mated in the above representation if we put 

Fij(r) = yijlr r > E 

Fij(r) = 0 r<c 

Expression (7.6) then becomes (with p = id 

yzj = Iw --?.- z dr + Yij 

6 io+r r 

(7.16) 

(7.17) 

For a small value of 6 and y . the complex Yz is almost 

constant for a wide range of “f requency. 

The correspondence rule and the operational-variationa 

principle are applicable to a very wide category of 

practical problems. We have shown in [37] and [38] how 

they lead to general methods in problems of dynamics 

and stress analysis of viscoelastic plates and shells 

even in non-linear problems of finite deflections. 

In problems of thermal stresses in elastic and visco- 

elastic structures, applications of the principles de- 

veloped above has led to new concepts and methods. We 
have shown that a direct calculation of thermal stresses 

is possible which avoids the necessity of first Cal&at- 

ing the temperature field [45I.. The analysis can be 

carried out entirely by variational procedures. 
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