
THE INFLUENCE OF GRAVITY ON THE FOLDING 

OF A LAYERED VISCOELASTIC MEDIUM 

UNDER COMPRESSION 

BY 
M. A. BIOT 

REPRINTED FROM JCJURX,~IT. 01: THE FRANKLIK ~KSTITUTE 

VOL. 267, No. 3, MARCH, 1959 



THE INFLUENCE OF GRAVITY ON THE FOLDING OF 
A LAYERED VISCOELASTIC MEDIUM 

UNDER COMPRESSION 

BY 

M. A. BIOT’ 

ABSTRACT 

The theory of folding of a layered viscoelastic medium under a horizontal com- 
pression parallel with the layer, as developed in previous publications (1, 2, 3),* is ex- 

tended to take into account the influence of gravity. Characteristic features of the 

folding are evaluated in terms of nondimensional parameters. The influence of 

gravity appears through a parameter which depends on the relative magnitude of the 
gravity forces and the horizontal compression. Specific cases discussed are that of a 

layer on top of a half-space and the layer embedded between two half-spaces, with 
the bottom medium either denser or less dense than the top one. 

1. INTRODUCTION 

In references 1 and 2 we have investigated the folding due to in- 
stability when a layered viscoelastic medium is subject to a compression 
in a direction parallel with the layer. The layer was assumed to be 
embedded in an indefinite solid or lying on the surface of a half-space. 
The problem was analyzed from a very general viewpoint and the visco- 
elastic and hereditary characteristics of the material were assumed to 
obey the most general linear laws. In particular, conclusions are drawn 
for materials which obey the Onsager relations and the laws of the 
thermodynamics of irreversible processes as formulated in some our 
previous work (7, 8). The folding was also evaluated for various 
specific combinations of viscoelastic media, and attention was given to 
the effect of interfacial friction at the boundary and to the evaluation of 
the magnitude of the folding as distinct from mere instability (2). In 
the cited work we used an approximation of the “plate theory” type to 
represent the folding of the layer. In reference 3 this approximation 
was discarded and the problem was treated by using exact equations of 
the stability of a prestressed continuum as developed in earlier papers 
(4, 5, 6, 7). The problem of stability of the surface of a viscoelastic 
half-space was also treated as a particular case. 

In the present analysis we are dealing with the problem of folding 
of a layer, either lying on top of a viscoelastic half-space, or embedded 
between two such half-spaces. When in addition to a compression 
parallel with the direction of the layer there is also a uniform gravity 
field perpendicular to this direction, we are therefore dealing with in- 

1 Consultant, Shell Development Company, Houston, Texas. 

s The boldface numbers in parentheses refer to the references appended to this paper. 
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stability under a combined state of prestress-the horizontal compres- 
sion in the layer, and a prestress due to gravity which is assumed to be a 
hydrostatic field. The. addition. of gravity to the problem is essential 
of course if we have in mind some. of the geological applications. We 
shall discuss these at a later date.. 

A general formulation of the problem is outlined in Section 2. 
From the previously established theory (4, 5, 6, 7), we derive the equa- 
tions for the stability problem of a continuum under a uniform compres- 
sion and a hydrostatic stress gradient due to gravity. These equations 
are quite general and may be aeplied to both compressible and incom- 
pressible media. For simplicity we have applied the theory only to 
incompressible media and in Section 3 we show that in this case simpli- 
fications may be introduced along with a “plate type” equation for the 
layer. This leads to a very simple equation for the folding of a Iayer 
lying on top of a half-space; The case of a layer and underlying medium 
which are incompressible and purely viscous is discussed in Section 4. 
The dominant wave length (that is, that whose amplitude grows at the 
fastest rate) is evaluated as a function of the ratio of the viscosity coeffi- 
cients of the two media and a nondimensional parameter which repre- 
sents the influence of gravity. This parameter is a ratio of two quanti- 
ties, one is the pressure of a column of underlying material of height 
equal to the layer thickness and the other the compressive horizontal 
force. The density of the layer itself does not enter into the picture 
because of our assumption that the layer behaves like a thin plate of 
constant thickness. The relative amplitude of the folding for the 
dominant wave length is also evaluated. This yields an indication of 
the magnitude of the instability. 

Section 5 discusses the case of a layer embedded between two differ- 
ent materials. The materials are again assumed incompressible and 
purely viscous. Two cases must be considered. In the first case the 
underlying material is denser and the effect of gravity is stabilizing. 
The theory is the same as for the layer lying on top of the half-space 
except for modified parameters which introduce the sum of the vis- 
cosities of top and bottom media and the difference of their densities. 
The effect of gravity tends to shorten the dominant wave length. The 
second case is that of an inverse density gradient, that is, the under- 
lying material is lighter than the top one. The layer is then unstable 
because of gravity alone. The phenomenon then becomes somewhat 
more, complex. For certain ranges of the parameters the combined 
effect ‘of gravity and compression will increase the dominant wave 
length while in another range the dominant wave length will be con- 
trolled by geometric factors such as the depth of’the surrounding me- 
dium. It should be kept in mind that we have not taken into considera- 
tion any inertia forces. The deformations are therefore assumed to be 
sufficiently slow for these forces to be negligible. 
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and the rotation 

(3) 

In this representation the stress components s<j are the incremental 
stresses at the displaced point x + u, y + V, and relative to axes rotated 
by an angle w. The strain components egj are also referred to the same 
displaced and rotated axes. The latter are of course not distinct, in the 
first order, from the classical components for small strain. 

Consider now a particular case of prestress, namely a combination 
of a horizontal compressive stress P and a hydrostatic stress due to 
gravity. The gravity force is assumed parallel with the y axis. In that 
case 

Y=g (4) 

where g is acceleration of gravity and the initial state of stress is 

S11 = - P - Pgy 

Szn = - PKY 

sn = 0. 

(5) 

The origin of the y direction is left arbitrary which is equivalent to 
adding an arbitrary uniform hydrostatic stress in order to suit the 
boundary conditions. Equations 1 to be satisfied by the incremental 
stress field then become 

(6) 

The boundary conditions may be formulated using the following rela- 
tions (4, 5, 6) : 

dF, = - [slz + Slz - SW + S12ezr: - Sllez,,]dx 
+ [SH + SII - SIZW + Slleyv - &eJdy 

dF, = - [szz + Sz2 + Sm + &etz - S1~e.Jdx 
(7) 

+ [SU + SH + Stlw + Slzevv - Szzezy]dy 

where dF, and dF, are the forces acting on an element of boundary ’ 
initially represented by dx, dy. The force dP is acting on matter lying 
on the left side of the arc dx, dy, considered as a vector differential. 
For the particular prestress field under consideration, Eq. 5, these rela- 
tions become 
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dF, = - 

+ [Sll - (I’+& (1 +$)-j&y (8) 

dF,= -[s2,-,g,(l+~)]dx+[s,2--Po+pg~~]dy. 

We must also express relations between the incremental stresses and 
deformations. If we assume that they are of the same form as for an 
unstressed medium, we write 

Sjj = 2Qeij + GijRe (e = ezz + eyv) (9) 

with the operators 
d 

@ = -, time derivative 
dt 

, 

Q(rW + Q + Q'lb 

S 
(10) 

R= =-t-- R(r)dr + R + R’p. 
0 pi-r 

We have previously derived these expressions from irreversible thermo- 
dynamics (8). Strictly speaking their use for prestressed media may 
involve an approximation. The nature of the limitations involved was 
discussed in reference 2. However, in most problems these limitations 
are only of academic interest. 

Substitution of expression 9 for the stresses sij into Eqs. 6 yields two 
operational equations for the displacements u and V. The problem of 
deformation and folding of a layer lying on a semi-infinite medium both 
of heavy viscoelastic material and subject to a horizontal compression 
is thus reduced to solving the two simultaneous equations for u and ZJ 
with appropriate boundary conditions. This can be done in a way 
entirely analogous to the procedure followed in reference 3. The exact 
solution however is somewhat involved and we have preferred to follow 
an approximate but much simpler approach in analogy with our treat- 
ment of the problem in reference 1. 

3.APPROXIMATE SOLUTION OF THE PROBLEM 

A viscoelastic layer lies on a semi-infinite medium also viscoelastic 
of mass density ~1. A force of gravity g per unit mass acts on both 
media and the layer is subject to a horizontal compressive stress (Fig. 1). 
The following assumptions are’ introduced : 
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(a). The layer behaves like a plate and obeys the simplified equa- 
tions of the plate theory. 

(b). The hydrostatic prestress due to gravity is the only prestress in 
the underlying medium. 

(c). Interfacial adherence of the layer and medium is neglected. 
(d). Both materials are assumed incompressible. 
(e). The weight of the layer has no effect on the folding, i.e., the 

layer density may be assumed equal to zero. 

The justification of assumptions (a) and (b) is established by the 
results in reference 3 which indicate that the factors neglected are not 
too significant for practical purpose. The same remark holds for as- 
sumption (c) on the basis of the analysis carried out in reference 2 by 
taking into account the adherence. Assumption (e) is an approxima- 
tion which for physical reasons may be considered to follow from (a) 
since the plate bending occurs with no variation in thickness. 

It may be expected that the assumption of incompressibility does 
not restrict the results significantly while providing the advantage of 
simplicity in the mathematical treatment. 

FIG. 1. Compressed layer lying on top of a FIG. 2. Coordinates, surface forces, and 
heavy medium. deflections for the half space. 

Consider first the underlying medium as an infinite half-space, the 
surface lying at y = 0, and the y axis being directed downward (Fig. 2). 
Since we neglect any initial horizontal compression P in the underlying 
medium, the equations for the displacement components u and er 
are obtained by putting P = 0 and p = pl, in Eq. 6,‘hence, 

~+t%+,,+J 

ah ah2 
-$g + dy - Plgg = 0. 

(11) 

Since we are dealing with an incompressible material, we may write 

au av 
G+G=“. (12) 
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Introducing this relation in Eq. 11, they become 

& (Sll + PlPV) + a$ = 0 

J$ + $ (SW + PlP) = 0. 
(13) 

The boundary conditions (8) at the surface y = 0, when the prestress is 
zero (P = 0), become 

dF, 
- = - Sl2 
dx 

dF,_ 
(14) 

dx 
- - s22. 

The operators iz and &- of the stress-strain relations (9) defining the 
viscoelastic properties of the underlying medium are designated by 81 
and 01. For an incompressible material we put (8) R1 = co, e = 0, and 

s = R1e. (15) 

Relations (9) then become 

Sij - bijS = 2&ll?ij. (16) 
If we write 

s’ = s + p1gv 

Sij’ = Sij + GijplgV, (17) 

Eqs. 13 are transformed into 

ad 
ax 

ah2 
ax 

Relations (16) become 

Sij 
I 

- 6ijS’ = 2&&j 

and the boundary condition is 

dFz 
dx = - s12’ 

dF, -_ 
dx 

p1gv = - szz’. 
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Equations 18 and 19 are those for a medium without initial stress. 
The medium thus behaves as though there were no initial stress except 
for a modified boundary condition 20 which contains an additional 
“buoyancy term”-prgv. 

The problem of surface deflection of a viscoelastic half-space under a 
sinusoidal vertical load distribution was solved in references 1 and 2. 
For the case of an incompressible material, a vertical load distribution 

dF, - 
dx - qo cos lx (21) 

produces a normal deflection v = V cos Ix (Fig. 2) related to the load by 

Cl0 = 2&JV. (22) 

It was also found that in the absence of a horizontal force at the surface 
(F, = 0) the horizontal displacement at the surface also vanishes for an 
incompressible material. In order to take gravity into account we have 

just shown that we must replace the boundary force 2 by % - Plgv; 

hence we must replace PO by CJO - pig V. Relation 22 then becomes 

40 = m1z + p1g)V. (23) 

Let us now consider the layer of thickness lz. We assume that it bends 
as a viscoelastic plate under an axial compression P and a transverse 
vertical load, 

4 = - pocos Ix (24) 

equal and opposite in sign to the load applied to the underlying medium. 
We have shown in reference 1 that the plate deflection v satisfies the 
equation 

B$$$+Ph$=p (25) 

where B is the operator ,, 

jg _ 4&(& + fi) 
20 + B (26) 

defining the viscoelastic properties of the layer. For an incompressible 
material R = 00 and we have 

B = 40. (27) 
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With a sinusoidal deflection v = V cos Ix after introducing expressions 
22 and 24 for the load, Eq. 2.5 becomes 

f&h%’ - PhZ2 + 2011 + pig = 0. (28) 

This is the basic equation of the problem. We note that the mass 
density of the layer does not appear in this equation. This is due 
primarily to our assumption that the deformation of the layer obeys the 
plate bending equation and therefore does not undergo a change of 
thickness. Actually of course a more accurate treatment would show 
an influence of the layer density, but the correction due to this effect 
may be assumed to be small. 

In the next section we shall discuss the significance of Eq. 28 in 
relation to the folding of the layer under the simultaneous action of the 
axial compression P and gravity. 

4. FOLDING OF A VISCOUS LAYER LYING ON A HEAVY VISCOUS MEDIUM 

We shall apply Eq. 28 for an incompressible medium to the par- 
ticular case of a purely viscous layer under a horizontal compression P 
lying on top of another heavy viscous fluid of infinite depth. The 
viscosity coefficient of the layer is denoted by p, that of the underlying 
medium by pi, and the mass density of the latter by pl. The corre- 
sponding operators are 

& = PP 

01 = i&p. 

Relation 28 may then be written 

p 
=- 

1 
1 p& IJP’ --- 

12h2 P 

(29) 

The physical interpretation of this relation lies in the significance of 
the variable P considered as an algebraic quantity. As pointed out in 
our previous work (1,2,3) if relation 30 is satisfied, any sinusoidal folding 
of wave length 

L = 2a/l (31) 

has an amplitude increasing with time t, proportionally to the factor 
ept. We have called the dominant wave length Ld that which increases 
at the maximum rate. This dominant wave length corresponds to the 
minimum value of P/pp on the right hand side of Eq. 30. This mini- 
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mum depends on two parameters, P/PI and pig/z/P. The latter repre- 
sents the influence of gravity, as the ratio of the gravity forces to the 
compressive load P. The relative importance of gravity is therefore 
dependent on the magnitude of the horizontal compression. 

We note that only the density p1 of the underlying medium appears 
in the expression for the gravity parameter. As already pointed out 
this is due to our assumption that the layer behaves like a plate in 
flexure and therefore that there is no change in thickness. The domi- 
nant wave length Ld of the folding corresponds to values of Zh for which 
expression 30 is a minimum. Denoting by Zdh this value of Zh, it is 
related to the dominant wave length by the relation 

Ld 2n -= - 
h Idh’ (32) 

The value of ldh is plotted as a function of - in Fig. 3 for various 

FIG. 3. The combined effect of gravity, FIG. 4. The combined effect of gravity and 
compressive load, and viscosity on the value compressive load on the dominant wave 
of Lh. length. 

values of the parameter plgh/P. The case pIgh/P = 0 corresponds to 
the absence of gravity. In that case we find the straight line 

(33) 

This is identical with the relation found in reference 1 except for the 
factor 3 in the present formula instead of 6. This is due to the fact that 
the formula of reference 1 applies to a layer embedded in a medium 
on both top and bottom while the present case deals with a layer lying on 
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the surface of a semi-infinite medium. Clearly the latter case amounts 
to the former if we divide by two the viscosity of the embedding medium. 
For p1 = 0, that is if the underlying medium is a fluid without viscosity, 
the problem reduces to that of folding of a viscous plate laterally re- 
strained only by the buoyancy of the underlying fluid. This amounts 
to putting pl = 0 in Eqs. 28 and 30. We derive 

IJP 3 3p1g12 1 -=-_-- 
P 12h2 P 14h4’ (34) 

The maximum of this expression as a function of Zh yields the value 
corresponding to the dominant wave length, that is, 

(35) 

These are the values plotted along the vertical axis at zero abscissa in 
Fig. 3. From Eq. 35 we may write for the dominant wave length due to 
gravity alone 

(36) 

For example if P = gplgh, that is, if the compressive load is nine times 
the weight of a column of the underlying material of height equal to the 
layer thickness we find Ld = 13.4 X h, that is, the dominant wave 
length due to gravity alone is about thirteen times the layer thickness. 

At this point it is of interest to examine the magnitude of the in- 
stability. Following a procedure identical with that used in the pre- 
vious work (2, 3) let us evaluate the factor by which the amplitude of 
the dominant wave length is multiplied for a period of application of 
the compressive load P during which the layer would undergo a com- 
pression of 25 per cent.a This time tI satisfies the relation 

Ptl = 4j.M = I_1 (37) 

where the compressive strain is 

1 
E = x. (38) 

We shall examine only the case when the underlying medium has no 
viscosity (pl = 0). The amplification factor is exp(ptJ with 

3 P -- 
ptl = 4 plgh’ (39) 

* It is of course understood that the theory is not rigorouily applicable to such large de- 
formations and the figurqe are only given as an indication of orders of magnitude. 
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In Table I we have shown the values of the amplification factor in 
terms of the gravity parameter. 

w$/P 

1 

l/4 
l/7 
l/9 

TABLE I. 

exp(fih) 

2.11 
20 

190 
850 

It is seen that significant amplification occurs only for P/plgh 5 7. 
A discussion of the amplification factor in the absence of gravity was 
given in references 2 and 3, and it was found that significant amplifica- 

tion occurred only if ~/PI 5 70 that is, if J- 
3 3/J1 N 

y < 0.35. The range of 

the parameters shown in Fig. 3 corresponds to a domain for which the 
amplification factor is significant. 

The combined effect of gravity and viscosity is completely repre- 
sented by the diagram of Fig. 3. We notice that the effect of gravity 
dominates in regions where the wave length due to gravity alone is 
larger than that due to viscosity alone as determined from Eq. 33. For - 

example, assuming a viscosity ratio p/~~ = 64, we find li 
3 3P - = 0.37. 

Pl 

The ratio Ld/h of dominant wave length to layer thickness for this case 

is plotted in Fig. 4 as a function of 
P 

J-- - p& ’ 
We see that contrary to 

the case where gravity is neglected the wave lengths depends on the 
compression P. For large values of P the ratio tends to Ld/h = 17.2. 
For the smaller values of the compressive load this ratio drops to about 
12, as may be seen from the discussions in references 2 and 3. Below 
this value the magnitude of the instability is such that it loses its 
physical significance, as shown by the values of the amplification factor 
in Table I. 

This means that in order to exhibit appreciable folding a very 
thick layer may require a compressive load beyond the physically 
possible range. This conclusion should be of significance in geological 
applications. 

5. FOLDING OF A LAYER LYING BETWEEN TWO HEAVY MEDIA 

In the previous section we have considered the layer to lie on top 
of another medium of infinite depth. We shall now consider the case 
where another medium of different density and viscosity lies on top of 
the layer. For simplicity the discussion is restricted to materials 
which are purely viscous and incompressible. We designate by p1 and 
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p1 the mass density and viscosity of the bottom medium, and by pz 
and pz the corresponding quantities for the medium lying on top. The 
layer of viscosity EL and thickness Iz under a horizontal compression P lies 
between those two media (Fig. 5). 

FIG. 5. Compressed layer lying between two heavy media. 

We may again write Eq. 25 for the layer flexure. However in the 
expression of the total transverse load on the layer p = po cos IX we 
must take into account the restraint due to top and bottom media. 
We therefore write in place of Eq. 23, 

PO = cm + &2)Z + (p1 - p2)g-p. 

Since the materials are assumed purely viscous, the operators are 

01 = PIP 

02 = P2P. 

(40) 

(41) 

The sum Q1 + & 2 reflects the fact that the restraint of the two media on 
both sides of the layer is additive while p1 - pz corresponds to the fact 
that the effect of gravity is subtractive. Equation 28 for the stability 
is therefore replaced by 

+&ha14 - PM2 + 2(&1 + &2)Z + (~1 - pz>g = 0 

and Eq. 30 is replaced by 

(42) 

$12122 + 2 
p1+ IL2 1 

P ii 

1 gh 
J2i2 (PI - P2) p -- 

P =- 
PP' 

The dominant wave length is determined as before by evaluating the 
value of Zh which minimizes this quantity. The equations are formally 
identical with those of the previous section except that the parameter 

pul/p is replaced by 
Pl + I-42 & 

CL 
and plgh/P is replaced by (pl - ~2) p. 
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We must distinguish two cases. In one case the bottom material is 
heavier than the top one, that is, p1 - pz is positive. The dominant 
wave length is then determined by the same diagrams as in Figs. 3 and 4 
where PI/P is replaced by (~1 + P~>/P and pIgh/J' by (PI - pdgh/P. 
In the other case the bottom material is lighter than the top one, that is, 
Pl - pz is negative. This case differs essentially from the previous 
one in that an instability due to gravity alone occurs in the absence of 
any compressive stress in the layer.4 In order to understand this more 
clearly let us write relation 43 in the form 

Jwz2 + (p2 - p1)gh 

’ = Jh[Wahs + 2(~1 + /.~2)]’ 
(44) 

As pointed out above, this value of p gives a folding amplitude propor- 
tional to exp(pt) for the wave length L = 2n/Z. 

We see immediately that p = 00, for I = 0, that is, the rate of fold- 
ing increases indefinitely with the wave length. The reader will note 
that we have assumed the deformation to be very small, therefore inertia 
forces have been neglected. Hence, theoretically the dominant wave 
length is infinite. In an actual situation the surrounding medium is not 
infinite and the dominant wave length will be restricted by the thick- 
ness of the surrounding material. This result is of significance in 
geology as it is related to the formation of salt domes. 

There is however the possibility of occurrence of a secondary domi- 
nant wave length due primarily to the compression P. Obviously if 
the effect of gravity disappears, for example if p1 = pz, there is a maxi- 
mum value of p for Zh equal to 

This relation is found by replacing in Eq. 33 F 

gravity enters into the picture this maximum 
be shown by writing Eq. 44 in the form 

with 

62 + K 

+ = 6(63 + 2) 

6 = Zh[ ;--&3”’ (47) 

(45) 

by (~1 + &/P. When 

is displaced. This can 

(46) 

4 The stability of a stratified heavy viscous fluid has been analyzed fro? the vieypoint qf 
hydrodynamics by S. Chandrasekhar (9) and R. Hide (IO). 
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(48) 

(49) 

The problem is to find the maximum value of $ considered as a function 
of 6. When we plot + as a function of 6 we must distinguish three 
regions. For 

K < i(4)“‘” = 0.198, (SO) 

the nlot shows a maximum and a minimum, as represented by curve 1 
in Fig. 6. For 

(51) 

8-L 

FIG. 6; Three typical curves for the dependence of ti on 6. 

the maximum and minimum coincide (curve 2) and become a hori- 
iontal inflexion point at 

6 = q = 0.63. (52) 
For 

K > $(i)2’3, (25) 
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the curve has no maximum or minimum (curve 3). The point M at 
which the maximum of $ occurs corresponds to a wave length of maxi- 
mum rate of growth. The values of K and 6 are related at point M by 
the relation 

P(1 - 83) 
K = 263 + 1 ’ 

(54) 

For values of K satisfying the inequality (SO) there are two positive 
values of 6 satisfying this relation. The largest value corresponds to 
point M. This largest value of K versus 6 is plotted in Fig. 7. 

t 
K / 

8* (I-S3) 
C=T 

2 6 +I 

I 
O_ 

” .3 b- 1.0 

FIG. 7. Relation between K and 6 corresponding to point M of Fig. 6. 

From the relationship (Eq. 54) between K and 6 we deduce the value 
of Zdh corresponding to the dominant wave length. This is done by 
writing Eqs. 47 and 48 in the form 

J 3 3(/-k+/J_Lz) 1 
I/ 

(Pz - p1)gh =- 
P d\IK P * (56) 

In these expressions K is a. function of 6 through relation (54). They 
define a. family of .plots. for Zdh zwsus 43(pI + pz)/p with a param: 
eter .\l(pz - p,)gh/P which measures the influence of gravity. These 
curves are plotted in Fig. 8, in a way analogous to Fig. 3. We remember 
that the dominant wave length is related to Zdh by Eq. 32. The inter- 
rupted line in Fig. 8 corresponds to the case where the maximum van- 
ishes as in curve (2) of Fig. 6, hence to the disappearance of any 
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dominant wave length. The disappearance’ of the dominant wave 
length occurs for K > 0.198, hence for 

(57) 

It will be noted that in the case of an inverse density gradient the effect 
of gravity is to increase the dominant wave length. 

FIG. 8. Combined effect of gravity, compressive load, and viscosity, on the value of ldh for 
the case of an inverse gravity gradient (pr > pr). 

Finally in connection with the disappearance of the dominant wave 
length if the inequality (57) is satisfied we should remark that this will 
only be true if the surrounding medium is of infinite extent. In ac- 
tuality of course the thickness will have a finite value, and if we neglect 
inertia forces as we have done the dominant wave length caused by the 
inverse gravity gradient will not be infinite but will be determined by 
the thicknesses of the upper and lower media and their own boundary 
conditions. 
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