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SUMMARY 

Lagrangian methods in heat-flow problems and transport 
phenomena were introduced by the writer in some previous work. 
The present paper develops further one particular aspect of the 
method,-i.e., the elimination of “ignorable coordinates.” This 
is accomplished by a special choice of generalized coordinates, 
each of which is constituted by an arbitrary temperature dis- 
tribution and an “associated flow field.” The latter is a vector 
field which is derived from the corresponding scalar field by a vari- 
ational method. The procedure is valid for a certain class of non- 
linear problems, provided we replace the temperature by the heat 
content as the unknown. It is shown that for normal coordinates 
derivation of the associated flow field is immediate. The use 
of normal coordinates and their associated flow fields is illus- 
trated by an example. Introduction of Dirac functions and 
associated flow fields yields a procedure which constitutes a 
generalization of the classical formulation by Green’s functions 
and integral equations. This is illustrated by application to one- 
dimensional problems of heating of a homogeneous or composite 
slab and directly verified by classical methods in the Appendix. 

(1) INTRODUCTION 

I N A PREVIOUS PUBLICATION~~~ haveintroducednew 
methods in heat-flow analysis. These methods 

have a two-fold basis; first, a new formulation of the 
thermodynamics of irreversible processes, and, second, 
the application of Lagrangian techniques to the mathe- 
matical analysis itself. The earlier developments 
were carried out in references 2, 3, and 4. We have 
recently reviewed in more detail in reference 5 the basic 
thermodynamic concepts and principles. 

The formulation of dissipative phenomena into a 
variational language can be achieved in many ways.$ 
The particular method which we have chosen is differ- 
ent from the classical variational approaches. It ap- 
pears to be the most general and fits into a unified 
thermodynamic theory embracing a large category of 
physical phenomena, which leads to equations of the 
same type as in Lagrangian mechanics. A particularly 
useful concept which has been introduced is the general- 
ized thermodynamic force by a @inciple of virtual 
work. In the case of thermal problems this results in 
a representation of the physical system by means of a 
vectorial flow field and to the use of a generalized 
thermal force to represent the externally applied tem- 
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.j Other variational formulations of heat conduction have also 
heen propo>ed by Rosen6 and by Chambers 7 In contrast to our 

approach, they do not introduce the flow field and use expressions 
containing the temperature gradient. The relations are purely 
Formal, and conservation of energy is not preserved. 

peratures. It also leads to new methods of numerical 
analysis of considerable advantage from the standpoint 
of simplicity and accuracy. 

Our purpose here is to further develop one aspect of 
the theory which was only briefly discussed in reference 
1. Heat flow may be separated into one part which 
represents the temperature field and another which is 
divergence-free and has no effect on the temperature 
and which we have referred to as “ignorable” in analogy 
with the coordinates of the same name in classical 
dynamics. We have also previously shown that these 
ignorable coordinates may be uncoupled from those 
representing the temperature alone, thereby reducing 
appreciably the number of unknown variables in the 
equations. 

The present paper discusses and introduces addi- 
tional properties of those generalized coordinates which 
are automatically uncoupled with the ignorable coordi- 
nates. In particular, this is achieved by choosing for 
each generalized coordinate a certain spatial tempera- 
ture configuration of normalized amplitude and associat- 
ing with it a certain vector field which we have referred 
to as the “associated flow field.” The two fields are tied 
to each other and represent one simple generalized co- 
ordinate. In order to determine a particular coordinate 
we first choose a certain temperature configuration. 
The associated vector field is then derived from this 
temperature distribution by a variational method, using 
a principle of minimum dissipation. In a nonlinear 
problem we must choose a heat content configuration 
instead of a temperature field. Having thus deter- 
mined a set of generalized coordinates, we are in a posi- 
tion to establish the Lagrangian differential equations 
which yield the time history of the system. Attention 
is called to the fact that the calculation is performed in 
steps. The first involves the evaluation of the asso- 
ciated flow field, and the second the evaluation of the 
Lagrangian equations. Each of these steps makes use 
only of variational methods and do not involve any spa- 
tial differentiation of the approximate field distribution 
adopted as generalized coordinates. This results in 
improved accuracy since none of the steps involve 
differentiation while the integrals used in evaluating 
the Lagrangian equations represent an averaging proc- 
ess over volumes or surfaces. The procedure is in con- 
trast with classical variational methods which require 
the evaluation of the temperature gradient. The 
separation of the calculation into two successive steps 
with a concurrent reduction in the number of unknowns 
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greatly facilitates the numerical work without sacri- 
fice in accuracy. 

In reference 1 we have treated some one-dimensional 
problems by a method equivalent to the use of an asso- 
ciated flow field. These examples did not require the 
development of a formal theory because, in the particu- 
lar problems treated, the flow field was already deter- 
mined uniquely by the temperature distribution from 
the equation of conservation of thermal energy. This 
simplification, of course, is only applicable in certain 
exceptional cases and does not hold for problems in two 
or three dimensions. Of particular interest is the rela- 
tion of the method of associated fields to the classical 
Green’s function formulation. We will show that the 
latter may be derived as a very particular case of the 
present procedure. The introduction of associated flow 
fields along with a Dirac function representation of the 
temperature leads to integral equations which are 
shown to be equivalent to a Green’s function 
method. In this formulation Green’s function does not 
appear in its classical form but as an integral of the 
scalar product of two associated flow fields. By the 
same token we obtain a new procedure for the evalu- 
ation of Green’s functions by approximate variational 
methods. 

In Section (2) we have reviewed the fundamental 
equation derived in the previous work. We also indi- 
cated how these equations may be applied to the case 
where the thermal system contains distributed internal 
heat sources. This is of importance even in problems 
which do not involve physical sources, because they 
may sometimes be reduced mathematically to equiv- 
alent problems with such sources which may then be 
solved more easily. Section (3) discusses a general 
method of eliminating the ignorable coordinates by 
the use of a flow potential. This is carried one step 
further in Section (4) which develops the concept of the 
associated flow field as a practical method of elimi- 
nating the ignorable coordinates. Variational methods 
for the determination of the associated flow field di- 
rectly as a vector field are discussed. 

Tn Section (5) it is shown how the associated flow 
field is immediately derived without further calcula- 
tion for the case of normal coordinates. An example 
of normal coordinates is discussed in Sections (6) and 
(7) for the two-dimensional problem of a flat cylinder 
of double wedge cross-section. It is also shown that 
formulation of a problem with normal coordinates re- 
quires only a knowledge of the temperature distribu- 
tion of each coordinate, the corresponding eigenvalue 
(i.e., the relaxation constant), and the normal com- 
ponent of the associated flow field at the boundary. 
Sections (8) and (9) establish integral equations and 
Green’s function methods as a particular case of the 
method of associated flow fields. Section (9) illus- 
trates the significance of the general formulation on the 
particular example of the one-dimensional problem of 
heating of a slab across the thickness. The expression 
for the Green’s function which follows immediately from 
the application of the concept of associated flow fields 

is verified by classical methods in the Appendix. Fi- 
nally, in Section (10) it is shown that the method of asso- 
ciated flow fields may be extended to include problems 
where the surface heat-transfer coefficient is a function 
of time. 

Attention is called to the general applicability of the 
present results to problems other than heat transfer. 
The methods are directly applicable to a large class 
of transport phenomena obeying the same type of 
equations of both linear and nonlinear character. In 
this category we may list the problems of diffusion of 
solutions in chemical engineering, mass diffusion of 
thermal neutrons in nuclear reactors, and fluid flow 
through porous media as encountered in problems of 
petroleum engineering. 

(2) OUTLINE OF THE GENERAL THEORY 

Let us first recall some of the general results which 
were derived in an earlier publication.’ We repre- 
sented the thermal field by the heat flow vector field. 

H = H(q1 p2 . . .qn x y z 0 (2.1) 

This may be considered as a parametric vector field. 
The field depends on the coordinates x, y, z, the time t, 
and n unknown parameters 41 q2 . . . qn. These param- 
eters may be considered as generalized coordinates. 
The thermal problem consists in determining how these 
generalized coordinates must vary as a function of time 
in order to represent the actual heat flow phenomenon. 

The theory was developed for the very general case 
of linear and nonlinear physical properties-i.e., the 
heat capacity, thermal conductivity, and heat-transfer 
coefficients may be functions of the temperatures, the 
coordinates, and the time. 

We have shown that the equations for the unknowns 
pi are 

@I’ldqi) + @DI&?i) = Qa (2.2) 

They are n differential equations involving the time 
derivatives qr. The function V of pi was referred to as 
the thermal potential and the function D of pi and gc as 
the dissipation function. The vector Qi is the general- 
ized thermal force. 

The thermal potential is defined as the volume in- 
tegral 

v= 
sss 

Fdr (2.3) 
I 

where S 
e 

F= cede (2.4) 
0 

with c the heat ‘capacity per unit volume and 13 the 
temperature. The heat capacity may be a function of 
the coordinates and the temperature. The thermal 
potential V is a function of the flow field H by the rela- 
tion expressing the conservation of energy-i.e., 

S 
.9 cd8 = -divH (2.5) 
0 
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The dissipation function is defined? as 

$ ss, $ ($)2 dS (2.6) 

an expression which refers to the volume r and the heat- 
transfer properties of the boundary S. The symbol H, 
refers to the normal component at the boundary taken 
positive outward. Since D is independent of the sign 
of H, we may take it as positive either inward or out- 
ward. However for the ‘sake of uniformity the sub- 
script n will refer to the positive outward direction. 
The thermal conductivity k in the volume 7 may be a 
function of the temperature and the coordinates. The 
surface heat-transfer coefficient is denoted by K and 
may also be a function of the coordinates, the time, 
and the temperature. As shown in reference 1, a simi- 
lar expression may also be written if we wish to take 
care of surface radiation. 

Finally, we define a generalized thermal force Qi by a 
method of virtual work. If 0, denotes the external 
temperature applied outside of the heat-transfer layer 
at the surface we write 

Q&i = SS,&Wn,d~ (2.7) 

where 6HC,, is the variation due to Sq, alone of the 
normal component of the heat flow vector at the 
boundary S, its sign being positive inward. We see 
that expression (2.7) is equivalent to the virtual work 
at the boundary by the external temperature t$ on the 
virtual heat flow 6Hc,,. We use the subscript (n) to 
indicate that the normal component is taken positive 
inward in contrast to H, which is positive outward as 
indicated above. The value of Qa may be written 

Qt = j-L f'aP&,lWld~ (2.S) 

If the surface heat transfer is through an aerodynamic 
boundary layer the temperature Ba is the so-called 
adiabatic temperature of the layer. 

In the particular case of a linear system-i.e., if its 
properties are independent of the temperature-the 
thermal potential becomes 

V = (1/2)~j,&%‘2d~ 

and relation (2.5) is replaced by 

(2.9) 

c0 = -div H (2.10) 

In the present developments we shall be concerned 
primarily with systems which are linear and whose 
properties are also independent of time. Furthermore 
we shall represent the flow field linearly in terms of the 
variables, qt, by 

t We are assuming here an isotropic material. The more 
general case of anisotropic media was developed in detail in 
reference 1. 

H = 2 Hiqi (2.11) 

where Ht = H& Y 4 (2.12) 

are fixed configuration flow fields. In this case the 
thermal potential and dissipation functions are 

. 

If = (l/2) % aidiqj 
I 

. . (2.13) 

with constant coefficients ail and bij. 
The above equations do not include the case where 

heat is generated inside the body. The heat conduc- 
tion equation in this case becomes 

div (k grad 0) = c(CM/dt) - w (2.14) 

where w is the heat produced per unit time and per unit 
volume. In many engineering problems such as those 
involving electric heating and nuclear reactors internal 
heat generation must be taken into account. The 
equations above may be used in this case provided we 
replace Eq. (2.5) by 

lwdt - lecdO = divH ’ (2.15) 

This procedure is valid for both the linear and non- 
linear problem. That Eqs. (2.15) and (2.2) lead to 
the correct formulation of the heat flow problem when 
there is internal heat generation may be verified by 
proceeding exactly as in Sections (3) and (8) of refer- 
ence 1. In this case, a particular method of formula- 
tion of the general equations for the thermal coordinates 
is obtained by putting 

S 
1 

w dt = div H* 
0 

S 
e 

cde= -divH+ 
0 

(2.16) 

(2.17) 

with H = H+ + H* (2.18) 

The field H* is any jield satisfying relation (2.16). 
Once chosen it is a given function of x y z t. The un- 
known portion of the field 

H+ = H+(ql qz . . . qn x y z t) (2.19) 

is a function of the unknown generalized coordinates. 
The temperature is defined in terms of Hf by relation 
(2.17). The differential equations for qr are the same 
as Eq. (2.2) above, with a thermal potential (2.3), a 
dissipation function 

D = (l/2) sss (l/k) [@H+/&) + (dH*/&)]2dt + 
7 

(l/2) ss (l/K) [(dH,+lbt) + (bH,*/bt)12 dS (2.20) 
s 

and a thermal force 

Qi = ss, &@H~n,+lWd~ (2.21) 
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The introduction of heat sources in the problem may 
also result from a purely formal viewpoint in a linear 
physical problem in which there are no actual heat 
sources. This arises if we consider the heat conduc- 
tion equation (2.14) with w = 0 and put 

e = e+ + e* (2.22) 

where 0* is the steady-state temperature distribution 
which would occur under the particular instantaneous 
external temperatures applied to the systems at any 
given time. This temperature satisfies the equation 

div (K grad 0*) = 0 (2.23) 

and the instantaneous boundary conditions at time t. 
Since we are dealing with a linear problem, the tem- 
perature 8+ then satisfies the equation 

div (K grad e+) = c(&+/bt) + c(be*/dt) (2.24) 

The field 0f corresponds to the case where the externally 
applied temperature f& is zero, with heat sources 

w = --c(de*/dt) (2.25) 

which are given functions of time, distributed through- 
out the body. We therefore apply relations (2.16) 
and (2.17). In the present case they become 

ce* = -div H* (2.26) 

ce+ = -div H+ (2.27) 

where H* is any particular field satisfying relation 
(2.26). The differential equations for the field H+ are 
then, 

(bI’lb%) + (b~/&?l) = 0 (2.28) 

with the thermal potential 

Ir = (1/2)JfJCe+% (2.29) 

and a dissipation function given by Eq. (2.20). 
We have already discussed in reference 1 the calcu- 

lation of a transient thermal field by separation into an 
instantaneous steady state and a remainder. A further 
example of such separation will also be considered here- 
after [see Section (7)]. 

(3) THE CONCEPT OF FLOW POTENTIAL 

We shall now discuss a particular aspect of the gen- 
eral method which was already briefly touched upon in 
reference 1 and greatly simplifies its application. The 
particular procedure we have in mind results from the 
representation of the flow field as the sum of two fields 
with different properties. We introduce a scalar field 

9 = $(a1 . * * ¶?Z x Y 2 0 (3.1) 

which is a function of the generalized coordinates qr, the 
space coordinates x, y, z, and which may or may not 
contain the time explicitly. We shall refer to # as the 
flow potential. We write the heat flow field as 

H= -kgrad$+F (3.2) 

where F is a vector field 

F = F(fi . . . fJ (3.3) 

which is a function of s generalized coordinates fs and 
chosen such that it is divergence free, 

div F = 0 (3.4) 

The total flow field H is thus a function of n + s co- 
ordinates pi and ft. The temperature 0 is then given 
by # alone-i.e., 

ct9 = div (k grad #) (3.5) 

We shall first assume that the heat capacity c(x, y, z) and 
the thermal conductivity k(x, y, z) are either constant 
or functions of the coordinates but are independent of 
the time or the temperature. For the time being, the 
surface heat-transfer coefficient K(x, y, z) is assumed 
to be either a constant or a function of the location 
only. The more general case is examined in Section 
(10). The possibility of including the case of a time- 
and temperature-dependent heat-transfer coefficient 
has an important bearing on problems of aerodynamic 
heating for variable velocity boundary layers. The 
case where c and k are temperature-dependent will be 
briefly discussed at the end of this section. 

The reason for splitting up the field into two parts 
as in Eq. (3.2) is that for many problems we are inter- 
ested in the temperature distribution only, and not in 
the heat flow. Now F, being a divergence-free field, 
does not contribute to the temperature. Hence, 
somehow the problem would be simplified if we could 
ignore this field and find equations which involve only 
$. In other words, we are-interested in decoupling the 
two fields # and F. 

We will show that this can be done by choosing $ in 
an appropriate way. Consider first the thermal poten- 
tial 

v = (i/2) Jj,j+~e2d~ (3.6) 

The value of 0 is determined by Eq. (3.5). Hence, 
the thermal potential does not contain F and depends 
only on the coordinates pi. This is also true if heat is 
generated internally, in which case we must use Eq. 
(2.15). Next, consider the dissipation function 

D = (l/2) JJJ (l,‘k)(dH/bt)% + 
r 

(l/2) ss, (1/K)(W&W~~ (3.7) 

From Eq. (3.2) we derive 

bH/bt = -k grad $ + @F/b) 

aH,/bt = - k grad, $ + (bF,/bt) 

(3.8 

(3.9) 

Where grad,& and bF,/bt are the normal components 
at the boundary of the vectors grad $ and bF/Bt. As 
pointed out above, we may choose the positive direc- 
tion of these normal components as we please. In con- 
formity with our previous choice, the subscript n 
denotes the normal component taken positive outward. 
Substituting expressions (3.8) and (3.9) in the dissipa- 
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tion function (3.7), we may write it as the sum of three 
terms : 

where 

D = Do i- Do, f D/ (3.10) 

D, = - sss (grad $) (dF/bt)d~ - 
7 

ss (k/K) (grad, $1 W&W 
s 

Dr = UP) sss, (l/k) (dF/dt)Ur + 

(l/2) ss, (I/K)(bF?&la02 dS 

The coupling terms between qt and fl are contained in 

D19P Let us therefore attempt to find conditions under 
which this term vanishes. Note that because F is 
divergence-free-i.e., satisfies relation (3.4)-we may 
write 

div[$. (dF/bt)] = (grad 4). (dF/dt) (3.11) 

Applying the divergence theorem (also called Green’s 
formula), we derive 

JJJ (grad $).(dF/bt)dT = J’S, $(b~,/bt)d~ (3.12) 
7 

Substituting Eq. (3.12) in the expression of D,, we find 

D,, = - 
ss 

s [It + (klK)ga& $l(bF,lWdS (3.13) 

This expression will vanish if $ is chosen so that -on the 
boundary it satisfies 

4 + (K/K) grad& = 0 (3.14) 

If the surface heat-transfer coefficient is a function of 
time, this is a differential relation involving the time. 
If I< is independent of time, this condition reduces to 

K$ + k grad,+ = CP (3.15) 

where Cp depends only on the location on the surface. 
In particular, we may put,Cp = 0; hence, 

K# + k grad,+ = 0 (3.16) 

If we choose the flow potential # to satisfy these bound- 
ary conditions, then V and DB depend only on the n co- 
ordinates Q( and we may write the n equations 

@IrJ%) + @Del%) = Qi (3.17) 

with the thermal forces 

Qt = JJs fLG%‘~qJ (grad, +VS 

The other equations for the coordinates ft, 

(3.18) 

bD,/‘dJ” = 0 (3.19) 

do not enter into the picture as far as the temperature 
field is concerned, and are relevant only if we wish to 
determine the amount of heat flow. As pointed out in 
reference 1, the coordinates may be called “ignorable 
coordinates” in analogy with the similar case in dy- 
namics when such coordinates appear only in the ex- 
pression for the kinetic energy. For instance, in a free 
elastic solid, the ignorable coordinates are those corre- 
sponding to rigid translations and rotations. They 
are irrelevant if we are interested only in the strains. 

If the thermal field contains surfaces of discontinuity 
for the conductivity k we may still use a flow potential 
$, which will have the same properties as above pro- 
vided both # and the component of k grad \I/ normal 
to the surface of discontinuity be continuous across 
this surface. Since # is continuous along the surface of 
discontinuity this implies a refraction of the flow lines 
across the surface. 

We have assumed until now that c, k, are independ- 
ent of the temperature. If c is temperature-depend- 
ent, the method is applicable, except that Eq. (3.5) 
must be replaced by 

/Z(B) = Jo’ c do = div (k grad 4) (3.20) 

If k is also temperature-dependent, but independent 
of the coordinates, it is well known that the problem may 
be reduced to one with a constant value for k (see refer- 
ence 1). Finally, the method may be extended to the 
case of anisotropic media for the case where the con- 
ductivity is temperature-independent. 

(4) TEMPERATURE FIELDS AND THEIR ASSOCIATED 
FLOW FIELDS AS GENERALIZED COORDINATES 

In the particular case of a system with physical prop- 
erties independent of the temperature and the time, 
the quantities c, k, and K are functions only of the 
coordinates. The flow potential may then conveni- 
ently be represented by 

9 = 2 4&(x Y x)q, 

The corresponding temperature field 

e = i e,h Y 2h 

and the corresponding flow field is 
% 

(4.1) 
is 

(4.2) 

with 

H = c @i (x Y 4qi (4.3) 

0( = (l/c) div (k grad $J (4.4) 

Or = -k grad fit (4.5) 

In addition, for the field to be uncoupled with the ignor- 
able coordinates each function fi+ must satisfy the 
boundary condition 

Ktii + k gradnll/i = 0 (4.6) 
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This result was already established in reference 1 and 
is also a consequence of the more general relations 
(3.14) derived above. 

The point of importance which we shall now discuss 
is the fact that Eq. (4.4) and the boundary condition 
(4.6) completely define the flow potential $i when L!+ is 
given. The function tii is simply the steady-state 
temperature for heat sources of intensity -ccBt per unit 
volume and per unit time distributed throughout the 
system while the external temperature is maintained 
zero. The field O( is also completely determined by et. 
It is the steady rate of heat flow established in this 
system of sources. We shall call Oi the associated 
flow field for the fixed temperature configuration Bi. 
Note that because of the minus sign the sources -c0, 
may be considered as heat sink of magnitude c&. . 

In practice, it will generally be much easier to choose 
a number of temperature configurations 0( as approxi- 
mations to the problem rather than choosing suitable 
approximations for #i. The thermal problem can then 
be formulated completely if we first calculate the flow 
fields Oi associatedwith each temperature configuration. 
Each scalar field BI and its associated vector field Op 
defines a generalized coordinate qt. Now the calcula- 
tion of the associated flow field may be accomplished 
by approximate methods, and, particularly, by vari- 
ational methods. Since +i represents the steady-state 
temperature due to the sources, there are numerous 
approximate methods available for its calculation. In 
particular, we may use a variational method by putting 
equal to zero the variation of 

(4.7) 

where +i is the quantity to be varied and 8i is given. 
This leads to Eq. (4.4) with the boundary condition 
(4.6). 

Actually, of course, we are not interested in the scalar 
#( but in the associated field Or, as given by relation 
(4.5). Since this involves the calculation of the gra- 
dient of #i it is more accurate to use the variational 
method, to calculate the vector field Oi directly. This 
can be done by minimizing the dissipation function 

D’ = (l/2) JlJ (l/k)Oi2& + 
7 

(l/2) ss, (l/K) [@tin” Q?S (Wt 

for variations of Of which satisfy the constraint 

div Or = -ccBi (4.9) 

This may be derived by adapting to the particular case 
of steady sources the considerations of Section (2) 
above, and the general variational principles as formu- 
lated in references 1 and 2. The steady-state source is 
w= -ce, and the rate of heat flow is bH/dt = Ot. 

t The subscript n indicates the component of Oi normal to the 
surface S and taken positive outward. 

This procedure of minimizing expression (4.8) for 
D’ under the constraint (4.9) may also be derived 
directly by introducing a Lagrangian multiplier h. It 
is then equivalent to putting equal to zero the vari- 
ations of 

D” = 
sss 

[(1/2k)~~~ + X(div Oi + ceJ]dT + 
7 

(l/2) fl (l/K) [@iIn as (4.10) 

We derive Euler’s equations corresponding to this vari- 
ational problem. These equations are, in the volume 7, 

(l/K)% - gradX = 0 (4.11) 

and at the boundary, 

X + (l/K) [&In = 0 (4.12) 

Taking into account the constraint (4.9), these equa- 
tions lead to 

div [K grad X] = -cBi (4.13) 

X + (K/K) grad,X = 0 (4.14) 

Eqs. (4.11), (4.13), and (4.14) are identical with those 
defining a1 in terms of et. The Lagrangian multiplier 
X plays the role of - +$. 

An alternate procedure which may generally be more 
convenient is to put 

oi = Fi + air (4.15) 

where o*’ is any$eld satisfying the relation 

div 0,’ = --co, (4.16) 

The field F, is the variable to be varied under the con- 
dition 

The variation of 

div Ff = 0 (4.17) 

D = (l/2) ss (l/k) (Fi + ~i’)~dr + S z 
(l/2) SS, (l/K) [Fi + @i’ln2 dS (4.18) 

is then made to vanish under the constraint (4.17). 
It is important to note that, in practice, we do not 

require the calculation of the scalar field #+ Once 
the thermal coordinate 8% has been chosen, its asso- 
ciated vector field Oa is determined directly, and is the 
only additional field required to define the generalized 
coordinate. 

In Section (2) we have considered the case where 
there are internal heat sources. It was found that we 
could separate the flow field into two parts H* and 
H+ satisfying relations (2.16) and (2.17). These rela- 
tions for a linear problem become 

S 
t w dt = div H* (4.19) 
0 

ce = -div H+ (4.20) 

The field H* is any field satisfying the first equation. 
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The concept of the associated flow field may also be 
used in this case by considering as above the representa- 
tions 

e = 5 8&J, (4.21) 

H+ = c @c+qc (4.22) 

The field Oi+ is associated with the temperature Bi by 
the relations 

02 = (l/c) div (k grad +i+) (4.23) 

ai+ = -k grad fii+ (4.24) 

and the boundary condition 

Kfi?+ + k grad,+*+ = 0 (4.25‘) 

The dissipation function is expressed m terms of a 
total flow field 

H=H*+H++F 

where F satisfies the relation 

(4.26) 

div F = 0 (4.27) 

We may consider that F contains the arbitrary portion 
of the divergence-free field which may be added to IT*. 
Repeating the argument of the previous sections and 
taking into account Eqs. (4.24) and (4.25) we see that 
in the dissipation functions the fields F and s+ are 
uncoupled. Hence, if we are interested only in the 
temperature 0, we may use for the dissipation function 

D = (l/2) SSS (l/k) [(bH*/bb) + (bH+/bt)12dr + 
7 

(l/2) JJ (l/K) [(dH*/bt) + (BH+/bt)12dS (4.28) 
s 

For the same reason as just mentioned, addition of a 
divergence-free field to H* introduces no new coupling 
between H* and H+. We need of course write only 
those terms which include qa; hence, we put 

D = (W) jj-jkk) (5 0t+gi)2dr + 

(l/2> J&n-) [i cei+,.aJ” ds + 

sss (l/k) (bH*/bt) 2 ai+&) dr + (’ 
7 

ss 
(l/K) (~Hn+/~t) 2 [@i+lnQdS (4.29) 

s 

The same procedure will be used when the temperature 
field is separated into an instantaneous steady state 
6* and a remainder of. As pointed out above, this 
amounts to distributing sources (2.25) throughout. 
Eqs. (4.19) and (4.20) are simply replaced by Eqs. 
(2.26) and (2.27). The remainder temperature 0+ is 
then expanded into a sum of temperature configu- 
rations ea+ with associated fields 

e+ = 2 ei+qs, H+ = 2 Oi+ql (4.30) 

The fields aif associated with each temperature con- 
figuration may be evaluated by a variational method 
as above. Hence, the equations for pi for the field 
0+ are then obtained from Eq. (2.28) using the dissipa- 
tion function (4.29). 

(5) THE ASSOCIATED FLOW FIELD FOR NORMAL 
COORDINATES 

In many applications it is possible to determine read- 
ily the temperature fields corresponding to the thermal 
modes or normal coordinates. These thermal modes 
are decaying temperature distributions under bound- 
ary conditions of zero external temperature (0, = 0). 
Systems where this concept applies are those for which 
the physical parameters c, k, and K depend only on the 
coordinates. The system may or may not include a 
surface layer for heat transfer. 

These thermal modes may be used as normal coordi- 
nates to solve the problem of finding the temperature 
distribution when arbitrary external temperatures ea 
are applied at the surface. However, in order to do 
this we must calculate the corresponding thermal forces 
by a method of virtual work, and this implies the knowl- 
edge of the heat flow field associated with each thermal 
mode. 

We will show that the flow field associated with each 
mode is immediately determined from the temperature 
distribution. Let us represent the flow field of each 
thermal mode by 0, and its temperature field by es. 
Since we are interested only in those modes associated 
with a temperature field, we introduce a flow potential 
Ij/* associated with 0, and 8,. From Eqs. (4.4) and 
(4.5) we derive 

0, = -kgrad#, (5.1) 

div (k grad $J = 60, (5.2) 

The boundary condition for tis is given by Eq. (4.6)- 
i.e., 

K& + k grad,+, = 0 (5.3) 

Eq. (5.2) together with Eq. (5.3) completely deter- 
mines fis when Bs is given. In order to find tig let us 
consider the temperature field. It satisfies the equation 

div (k grad 0) = c(b0/&) (5.4) 

with the boundary condition 

K0 + k grad, 6 = 0 (5.5) 

Note that we are dealing here with a relaxation mode- 
i.e., a case where the temperature 8, outside the surface 
layer is zero and the rate of heat transfer at the surface 
is measured by K0. A thermal mode is a solution of the 

type 

e = e&t y z)eVxs’ (5.6) 

where es is a fixed temperature field normalized in an 
arbitrary way. Eq. (5.4) and the boundary condition 
(5.5) become 
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A#==!&+%Y 
D 

FIG. 1. Double wedge section of cylinder. 

div (k grad 0,) = -&cB, 

&3, + k grad,@, = 0 

By putting $8 = -(l/&P* 

these equations may be written 

div (ii grad #,) = ~0, 

K& + k grad,&, = 0 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Hence, #, as given by Eq. (5.10) is the unique solution 
of Eq. (5.2). The significance of this result lies in the 
fact that for every temperature field 0, corresponding 
to a thermal mode, there exists a vector field 

os = (k/h,)grad 0, (5.13) 

which represents the associated flow field. The scalar 
field 0, and the associated vector field 0, constitute a 
complete representation of the normal coordinate which 
corresponds to the eigenvalue X,. This concept and 
its practical usefulness are illustrated by the examples 
in Sections (6) and (7). 

(6) EXAMPLE OF NORMAL COORDINATES 

Let us consider a flat cylindrical body of double wedge 
section ABCD (see Fig. 1). It is assumed that the 
body is homogeneous with constant heat capacity and 
thermal conductivity. The width of the body is 21 
and the maximum thickness h. We shall evaluate 
the thermal modes in the cross section considered as 
a two-dimensional problem. The example will be re- 
stricted to the case of modes symmetrical with respect 
to AC and BD and to the case where there is no bound- 
ary layer-i.e., where the heat-transfer coefficient at 
the surface is infinite (K = a). The thermal modes 
then occur under conditions of constant temperature 
(0 = 0) at the boundary of the solid.? We furthermore 
assume the thickness ratio h/l to be small so that the 
half portion ABD may be assimilated to a section of 
vertex angle, 

2p = h/Z (6.1) 

t It is clear that this assumption is not essential and that the 
use of normal coordinates applies quite generally to cases with 
a finite surface heat-transfer coefficient. 

The temperature in the sector satisfies the heat conduc- 
tion equation in polar coordinates r and cp with A as 
origin. 

(b+9/br2) + (l/r) (be/ar) + 
(l/r2) (b2ti/bVz) = (i/K) (be/&) (6.2) 

The diffusivity is 

K = k/c (6.3) 

The boundary conditions for 8 are 

@=O for cp==ttp) 
1 

be/by = 0 for r = 1 J 
(6.4) 

The arc of circle BD is assimilated to a straight line 
because /3 is assumed to be small. The thermal modes 
are solutions of the type 

e = f(r) cos (v&Y (6.5) 

Substitution in Eq. (5.4) yields 

(d2fldr2) + (l/r) (@/dr) + 

[(X,/K) - (Y2/r2)If = 0 (6.6) 

Solutions of this equation which remain finite are 

f = J”(Y YG) (6.7) 

This may be written 

f = JV[%(rl0 1 (6.8) 

with ff P= I d&/K (6.9) 

The first boundary condition (6.4) is satisfied if we put 

v = (r/P) [m + (Lml (m = 0, 1, 2 . . . ) (6.10) 

and the second boundary condition is 

J”‘(cyJ = 0 

with J”‘(X) = U,(x)/& (6.11) 

Eq. (6.11) has an infinite number of roots a8 which may 
be evaluated numerically by interpolation from tables 
of Bessel functions. We may write X, in terms of CG 

A, = K(CYs2/i2) (6.12) 

The thermal modes are therefore 

e = J,[cY,(I/Z)] cos (vcp)e+’ (6.13) 

There is a double infinity of modes attached to the 
roots a! so that the subscript s has the significance of 
a double index. We write the thermal modes as 

0 = f18e-Xat (6.14) 

with es = J,[c&/~)~ cos VCP (6.15) 

Any thermal distribution in the sector may be repre- 
sented by a superposition of thermal modes 

8 = 2 e,q, (6.16) 

where Q~ are generalized coordinates. As we have 
shown in the previous section the corresponding ex- 
pansion for the heat Aow field is 
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H = 5 o,q, (6.17) 

where 0, is the flow field associated with the temper- 
ature distribution es. It is given by 

0, = (K/X,) grad Bs (6.18) 

The thermal potential and the dissipation function are 
readily expressed in terms of the normal coordinates. 
In reference 1 we have formulated the orthogonality 
properties of the thermal modes. Because of these 
properties all cross products vanish in the expressions 
for V and D. The thermal potential is 

v = (l/2) 2 q7s2 (6.19) 

with a, = (1/2)~~~8,~dx dy (6.20) 

The surface integral is extended to the area ABC of the 
sector. Similarly, the dissipation function is written 

D = (l/2) 2 b,G2 (6.21) 

with b, = (l/2) (k/Xs2) fl (grad 0,)2dX & (6.22) 

However, this integral need not be evaluated if we know 
a, and X,. This can be shown readily by writing the 
differential equations satisfied by the thermal modes in 
terms of the normal coordinates ps. Since the boundary 
temperature is zero the thermal force Qs vanishes, and 
the general differential equation (2.2) becomes 

@~/W + w/w = 0 (6.23) 

or asPs + Us = 0 (6.24) 

The solutions of these equations are the thermal modes, 

q1 = Cse--xsf (6.25) 

with A, = as/b, (6.26) 

hence, b, = as/& (6.27) 

The dissipation function may therefore be written 

D = (l/2) 2 (as/U?,2 

with a, equal to the integral (6.20). 

(6.28) 

(7) APPLICATION OF NORMAL COORDINATES 

With a knowledge of the normal coordinates we may 
immediately express the temperature field caused by an 
arbitrary time-dependent distribution of the external 
temperature, Ba, at the surface. We shall again con- 
sider the example of the previous section with infinite 
surface heat-transfer coefficient (K = m ) and the same 
symmetric distribution of temperature with respect 
to AC. In addition, we shall also assume that the ex- 
ternal temperature distribution is also symmetric with 
respect to BD. Because of the assumed symmetry 
the temperature field need be evaluated only in the 
sector ABO. Since K = 00, the external temperature 
ea is identical with the temperature at the solid bound- 

ary. 
The temperature is represented in terms of normal 

coordinates by the series (6.16). With each normal 
coordinate is associated a flow field 0, given by Eq. 
(3.18). The thermal potential V and dissipation func- 
tion D are expressions (6.19) and (6.28) with coefficients 
a, defined by Eq. (6.20). The differential equations 
for the normal coordinates ps are 

asqs + (as/M, = Q8 (7.1) 

where Qs is the generalized force associated with Q~. It 
is defined in terms of the normal component [o~]c~, of 
the associated flow field at the boundary by applying 
Eq. (2.8). We find? 

(7.2) 

In the present example, since we consider only the sector 
ABO, the thermal force is 

or 

The coefficients a, defined by Eq. (6.20) are 

a s= (1/2c) lz dr s,” rJ,2[~g(r/Z)] cos2 vcp dq 

‘a, = @P/SC) [ 1 - ( V2/Qs”) ]Jy2(cyJ (7.4) $ 

The differential equations (7.1) determine ps as a func- 
tion of time. These values of ps substituted in the 
series (6.16) determine the transient temperature field. 
It will be noticed that the temperature field as repre- 
sented by the series is always zero right at the bound- 
ary, and therefore cannot represent the imposed 
boundary temperature. Nevertheless, it does repre- 
sent correctly the temperature distribution inside the 
boundary. If, for instance, we impose a constant 
temperature t$ on this boundary, the field will be repre- 
sented by a series which has a constant value inside the 
boundary but whose value drops to zero if we are close 
enough to the boundary. This is a feature of non- 
uniform convergence already encountered in one- 
dimensional examples in references 1 and 4. There 
are advantages and disadvantages in expressing the 
temperature field by a series such as (6.16). The 
advantage is, of course, the orthogonality that results 
in the absence of coupling between the coordinates qs. 
A disadvantage is the fact that the final distribution of 
temperature under equilibrium conditions is repre- 
sented by a series. As was pointed out in reference 1, 
one way of avoiding this disadvantage is to split up 
the temperature field into two parts. Let us apply 
this method to the present example. Consider the 
solutions of the equations 

t The subscript (n) denotes the normal component taken posi- 
tive inward. 

$ This result may be obtained by making use of integral ex- 
pressions originally derived by E. C. J. Lommel (see reference 8). 



376 JOURNAL OF THE AERO/SPACE SCIENCES-JUNE, 1959 

ad, *= Q.9 (7.5) 

The CJ$* represent the equilibrium temperature dis- 
tribution reached under instantaneous boundary tem- 
peratures 9, considered as independent of time. It 
represents a temperature field 

e* = 2 es&* (7.6) 

which may be evaluated directly by solving Laplace’s 
equation 

(b%*/&?) + (@e*/byZ) = 0 (7.7) 

under the instantaneous boundary condition 0, for the 
temperature. We then put 

e = e++ e* (7.3) 

with e+ = 2 e,q,+ (7.9) 

ps = qs+ -I- 4s* (7.10) 

Substituting in Eqs. (7.1) and taking into account rela- 
tion (7.5) gives the differential equation for q8+ 

ps+ + (l/x&,+ = -(I/Up,* (7.11) 

Now from Eq. (7.5) we may also write 

- (l/Us* = - (QJ~~a,) (7.12) 

The time derivative & is found by calculating the initial 
work of the time derivative do of the boundary tem- 
perature. 

(8) INTEGRAL EQUATIONS DERIVED FROM ASSOCIATED 
FLOWFIELDS-RELATIONTO GREEN's FUNCTION 

In Section (4) we have shown how temperature fields 
and their associated flow fields may be used as general- 
ized coordinates in the formulations of heat flow prob- 
lems. We shall now examine a particular case of this 
type of formulation which leads to integral equations 
in complete generality for all linear thermal systems 
with time-independent parameters. This formulation 
amounts to a generalization of the Green’s function 
method and at the same time yields a new procedure 
for the approximate evaluation of this generalized 
Green’s function itself. 

We go back to Eq. (4.2), which represents the ther- 
mal field as 

0 = 2 0$(x Y +I, (8.1) 

where et are fixed scalar distributions and pi generalized 
coordinates. An interesting application of this repre- 
sentation arises if we write Eq. (8.1) in the form 

e = J ~(4: - x>e(+x (8.2) 

where 6([ - x) plays the role of the configuration or, 
e(x)dx represents the generalized coordinates pi, and 
the summation is replaced by an integral. We have 
abbreviated the notation by writing B(x) for 0(x y s). 
By a similar abbreviation the integral is a volume in- 
tegral over x y z. The distribution 6(t - x) is written 

for S(t - x, n - y, { - Z) and represents the spatial 
Dirac function equal to zero at any point except { = x, 
n = y, < = z, and such that its volume integral over 
<T$ is unity. By the property of Dirac functions, Eq. 
(8.2) is equivalent to stating that e = e(f); i.e., the 
continuous set of unknown local temperatures consti- 
tute the generalized coordinates of the problem. 

The flow field 0 (& x) associated with the temperature 
S([ - x) is determined by the general procedure out- 
lined above in Section (4). We solve the equation 

div (K grad 9) = cS([ - x) (8.3) 

where * = VVE, x) (8.4) 

with the boundary condition 

K$+kgrad,J/=O (8.5) 

The gradients and all partial derivations are taken 
with respect to l r] 4. The right-hand side of Eq. 
(8.3) represents a concentrated heat sink of magnitude 
c at point x y z and fi is the corresponding temperature 
field. The flow field associated with S(t - X) is 

@CC x) = - ,+ grad +(E, x) (8.6) 

We have also indicated in Section (5) how 0 could be 
evaluated by an approximate variational procedure. 
Eq. (4.3) for the total flow field becomes the volume 
integral 

H = $ o(t, x)e(x)cEx (8.7) 

In order to obtain the general equations for the thermal 
field we must construct the thermal potential V and 
the dissipation function D. The first is written im- 
mediately as 

v = (l/2) J ce2dx W3) 

The second is found by writing first 

(bI~I/bt)~ = .jl Ott;, x’).O(& x)@‘)@)dx’dx (8.9) 

We easily derive 

D = (l/2) .j. y(x’, x)&x’)l(x)dx’dx (8.10) 

with 

7(x’, x) = s wwl@(t, ~‘)W, 44 + 
J- (1/WL(L xW,@, xW (8.10 

The second integral is a surface integral over the 
boundary where 0,([, x) represents the normal com- 
ponent of O(& x) at a point .$ of the boundary. Finally 
the generalized force Q(x) is obtained by considering 
the virtual work of the applied external temperature 
ea on the heat flow 8Hc,, at the boundary for a varia- 
tion &Y(x). We find 

Qww4 = 
S s 

e&I,, dS = 

S e,ed5, x)wx)dS (8.12) 
s 

The normal component 0~~) is taken positive inward. 
We derive 
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Qk t) = J; &(E, O%d(E, x)dS (8.13) 

We have written Q(x, t) and 0,(l, t) instead of Q(X) and 
8, to indicate explicitly that these quantities are func- 
tions of both the coordinates and the time. 

The final equations for the temperature field are 
obtained by using the concept of partial derivative 
with respect to B(x)d?c and 8(x)& as if they were co- 
ordinates qt.? We find 

cB(x, t) + J -&‘, X)B(X’, t)dx’ = Q(x, t) (8.14) 

Again we write 0(x, t) instead of 0(x) to indicate ex- 
plicitly that it is also an unknown function of time. 
This is an integral equation for the unknown temper- 
ature e(x, t). 

The particular form of this equation recalls immedi- 
ately that obtained by the classical Green’s function 
method. lo In fact, it is shown in the Appendix that 
this equation in the case of well defined boundaries 
may also ,be derived by Green’s function techniques. 
The derivation, however, is more elaborate. Actually, 
Eq. (8.14) achieves results which go substantially be- 
yond the classical approach : 

(1) The integral equation is eatablished directly and 
very simply as a particular application of general ther- 
modynamic principles. 

(2) It is formulated in a very general way and is 
applicable to any thermal system and boundary con- 
ditions, no matter how intricate, provided it is linear 
and with time-independent parameters. 

(3) The kernel y(x’, x) is expressed in terms of the 
integrated product of associated flow fields which them- 
selves may be evaluated by approximate variational 
procedures as indicated above in Section (4). In this 
process, conservation of energy is preserved and rough 
approximations may be used because of the averaging 
effect of the integration in evaluating expression (8.11) 
for y(x’, x). 

It will be noted that Eq. (8.14) giues directly the 
steady-state temperature field if the applied external 
temperatwe 0, is independent of time. Putting 6 = 0 
we may write Eq. (8.14) as 

6%) = Q(4 (8.15) 

This may also be looked upon as a consequence of reci- 
procity theorems for the influence coefficients relating 
steady temperature to heat flow, in direct analogy with 
Maxwell’s theorem of the theory of elasticity. 

An alternate formulation of Eq. (8.14) results from 
the introduction of an instantaneous steady-state 
temperature as already mentioned in reference 1 and 
in Sections (2), (4), and (7) above. This temperature 
field 0*(x, t) is given in terms of 0,(x, t) by 

ce*(x, t> = Q(x, t) = s, e&, O%,(F, x)dS (8.16) 

t This is done currently in theoretical physics (see, for instance, 
reference 9). We could also follow the procedure introduced by 
this writer in reference 4-i.e., replace D by an operational in- 
variant and use the variational principle directly. 

3G -0 F- 
FIG. 2. Heating of a slab 

d 

It is the temperature field which would be obtained if 
the instantaneous boundary temperature ea at time 
t were maintained constant. If we now write the 
actual temperature as 

e(x, t) = 8+(x, t) + 8*(x, t) 

Eq. (8.14) becomes 

(8.17) 

ce+(x, t) + _f @,‘x)@(x’, t)dx’ = 

_f 7(x’, x)6*(x’, t)dx’ (8.18) 

The temperature f?+ results from subjecting the same 
thermal system to a new thermal force equal to the 
right-hand side of Eq. (8.18). 

This is obviously an easier equation to solve if the 
temperatures vary slowly. Needless to say, since 
Eq. (8.18) is of the same form as the original, the process 
of splitting the temperature into an instantaneous 
steady state and remainder may be repeated, leading 
to an iterative solution of the problem. 

(9) ONE-DIMENSIONAL PROBLEMS FORMULATED BY 
MEANS OF ASSOCIATED FLOW FIELDS 

The treatment of a one-dimensional problem by the 
use of associated flow fields is given here as an illustra- 
tion. Its main purpose is to familiarize the reader 
with the nature of the method and concepts. Further- 
more, it also serves to outline the approximate method 
of numerical solution of the integral equation. 

We shall consider the particular case of a slab of thick- 
ness I with constant values of K and c. One face at x = 
0 has a heat-transfer coefficient K1, and the other face 
at x = 2 a heat-transfer coefficient K:! (see Fig. 2). 
The outside temperature at x = 0 is a given function 
of time, o,(t), while the outside temperature at x = I 
is zero. Consider the temperature 0(x, t) at point x 
and time t. The associated flow field corresponds to a 
concentrated heat sink in the plane of abscissa x while 
the temperature outside of the slab is maintained at 
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zero on both sides. Corresponding to Eq. (8.2) we have 
now the representation of the temperature field as 

e(F) = $6([ - xP(x)dx (9.0 

which is formally the same except that now S(t - X) 
represents a one-dimensional Dirac function. 

Corresponding to Eq. (8.3) the intensity of the heat 
sink is c per unit area of the slab cross section. The 
associated flow field is the heat flow which would flow 
into the sink from both sides of the slab under a steady- 
state condition. The flow field is uniform on each 
side of point x with values which are inversely propor- 
tional to the flow resistance on each side of the sink. 
Denoting by 01 and & the flow coming into the sink 
on each side, respectively, we have the two equations 

01 + ez = c (9.2) 

%I(lI&) + (x/K)1 = @{ (l/K) + [(I - WI} (9.3) 

The second equation states that the temperature drop 
between the sink and the region outside the slab is the 
same on both sides of the sink. Solving for 0r and.& 
yields the flow field associated with the temperature 

S(6 - x). It is a discontinuous function 

N, x) = e,(x) for [ < x (9.4) 

e(t, X) = -e,(x) for 5 > x (9.5) 

with 

e,(x) = hww + (m2) + (wi} x 

i(W2) + [(J - XMI] (9.6) 

02(x) = { cl[(llK*) + WK2) + (Z/k) 
[(l/m 

The thermal force Q is 

Qh t) = k&Mo, 4 

or Q(x, t) = &W&(4 

II x 
+ (x/k)1 (9.7) 

(9.8) 

(9.9) 

This is a function of the coordinate x and the time t. 
The kernel y(x’, x) is found by applying Eq. (8.11) 

Y(X: X) = (l/k) 1’ e(E, x’)~(L x)dt + 

(l/Ki)ei(X’)ei(X) + (l/K2)e2(~‘)02(~) (9.10) 

The integral in this expression is readily evaluated. 
Taking into account relations (9.2) and (9.3), the re- 
sult may be simplified to 

,- 

Y(x’, X) = c[(~ik) + (l/Ki)iei(x’) 

for x < x’ 

for x> x’ : 

This may be recognized as the Green’s function 
one-dimensional problem-i.e., it is proportional 
temperature distribution due to a source at 

Y(x’, X) = C{ [(I - x)/hi + (l/K2) )0,(x’) 
(9.11) 

of the 
to the 
point 

X’. That this should be SO is, of course, a consequence 
of the general proof in the Appendix. Obviously, in 
one-dimensional problems we could introduce Green’s 

function directly instead of going through the process 
of calculating first the associated flow field e(& x), and 
the above derivation is intended only as an illustration. 
However, as pointed out above, the introduction of 
the associated flow field provides an approximate 
method of evaluation of Green’s function for the more 
complex two- and three-dimensional problems. 

The integral equation for the temperature is 

4x, t) + S 
I -&f, X)&X', t)dx' = ea(t)el(x) (9.12) 
0 

This equation is reduced to a system of linear differential 
equations if we divide the interval of integration into a 
certain number of segments, the dividing points being 
at abscissas Xi, We put 

6% = 8(X,, 2) (9.13) 

We may then write the matrix approximation 

S 
1 

Y(x', xO8(x', t)dx' = [6ijJ [djl (9.14) 
0 

If the intervals Ax are equal and in even number the 
relation (9.14) may be obtained by Simpson’s rule- 
i.e., we may write 

[&I = PI P-W (9.15) 

The matrix [I’ ] is made up of elements 

PI = [-&j, Xi) 1 (9.16) 

and [S] is a diagonal matrix which yields Simpson’s 
method of integration 

1 

4 
2 0 

4 

[S] = ; 

0 .4 
3 

(9.17) 

The integral equation (9.12) then reduces to a system 
of linear differential equations with a finite number of 
unknown temperatures 0+ This system is 

(9.18) 

The system may be conveniently solved by normal 
coordinates because the homogeneous systems obtained 
by putting Ba = 0 is in a form which can be readily used 
for the computation of the thermal modes by iteration 
starting with the mode of longest relaxation time. 

It should be noted that a division of the domain in 
equal intervals Ax is not the best. We may just as 
easily take a few smaller intervals near to the surface 
at which the temperature is applied, and larger inter- 
vals elsewhere. The essence of the procedure remains 
unchanged, but we have allowed for a more accurate 
representation of the temperature in the region where a 
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higher resolution is required. Such a procedure coupled 
with the present formulation and the use of Simpson’s 
rule should yield a very high accuracy with a relatively 
small number of unknowns. 

As pointed out in the general treatment [see Section 
(8) 1, the steady-state temperature distribution results 
immediately from Eqs. (9.12) and (9.5) in explicit form 
without any further solution. Assuming 8, inde- 
pendent of time and putting 4 = 0 in Eq. (9.12) we find 

(l/Kz) + [(I - x)/k1 

e(x) = ea (WG) + (l/Kz) + (Z/k) 

(9.19) 

which, as can be verified, is the steady-state temper- 
ature under the prescribed boundary conditions. The 
method is also easily applied to the case of an inhomo- 
geneous or composite slab. In this case the thermal 
conductivity is a function of the abscissa. Eq. (9.3) 
is replaced by 

el[$ + &g] = 02[& + I%] (9.20) 

The factor l/k in expression (9.10) for y(x x’) must 
remain under the integral sign. We then proceed 
exactly as in the case of the homogeneous slab. 

(10) THE ASSOCIATED FIELD FOR THE CASE OF TIME- 
DEPENDENT SURFACE HEAT-TRANSFER COEFFICIENTS 

In the above treatment of associated fields we have 
assumed that the surface heat-transfer coefficient K 

may be a function of the coordinates but is independent 
of the time. We will now show explicitly that the con- 
cept of associated field applies also to the more general 
case where K is also a function of time. In this case, 
the associated field will generally be a function of time 
and the corresponding differential equations will have 
time-dependent coefficients. 

In order to show this, let us consider separately the 
dissipation function for the solid volume r. This dissi- 
pation function is written 

D, = (l/2) 
sss 

(l/k) @H/&)%7 (10.1) 
r 

The differential equation of the thermal system may 
be written in terms of this dissipation function as 

(bv/@t) + (aDl/‘@J = Qi’ (10.2) 

where Qa’ is now the thermal force due to the temper- 
atures 0’ at the solid boundary-i.e., 

Qi’ = ss, 0’ WdbtldS (10.3) 

This is the same expression as Eq. (2.8), in which the 
external temperature 8, is replaced by 0’. 

If the surface heat-transfer coefficient is denoted by 
K, we may write 

bH(,,/bt = K(e, - et) (10.4) 

solving for 0’ and substituting in the expression for 
Qi’, Eqs. (10.2) are written 

with 

These equations are obviously valid if K is a function 
of both time and location. 

Consider now a field represented as 

(10.6) 

As before, we have split the field into two parts. 
One part is divergence-free-i.e., 

div Fj = 0 (10.7) 

with the corresponding ignorable coordinates written as 
fj instead of pi. The other part yields a temperature 
distribution by the relations 

div Oi = -cBi (10.8) 

The temperature field is then 

8 = 6 eiqi (10.9) 

Looking at Eqs. (10.5) it is seen that the coupling 
terms between the coordinates ql: andf, are 

b,,’ zz 
sss 

(l/h)Fj@dr + 
T 

ss 
(l/K)F,,@,,dS (10.10) 

s 

We denote by Fjn and Oi, the components of F, and 
Oi taken positive outward. Changing from inward 
to outward components does not affect the result since 
it amounts to a double change of sign in expression 
(10.5). We now consider that Oi is derived from a flow 
potential tii 

Of = -k grad $t (10.11) 

This does not restrict the generality since the total 
flow field itself is derived from a flow potential. We 
substitute expression (10.11) for O( in the volume in- 
tegral of relation (10.10) and integrate by parts. Tak- 
ing into account the property that Fj is divergence- 
free-i.e., satisfies relation (10.7)-we find 

bzj’ = - 
ss 

Fjn [+i + (k/K) graWildS = 0 
s 

(10.12) 

This expression vanishes if we choose the flow poten- 
tials #< such that they satisfy the condition 

K$, + k grad,Gi = 0 (10.13) 

at the boundary. On the other hand, combining Eqs. 
(10.8) and (10.11) we derive 

div (k grad fi,) = ce, (10.14) 

Hence, $i is completely determined from the temper- 
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We have put this expression equal to Q(x, t) because it 
coincides with the definition (8.13) of the same quan- 
tity in the text. In fact, we may write 

and 

0 = -k grad g(x’, x) 

0~~) = k grad,&‘, x) 
(A-12) 

where (3(n) denotes the normal component of the bound- 
ary flow directed positively inward. Hence, 

Q(x, 4 = s, W>%z,(x, x’)dS (A-13) 

We remember that x’ plays the role of the variable in 
the integration and x that of a parameter. Combin- 
ing Eqs. (A-9), (A-lo), and (A-11) we derive 

cf?(x) - S cg(x', x)d(x')dx' = Q(x, t) (A-14) 
7 

Comparing this with Eq. (8.14), we see that - cg(x’, x) 
plays the role of y(x’, x). 

That these quantities are actually identical may be 
verified directly by applying either one of the identi- 
ties (A-l) and (A-2). Let us consider again the scalar 
field g(x’, x) defined by (A-4) and (A-5) replacing x’ 
by the coordinate 4 (an abbreviation for E n {). In this 
case, [ plays the role of the running coordinates and x 
that of parameters representing the location of the 
source. Let us consider two such functions, g(& x) 
and g([, x’), and put 

w = g(& x), u = 4(5, x’) (A-15) 

Applying identity (A-l) we find 

S g(L x) div [k grad g(E, x’>W + 7 

S k grad g(t, xl grad g(E, x’W = 
r 

S kg(x, E) gra&g(E, x’)dS (A-16) 
s 

We write 

@(L x) = -k grad g([, x) ‘i 

@(& x’) = -K grad g([, x’) 1 

%(5, x) = --K grad, (& x) 

%(E, x’) = -k grad, (4, x’) 

(A-17) 

(A-18) 

Furthermore we utilize Eqs. (A-4) and (A-5), applying 
the first one to g(& x’) and the second one to g([, x). 

div [k grad g(t, x’) I = 

JME, x) + k gradd4‘, 

4, x’) 

x) = 0 
(A-19) 

Introducing these expressions in the volume and sur- 
face integrals of Eq. (A-16), we derive 

cg(x’, x) = - S r + @n(x', D%(x, 0 dr - 
S s + %(x’, 5) en(x, 5MS (A-20) 

Comparing this with expression (8.11), we conclude 

y(x’, x) = -cg(x’, x) (A-21) 

thereby establishing the identity of this function with 
the classical Green’s function type defined by Eqs. 
(A-4) and (A-5). 
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