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Abstract. A layer of viscoelastic material embedded in an infinite medium also 
viscoelastic tends to fold through instability when the system is compressed in a direction 
parallel with the layer. This phenomenon which was treated previously by using an 
approximate plate theory, [l, 21, is analyzed here by using an exact theory for the 
deformation of a continuum under prestress [3, 4, 5, 61. The effect of the compressive 
prestress in the embedding medium is taken into account, and it is found that although it 
is not always negligible, it tends to be very small under conditions where the instability 
of the layer is strong. The same conclusion holds for the error involved in the use of a 
plate theory for the layer instead of the exact equations for a prestressed continuum. 
In the course of the analysis we have also treated the problem of a semi-infinite visco- 
elastic half space subject to a uniform internal compression parallel with the boundary 
and a surface load normal to this boundary. The compressive load produces an increase 
of the surface deflection under the normal load. This effect appears through an ampli- 
fication factor which is evaluated numerically for the particular example of an elastic 
body. It is shown that under certain conditions the free surface of the compressed semi- 
infinite medium may become unstable and will tend to wrinkle. This is suggested as a 
probable explanation for the wrinkles which appear on the surface of a body subjected 
to a plastic compression. 

1. Introduction. We consider a layer of viscoelastic material surrounded by an un- 
bounded medium also viscoelastic, the whole system being subject to compressive stresses 
parallel with the direction of the layer. Such stresses may be set up for instance if the 
whole system is subject to a uniform compressive strain parallel with the layer. 

As another example we have the case where a compressive stress in the layer alone 
will be produced if a swelling of the layer occurs while longitudinal expansion is prevented. 
The question which we are concerned with here is the stability of the layer under such 
a system of prestress and the prediction of the deformation of this sytem. We have already 
analyzed this problem by introducing certain approximations [I, 21. In particular we 
have assumed that the layer behaves like a plate, i.e., that it obeys equations of flexure 
of the type used in strength of materials theory and generalized to apply to viscoelastic 
media. Another assumption introduced in this previous work is that the prestress in the 
surrounding medium has a negligible effect. 

Our purpose is to check the accuracy of the previous simplified theories by solving 
the problem from the exact equations for small deformations of a continuum under 
prestress. General equations for incremental deformations of a body under prestress 
were derived by this writer some years ago in a series of publications [3, 4, 5, 61. While 
the theory was developed in the particular context of elastic continua, the equations 

*Received June 26, 1958. 
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are applicable to any type of incremental deformations of elastic or anelastic bodies. 
This is due to the fact that in the development of the theory the phys+s is separated 
from the geometry of the problem, and the incremental stress strain relations are left 
arbitrary. For the reader’s convenience, we have rederived the equations in Sec. 2 for 
the particular case of plane strain. In Sec. 3 these equations are first applied to the 
evaluation of the surface deflection under a normal load for a semi-infinite viscoelastic 
medium, which is at the same time subject to a compression in a direction parallel with 
the boundary. 

The relations between the incremental stresses and strains are assumed to be the 
same as those derived by the present writer from thermodynamics [7]. The nature of 
the approximation which may be involved in this assumption is discussed in a previous 
publication [2]. It is found that the lateral compression produces an amplification of 
the surface deflection and its magnitude is evaluated. The possibility of an instability 
of the free surface under a lateral compression is analyzed in Sec. 4. It is pointed out that 
although the magnitude of this instability is in general quite small, the effect may be 
large for incremental deformations in the plastic range where the so-called tangent 
modulus is the significant parameter. The instability should manifest itself in the form 
of a wrinkling of the surface, a phenomenon which is actually observed on the surface 
of a compressed solid in the plastic range. 

In Sec. 5 a complete analysis is given for the folding of a layer of uniform thickness 
embedded in a medium of infinite extent. We have assumed that there is no friction at 
the interface of the layer and the medium. This affords a direct comparison with the 
results obtained in [l] and [2] by an approximate theory and with the same assumption 
of perfect interfacial slip.* Results of the previous section are used in order to evaluate 
the influence of the compressive stress in the surrounding medium. It is found that in 
general this compression may be neglected, as it does not affect substantially the wave 
length of the folding. The case where the layer and the surrounding medium are both 
incompressible viscous fluids is investigated in detail. 

The rate of growth of the amplitude of folding as a function of the wave length has 
been derived. The dominant wave length-i.e., that which exhibits the maximum rate 
of amplitude growth-is evaluated as a function of the viscosity ratio of the two media. 
This dominant wave length is independent of the load. Results are compared with the 
results of the approximate theory of [I]. It is found that this approximate theory agrees 
very well with the present results when the layer viscosity is larger than about seventy 
times the viscosity of the surrounding medium. This is also the condition for the magni- 
tude of the instability to become significant so that the folding amplitude increases at a 
rate fast en&gh to be observable in practice. 

2. The theory of deformation of a prestressed solid. We shall first recall briefly 
the theory of incremental stress and deformation of a solid under initial stress. We 
assume the iticremental deformation to be small so that the theory is linear. Such a’ 
theory was developed by the writer [3, 4, 5, 61 for the case of an elastic body. However, 
it is independent of the physical nature of the body and is therefore applicable to visco- 
elastic media. In order to simplify the presentation, we shall limit ourselves here to a 
two dimensional deformation. 

We are dealing with the problem of a continuum undergoing small deformation 

*An evaluation of the effect of interfacial adherence haa been given in [2]. 



19591 FOLDING OF A LAYERED VISCOELASTIC MEDIUM 187 

from an initial state which is not one of zero stress. The initial stress field is defined 
by components S,, , X,, = S,, , S,, , referred to x, y axes. This being a two dimensional 
case, we assume that the other components of the initial stress field vanish or do not 
appear in the equations. The condition of equilibrium of this stress field is 

as,, as12 
-+-- ax ay + PX = 0. 

eS,, a&, 
ax +- ay + PY = 0, 

(2.1) 

with a mass density p and a body force X, Y per unit mass. The problem is to formulate 
the laws of deformation of this medium where small incremental stresses and strains 
are superimposed on the initial state. 

In treating this problem we have departed from the traditional viewpoint of the 
mathematician and defined the incremental tensors in a different way. Let us first 
consider the strain. A point P of initial coordinates x, y in the prestressed state is 
displaced to P’ of coordinates 

t=x+u, 
q=y+v. 

In this transformation the material around P undergoes a rotation 

w=gp) 

and a deformation 

au a0 
e -- 
zz - ax 

egv = - ay ezu = +($+$). 

(2.2) 

(2.3) 

(2.4) 

In order to deal with the problem of relating stress to strain, it is important to consider 
the phenomenon from the view point of an observer rotating with the material through 
an angle w. If we denote by Eii the strain components referred to rotated axes, then 
it is clear that to the first order these are the same as e,{ defined above, 

Eii = eii . (2.5) 

This is not true, however, for the incremental stress. If we refer the stress to axes rotating 
with the material, the total stress acting on the element is 

i 

S,, + 811 S12 + Sl, 

. 
(2.6) 

S,, + %l S22 + s22 1 

The incremental stress sii is referred to rotated axes and depends only on the strain 
eii . The nature of this relation is a physical problem which we shall consider in the 
next section. We shall deal herg only with the geometrical aspects of the problem and 
established equations for the incremental stress field sii which express the condition 
of equilibrium of the field. This is done by first referring the stress field to the unrotated 
initial directions x, y. These stress components are to the first order 
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c’rz = As,, + Sll - 2x,,w, 

uuz, = s,, + s22 -I- 2&w, (2.7) 

oru = 81, + SlZ + ml - &,I@. 

Note that in the deformation this stress field is the one at point [ = x + u and r] = y + u. 
Also that the mass density has now become p’ by the incremental volume change.* The 
equations of equilibrium of the field uii are 

!?g + !?$ + p’X = 0, 

2 + !$z + p’y = 0. 

(2.8) 

We now express these equations by means of the original coordinates x, y. Using the 
relations 

I_$ = (1 + $f$ dx + 2 dy 
(2.9) 

and solving for dx, dy, we find the partial derivatives of x, y with respect to E,q, e.g. 

ax 1 -=- 
at D ( > 

1+$ etc. (2.10) 

D is the Jacobian, i.e., the determinant of the transformation (2.9). With these ex- 
pressions we may write 

a~,, ax a~=,, au,, aY 
ai - dz af 

-+--+?$E 
ay ac; 

Conservation of mass requires 

D’= P P. (2.12) 

The equilibrium equations (2.8) may then be expressed in terms of x and y. Substituting 
the values (2.7) for uii retaining only first order terms, gives 

(2.13) 

+ 
as av aS av as au --!L__~--_A-+-__= 

’ ax ay ay ax ax ay 
asI2 au o 

ay ax 

Another equation is obtained by permutation of the symbols and changing w in - w. 
These equations are further simplified by introducing the following identities 

a0 -= 
ax ezu +W 

(2.14) 
au -= 
ay 

e,, - (J 

*For simplicity we assume here that the body force is independent of the coordinates. The more 
general case is considered in [4]_ 
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and by taking into account the equilibrium condition (2.1) for the initial stress field. 
Equations (2.13) are then written 

(2.15) 

+ 
dS,1 

euu - ( &as,, 
ax ay + ax e=, > + as,, 

ay ezz = 0. 

The other equation is also obtained by permutation of the variables and changing 
(J in - w. If the initial field is uniform, the terms written on the second line disappear 
and the equations become 

$$ + 2 + pYw - 2s,, g + (S,, - S,,) $ = 0, 

2 + !$ - pxw + 2s,, $ + (S,, - S,,) g = 0. 

(2.16) 

It is interesting to see ‘that in the absence of a body force the only additional terms 
due to the pre-stress depend on the total initial shear and disappear if the initial stress 
is hydrostatic. 

The boundary conditions are found from the stresses cii . The force acting on an 
arc element d.$, dq, after deformation is 

dF, = u,, ds - uzzu df, (2.17) 
dF, = u,v drl - vu, dt. 

The force F is acting on matter lying to the left side of the arc element d& dq in a counter- 
clockwise coordinate system and to the right in a clockwise system. Substituting the 
values (2.7) for the stresses, expressions (2.9) for d& dv and retaining only first order 
terms, we find 

dF, = -kz + S,, - Szzw + S12ezI: - Sllezvl dx 

+ kl + S,, - S,,w + &eyV - &zezvl dy, 
(2.18) 

dF, = - [szz + & + S,,w + Sz2ezz - S12ezvl dx 

+ Lb + & + &,w + Slaevv - &ze.vl dy. 

This gives the force acting on an element of arc initially of components dx, dy, at point 

2, Y* 
3. The viscoelastic half space under combined surface loading and lateral com- 

pression. We shall apply the previous equations to the problem of determining the de- 
flection of the surface of a viscoelastic half space under the action of a load normal to 
the surface and a condition of prestress which is a compression in a direction parallel 
to the surface (Fig. 1). 

The surface is along the x-axis and the y-axis is directed inward. The initial stress 
system is assumed to be 

s,, = s,, = 0, As,, = -P, (3.1) 

i.e., a uniform compression along the x-direction. We assume the body force to be zero. 
Equations (2.16) become 
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(3.2) 

~+$L+(). 

The next step is now to introduce a relation between the incremental stresses Sii and the 
incremental strain eii . Such relations have not yet been developed in the most general 
case for a pre-stressed material, and some difficulty arises in this connection. We have 
shown [4] that for an elastic body under prestress, the elastic constants cannot be the 
same as in the unstressed condition unless the prestress system is hydrostatic. We there- 
fore point out that, in general, it must be considered an approximation to use-as we 
shall do here-the same stress-strain relations for the prestressed and the initially 
stress-free medium. We have discussed this point more extensively in [2]. 

PLckzj; p=_s,l 

FIG. 1. Viscoelastic half space under combined surface loads apd lateral compression. 

Another point arises if the body is viscous for slow deformations. Then the initial 
state is one of steady strain rate, and there are additional incremental strains which are 
not due to the incremental stresses sii alone. 

In the applications below we shall, therefore, consider the total displacement 
field as ui + u* where UT is the displacement associated with the steady strain rate due 
to the initial stress Sii . The term ui then represents the departure of the displacement 
from the initial uniform strain rate. The incremental strain and rotation appearing in 
equations (2.15), (2.16) and (2.18) should then be written as eji + eX and w + w* where 
e; and o* correspond to the initial steady state. 

In the applications below, the components e,*, and CO* drop out, of the equations 
and do not appear in the formulation of the problem. We may, therefore, disregard the 
term u* in the present treatment. In general, of course, since efi and w* are linear func- 
tions of time, they will disappear from the equations by introducing second time de- 
rivatives of all variables. 

The operational stress-strain relations for an initially stress-free medium were 
established in [7] and found to be 

Sii = 2&eij + S,J?e (3 -3) 

with the unit matrix tYij and e = e,, + ess . 
The operators are 

Y(r) dr + & + VP, 

-49 dr + R + R'P, 

(3 *4) 

(3.5) 
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where p designates the time differential operator 

(3.6) 

By a well-known property of such operators, the relations are also valid if p is a real or 
a complex quantity, provided all variables contain the exponential factor e”. 

Substituting expressions (3.3) for the stress into the equations (3.2), we fmd 

It can be verified that solutions of these equations with a sinusoidal factor along x are 

24 = -sin Zz[Ae-‘” + Ck(1 - /?)e-zky], 
(3.8) 

v = -cos Zz[Ae-‘” + C(1 - @?)e-‘kU]. 

These solutions are analogous to those developed in [3, 61 for the purely elastic case. In 
these expressions A and C are unknown operators, and we have put 

2@=5w& k = 1 - r I’* 

( ) 

P 
1+r ’ l= 2&’ 

(3.9) 

If k is chosen positive the solutions (3.8) represent deformations confined to a region 
near the surface. The same is true if k is complex and chosen such that its real part is 
positive. 

Consider now the case where a normal load of sinusoidal distribution is applied to 
the surface (y = 0). We wish to determine the deflection at the surface due to the simul- 
taneous action of the surface load and the compressive preload P in the material. The 
surface load will be represented as 

dF, 
dx 

= q = qocoslx. (3.10) 

It is acting downward in the y direction as indicated in Fig. 1. The tangential component 
of the boundary force vanishes 

dF, = 0. (3.11) 

Introducing expressions (2.18) into the relations (3.10) (3.11), we obtain the boundary 
conditions 

e,, = 0, 

s 22 = -qO cos I, = 2&e,, + lb. (3.12) 

Substituting in these conditions the values u and v from expressions (3.8) and putting 
y = 0 yields 

A + ; (1 + k* - 2/3k*) = 0, 

A + Ck(1 - prc”> + $ k/3(1 - k2) = -&. (3.13) 
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The conditions determine the operators A and C. The deflection of the surface is also 
sinusoidal and represented by 

VIJ = Vcoslx. (3.14) 

The ratio of the load q to the deflection v0 at the surface y = 0 is then given by 

(3.15) 

with the notation 
- - 

B = 4&C& + a 

2&+B ’ 
(3.16) 

& 
“=&+ 

The effect of the compressive load P arises through the bracketed factor in Eq. 
(3.15). This factor is 

The deflection under a load q. is 

(3.17) 

(3.18) 

If a constant sinusoidally distributed load is suddenly applied at time t = 0 with a 
maximum value unity, 

qo = l(t) 

it may be represented by the complex integral 

q. = 1(t) = _-A- 
2?ri s 

c+im c &. 
C_im p 

(3.20) 

Hence the deflection under this load is 

(3.21) 

In this expression B and (a are functions of p. 
The effect of the lateral compression P appears through the factor cp. If this lateral 

compression is zero, then 

and the deflection is 

c = 0, cp=l (3.22) 

In order to give an idea of the magnitudes involved, let us consider first the case of a 

(3.23) 
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purely elastic incompressible material. Incompressibility corresponds to 

R=CU or CY=O. 

With a shear modulus G, we put 

& = G. 

Hence 

(3.24) 

(3.25) 

k(l + s-)” - 1 
P” 

!: (3.26) 

with 

5 = P/2G. 

The deflection is amplified by the lateral compression P, and the amplification 
factor is l/q. Values of this amplification factor as a function of { are given in Table 1. 

TABLE 1. 

0.50 1.67 

0.60 2.14 
___~-- 

0.70 3.29 
______ 

0.80 10.00 
__- 

0.85 m 

We see that when { = 0.85 i.e. for P = 1.7G the amplification factor is infinite and 
the surface becomes unstable. We also notice that the amplification factor becomes 
appreciable only for values l > 0.5; hence, for compressive loads P larger than G these 
loads are of the order of the elastic modulus. In a material of constant modulus, they 
can only occur for loads corresponding to a very large compressive strain. However, 
we must remember that the present theory is for incremental deformations. Hence, the 
modulus G appearing in the above expression is actually the so-called tangent modulus. 
In many cases where plastic deformations are involved, this modulus decreases with the 
load, and the above values may well fall within observable ranges. 

In regard to the significance of the amplification factor, it should be remarked that 
it is the same for all wave lengths. Hence, the deflection of the surface under an arbitrary 
load distribution may be derived from the deflection under the same surface load and 
zero compression (P = 0) by simply multiplying the latter by the amplification factor. 
The compressive load introduces no distortion of the deflection but simply a change of 
magnitude. 

It can easily be seen that the amplification effect of the compressive load on the 
surface deflection of a half space also applies when the initial deflection is not due to 
a surface loading but due to irregularities and waviness. This departure from perfect 
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smoothness is amplified without distortion by the compressive loads. This suggests 
that under high compressive loads, surfaces which appear to be smooth initially will 
tend to wrinkle. Since the amplification factor is dependent only on the tangent modulus, 
this mechanism suggests itself particularly as the explanation for the wrinkling which 
appears on surfaces of materials compressed in the plastic range. 

4. Instability of the free surface of a half space under compression. Let us now 
examine the condition of instability of the free surface of a half space under compression. 
This corresponds to the existence of solutions different from zero for the deflection V 
while the surface load go is eero. Equation (3.18) may be written 

~0 = +BpVZ. (4.1) 

The condition q. = 0 with V # 0 amounts to 

cp = ; Ml + r):>” - 11 -Crp=0 (4.2) 

which may also be written 

k0 + s-)” 1 + al2 =--- 
.t P 

or 

2 - 2c2 - p = zap + a2p. 

Let us first examine the elastic case. The operators & 
Lame constants 

a=G I2 = A. 

Poisson’s ratio being designated by Y we find 

G 
a=X=l-1_2v. 

Also 

!: = P/2G. 

(4.3) 

(4.4) 

and l? are replaced by the 

(4.5) 

(4.6) 

(4.7) 

The critical value of p is the real root of Eq. (4.4). This root depends on Poisson’s 
ratio only and its value is shown in Table 2. 

TABLE 2 

0 .55 

! .68 

4 .84 

The instability occurs at values of the compressive load P comparable with the 
shear modulus G. However, as already pointed out above, since the latter is the tangent 
modulus, its value may be low enough in the plastic range for the surface instability 
to occur within the practical range of P. 
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As an example of a viscous material, let us now consider the case of a viscous in- 
compressible fluid. Some clarification is needed here as to what is meant by instability. 
We assume that the half space is initially under the influence of a compressive load P 
parallel with the free surface and that the fluid is initially in a steady state of uniform 
rate of deformation under this load. All velocities and strain rates are initially constant 
in time and space. The stability of the free surface under those conditions is determined 
by considering the possible exponential growth of a disturbance starting from a certain 
instantaneous configuration considered as the initial state.* The possibility of such 
instability is easily determined from the above analysis. For an incompressible fluid, 
the operators become 

& = /JP, 8= to) (4.8) 

with p the viscosity coefficient. Since the condition l? = ~0 implies cy = 0, Eq. (4.4) 
becomes 

2 - 212 - {” = 0 (4.9) 

with 

P P 
p=--@=G. 

Equation (4.9) is a cubic in the unknown p. For values of p which are roots of this 
equation, there exist disturbances proportional to the factor e”. Instability corresponds 
to roots which are real and positive or complex with a positive real part. The three roots 
p of (4.9) are 

p1 = 1.192& > 

p, = (-0.596 + 0.255i) 2 , 

p3 = (-0.596 - 0.255~) 5. 

(4.10) 

When substituted in Eq. (4.2), i.e. cp = 0, the complex roots do not furnish a solution 
if we choose k to have a positive real part. Hence they do not correspond to the physical 
problem. 

The root p, corresponds to instability. In order to appreciate the magnitude of this 
instability, let us consider a time t, during which the undisturbed uniform flow produces 
a 25% compressive strain. The rate of strain in the x direction under the load P is 

Hence, 

0.25 P 
e,, = -_.-_ = --0 6 4P 

(4.11) 

t,=;, p,tl = 0.596. (4.12) 

*In dealing with a viscous fluid whose initial state of stress gives rise to a steady strain rate, we must 
refer to the remark Sec. 3 by which it is justified to consider not the actual incremental deformation, 
but the departure of the deformation from the steady state itself. 
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This means that in the time interval t1 during which the material is squeezed by 25%, 
any disturbance of the free surface from a perfect plane is amplified by a factor eP“’ = 
1.81. This instability is of such a mild form that it will be very difficult to observe in 
practice.* 

A similar procedure may be used for any kind of viscoelastic half space by solving 
Eq. (4.4) as an equation for p with the operators & and I? as appropriate functions of 
the unknown p. 

5. Characteristic equation for the stability of the embedded layer. We consider a 
layer of thickness h embedded in an infinite medium. The layer and the surrounding 
medium have different viscoelastic properties. The layer is subject to an initial com- 
pression P and the surrounding medium to a compression P, (Fig. 2). This initial state 

FIG. 2. Layer embedded in infinite medium under lateral compression. 

of stress will depend on the type of initi,al deformation imposed on the system and on 
the viscoelastic parameters of the two media. For example, if the two media are in- 
compressible viscous fluids and if the system is squeezed uniformly in a direction parallel 
with the layer, the compressive stresses are in the ratio 

P 
PI 2 -=- (5.1) 

where p is the viscosity coefficient of the layer and pL1 that of the surrounding medium. 
The stress could also be due to other causes, as, for instance, an increase of volume of 
the layer while longitudinal elongation is prevented. In this case the stress P, in the 
surrounding medium can be zero. 

In order to simplify the formulation, we shall assume that the interface between 
the layer and the medium is perfectly lubricated so that there are no tangential stresses 
at the interface. A previously developed approximate theory for the case of perfect and 
imperfect adherence [2] indicates that this assumption does not modify the result sub- 
stantially. The properties of the layer are represented by the operators 0 and fi and 
that of the surrounding medium by &I and & . We consider the layer separately and 
locate the x-axis in the plane equidistant from the two faces (Fig. 3). The y-axis is normal 
to the layer. Flexure of the layer is represented by antisymmetric solutions of Eqs. 

*Since the theory is only valid for small deformations, its application to the case of a large com- 
pressive strain of 25 per cent will, of course, give only an indication of the orders of magnitude of the 
amplification effect. 
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FIG. 3. Forces acting on the layer. 

(3.7). They are obtained by adding two solutions of the type (3.8) by using both positive 
and negative exponents. We find 

u = -sin Zz[A sinh ly + CL(1 - fl) sinh Zlcy], 

v = cos Zx[A cash ly + C(l - P/V) cash lky], 

where /3 and k are defined by (3.9). 

(5.2) 

This also coincides with the solution obtained previously for the purely elastic case 
[3]. The normal force applied to the layer at the boundary y = h/2 and due to the 
surrounding medium is 

q = qo cos lx. (5.3) 

This load is taken positive in the negative y direction, and the tangential force vanishes 
owing to the condition of perfect slip at the interface. Because of symmetry, boundary 
conditions imposed at one interface are automatically satisfied at the other. We shall 
consider the interface at y = h/2. Applying (2.18) we find the boundary conditions 

dF, 
dx 

= -slz - Pe,, = 0 

g, 
dx = -sm = -qo cos lx. 

(5.4) 

From expressions (3.3) for sl, and szz in terms of the strains we find at y = h/2, 

ezu = 0, 

2&e,, + R(e,, + e,J = -q. cos lx. 
(5.5) 

Substituting the expressions (5.2) for u and v yields two equations for the operators A 
and C in terms of q,, . We must also consider the boundary value of the normal displace- 
ment v. This is expressed by substituting y = h/2 in the second equation (5.2). We find 

v = V cos lx = A cash ; + C(l - ,~?i?) cash F 1 cos lx. (5.6) 

The normal deflection at the boundary y = h/2 is V cos lx. By substituting in (5.6) the 
expressions for A and C determined from the two equations (5.5), we find a relation 
between the load q,, and the interface deflection V. This relation may be written 

2qo -= 
ZVB 

f (1 + a?) tanh y - (’ < ‘)” k tanh kr, (5.7) 
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and B and (Y are operators depending solely on the viscoelastic properties of the layer 

B = 4&(& +@_ 
20 + B 

(5.8) 

At this point we still have to match boundary conditions for the layer and the half 
space representing the embedding medium. This is readily done if we consider the ratio 
of the load q,, to deflection V for the surface of the half space which was obtained in 
Sec. 3 and given by expression 

2q, B 
-= 

IV lcpl , 

where 

(5.9) 

(5.10) 

41 , 

The quantities B, and QI~ depend only on the viscoelastic properties of the surrounding 
medium, while the others include the value of the prestress P, in this medium. This 
prestress is contained in the expression (al and, as was pointed out above, we may con- 
sider l/cpl as an amplification factor for the deflection at the surface of a half space. 
The value of the amplification factor is unity when the prestress is zero (P, = p1 = 0). 
Since the load q,, and the normal deflection V are the same for both the layer and the 
medium at the interface matching of the boundary, conditions amount to equating the 
values of q&V appearing on the left side of the two equations (5.7) and (5.9). This 
yields the characteristic equation 

& 
B”pl = $1 +c&tanhy - (1 + a” 

r 
k tanh kr. (5.11) 

It is true that the values of q. and V for the layer and the medium are not those of 
the same location of the interface because of the relative slip of the two media. However, 
the error is of the second order and is irrelevant in a first order theory. 

The parameters of the surrounding medium are contained solely in Blcpl on the left 
hand side. The significance of this characteristic equation lies in the fact that for given 
materials and a given prestress field P and PI , it constitutes a relation between the non- 
dimensional wave number y = 4Zh of the folding and the value of p. This value of p is 
the coefficient in the time factor evt which multiplies the amplitude of the folding for 
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any particular wave number y initially present as a disturbance in the layer. In a system 
with random initial disturbance, those wave lengths will appear for which p has the 
largest positive value. We shall disregard the possibility that there are complex values 
for p as encountered above in the case of the viscoelastic half space and assume that 
such complex values are not physically significant. 

6. Numerical results and discussion. An approximate expression for the charac- 
teristic equation (5.11) is obtained if we expand the hyperbolic tangents in power series 
to the third power in y. We find 

xv1 = .PY(l + 4 - ir3[2 - (1 - ol)i-1. 63.1) 

If the wave length of the folding is sufficiently large, y and { are small. We may 
further neglect (1 - OZ){ in the bracket. Also we may assume cr to be small, which 
amounts to neglecting the prestress P, in the surrounding medium. Hence we may 
put (ol = 1. Equation (6.1) then reduces to 

B 
-I = &(l + CX) - Qr”. B (6.2) 

This may also be written 

1 B, P = E B(S)’ + h- (6.3) 

This last equation coincides with Eq. (3.1) of [I] obtained by neglecting the prestress 
P, in the surrounding medium and using a “thin plate” type theory for the layer. A 
complete discussion of the approximate equation (6.3) was given in [l] for the general 
case of two media of arbitrary viscoelastic properties and for a cerOain number of par- 
ticular cases. 

The exact equation (5.11) provides a means to test the accuracy of the approximate 
theory. For this purpose it is sufficient to compare the two theories on a simple example. 
We shall choose the case of two incompressible fluids. Incompressible fluids are repre- 
sented by 

B=l&= CO) 

ff = a!1 = 0, 

8 = PP, 

(6.4) 

where P is the viscosity coefficient of the layer and P, that of the surrounding medium. 
Introducing these expressions into the exact characteristic equation (5.11), we derive 

where 

+l=;tanhr- (1 + C))” 
!? 

k tanh kr, (6.5) 
P s 

91 = 
2 - 25-T - r; 

Ml + rJ” + 1 ’ 

P P 
2lJP ’ 

P1=& 

(6.6) 

P= 



200 M. A. BIOT Vol. XVII, No. 2 

There are two types of approximations involved in Eq. (6.2): that due to the use of 
thin plate theory and the other due to neglecting the prestress P, of the surrounding 
medium. Let us discuss the effect of each separately. Therefore we put 9, = 1 in Eq. 
(6.5), i.e., we consider first the error due to the use of plate theory alone. The character- 
istic equation is then 

&_ - qtanh, - (1 + r))” 
r 

k tanh k-y. (6.7) 
IJ 

This is a relation between these variables representing a function t of y with a param- 
eter p/p1 . The variable { versus y is plotted in Figs. (4) and (5) for six values of p/p1 . 

01 

0 

3.0 

Of 

I 
- 5 (EXACT1 

--- 3 = + ; + + y2 (APPROX.) 

0.1 0.2 0.3 0.4 0.5 

Y 

FIG. 4. Plot of r = P/2pp versus y and the parameter ~/PI from the exact relation (6.7) and the ap- 
proximate solution (6.9). 

/.L//.L~ = 6, 12,36, 72, 144, 288. 

Consider now the approximate equation (6.2) which corresponds to the thin plate 
theory and, also, to neglect of the prestress P, . For incompressible fluids, this equation 
becomes 

EL.- - !?Y - f-i” 
P 

(6.8) 
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(6.9) 

This also represents a family of functions r of y which are plotted as dotted lines in Figs. 
(4) and (5) for the same values of P/P, . Examination of the two plots affords an im- 
mediate comparison between the exact and approximate theories. Of particular interest 
is the minimum value of p denoted by lmi. and the value y at which this minimum occurs. 
It is easily seen that the minimum of { for a given value of the compressive load P 

IC 

08 

OE 

5 

04 

02 

0 

- 5 (EXACTI I ---_ c:+_3 + 3 y*(APPROX.l 

I I 

II 
A- 

PI 
= 36 

/= ,* 

I I I 

0.2 04 0.6 

Y 

FIG. 5. Same aa Fig. 4. 
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/= 

.’ 

- 
./ 

0.6 IO 

corresponds to maximum values of p. The significance of a root p of Eq. (6.7) is given 
by the fact that for such roots a disturbance of wave number 1 of the layer increases 
proportionally to the factor e”. Hence, maximum values of p correspond to wave lengths 
of maximum rate of growth. We have referred to this wave length as the dominant wave 
length. The wave number l,, of this dominant wave length is therefore determined by 

yd = $l,h = T g (6.10) 
d 

(L, = dominant wave length). 
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From formula (6.9) we find the approximate values 

Ya= 31, ( > 
l/3 

4EL ’ 

(6.11) 

(6.12) 

The approximate value (6.11) of yd as a function of (&JP)*‘~ is shown in Fig. 6 by the 
dotted straight line, while the exact value of yd [determined from Eq. (6.7)] is represented 
by the full line. Comparison between the two curves indicates that, a discrepancy in the 
value of 7d begins to be not,iceable for values (P~/P)~‘~ > l/4 or p/p1 < 64. The error in 
the dominant wave length may rise to lo-15% when p/p1 becomes of the order of ten. 

yd 

FIG. 6. Value yd = ?rh/Ld (Ld = dominant wavelength) as a function of I;/pl by exact and approximate 
theory. 

We have also plotted the exact value of rmin versus (~~/p)~‘~ as determined from Eq. 
(6.7). It is represented by the full line in Fig. 7. The approximate value (6.12) is repre- 
sented by a dotted straight line. The error becomes noticeable for (P~/P)~‘~ > l/16; 
hence, again for p/p1 < 64 For smaller values of p/p1 , the error may reach lo-15%. 

Let us now look upon the other approximation involved in Eq. (6.9) and which is 
due to neglect of the prestress P, in the surrounding medium. In order to evaluate the 
effect of this prestress, we must reintroduce the factor (pl which we had put equal to 
unity. This amounts to using the same graphs as in Figs. 4 to 7, but with a corrected 
value plqol instead of p1 for the viscosity of the surrounding medium. Let us evaluate 
the value of the correction factor ‘pt in the vicinity of the dominant wave number (near 
[min). Assuming the layered material to be squeezed uniformly so that the strains are 
the same in the layer and the surrounding medium the compressive prestresses P, and 
P satisfy relation (5.1) and we derive 

r = t1 * (6.13) 

We may, therefore, evaluate (pl as a function of [. Values of (pl are given in Table 3. 



203 19591 FOLDING OF A LAYERED VISCOELASTIC MEDIUM 

TABLE 3. 

r cpl (Plm)Q V12’3 
~- 

.l .946 .980 .962 

.3 ,804 .930 .865 

.5 ,598 .841 ,710 

The values of p, show a decrease in the “effective value” plpl of the viscosity coefficient 
of the surrounding medium due to the prestress. The decrease is about 5% or less for 
values of [min < 0.1, i.e., for P/I..L~ > 64 and may be as high as 40% for the lower values 
of pjp, . The effect on the dominant wave length is much smaller and is proportional to 
(~~)l’~. From the values of ((o~)“~ in Table 3 and from Fig. 6, it can be seen that the domi- 
nant wave length will be increased from 2 to 16 per cent in the same range. Reference to 
Fig. 7 and values of ((P~)~‘~ show that tmin will be decreased by an amount somewhat larger 

06 

04 

‘min 

0.2 

0 L 
0 0.1 

(+)5 O 2 
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/ 

0. 3 

FIG. 7. The minimum value of r as a function of p/p, by exact and approximate theory. 

due to the prestress. In general, we may conclude that the effect of the prestress P, in 
the embedding medium becomes negligible if the viscosity ratio p/p1 of the layer to the 
medium is larger than about 64. It is interesting to note that this was also found to be 
the condition for the error, due to thin plate theory, to be negligible. 

In order to complete the present discussion, we must also pay attention to the degree 
of instability involved in the phenomenon of folding. The dominant wave length de- 
termined by yd is that for which an initial waviness in the layer increases at the fastest 
rate. After a time t, the amplitude is multiplied by the factor e” where p is given by 

P -. 
’ = 2Ellmin 

(6.14) 

We may ask, for instance, what is the value of the factor ePt after a time tl such that 
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the layered material is squeezed by 25 per cent under the compressive stresses P and P, . 
Referring to the same argument as in Sec. 4 in the case of the half space, we find 

and 

t, = ; (6.15) 

From Fig. 7 giving cmin as a function of p/p1 , we may derive the amplification factor 
e “I in terms of p/p1 . Values are shown in Table 4. 

TABLE 4. 

I.rlPl cxp (ml) 
--___ 

8 3.78 
27 14.8 
64 127 

125 1940 

The amplification factor increases sharply and becomes quite large for values 
p/p1 > 64. Below these values the magnitude of the amplification factor becomes 
relatively small, indicating that the instability in that range is not too significant and 
will not exhibit very sharp features. This lower range of values is also the one in which 
the errors become appreciable if we apply thin plate theory and neglect the prestress in 
the surrounding medium. We may conclude that in the region of significant instability 
Eq. (6.2) of the approximate theory is applicable. 

The present discussion is limited to the case of incompressible viscous fluids. A similar 
discussion can be carried out for any two materials of arbitrary viscoelastic properties 
represented by four suitable operators. If the two materials are incompressible, the 
plots in Figs. 4 to 7 represent master graphs by which thesfolding may be analyzed 
quantitatively by means of very simple calculations. 
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