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SUMMARY 

Based on the variational formulation of linear thermodynam- 
ics as developed previously by the writer, thermomechanical 
reciprocity relations are discussed which lead to new methods of 
analysis of thermal stresses. These reciprocity relations are quite 
different from the usual ones derived from the analogy of thermal 
loading with a combination of surface and body-force distribution. 
The results are applicable to stationary and transient temper- 
atures in elastic and viscoelastic structures. The methods are 
entirely variational and do not require the evaluation of the 
temperature field. The stresses at one point are expressed di- 
rectly in terms of any arbitrary distribution temperatures applied 
externally, including the effect of surface heat-transfer layer. 
The concepts and procedures are illustrated on a simple ex- 
ample. The relation is pointed out between the reciprocity 
property and the generalization of Castigliano’s principle to 
thermomechanics. 

(1) INTRODUCTION 

I N THE PAST, problems of thermal stresses in elastic 
systems have been treated by neglecting the 

reciprocal coupling between the temperature and 
deformation. What is meant by reciprocal coupling 
is the fact that a change of temperature produces 
a deformation and in turn a deformation produces 
a change of temperature. Classical thermodynamics 
shows that one effect cannot occur without the other. 
This coupling leads to the well-known phenomenon of 
thermoelastic dissipation in elastic solids. The cou- 
pling is important from the standpoint of the physicist 
and in certain specific technological applications such 
as electronics, but in the theory of structures its order 
of magnitude is not significant. 

However the coupling does acquire importance in 
thermal stress analysis as a concept because, as we will 
show, it leads to entirely new methods of calculation. 
We have shown2 that the most general thermoelastic 
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system obeys variational principles. These variational 
principles were derived by introducing the concept of 
entropy displacement and thermoelastic potential and 
by expressing a dissipation function in terms of the time 
derivatives of the entropy displacement. From these 
principles we have derived a formulation of thermo- 
elasticity where the mechanical and thermal variables 
play identical roles. The boundary forces and tem- 
peratures then obey thermomechanical reciprocity rela- 
tions. In the case of stationary temperatures, this is 
analogous to Maxwell’s reciprocity relations for the 
forces acting on an elastic structure. Furthermore, 
the reciprocity properties apply to transient temper- 
atures. Attention is called to the essential difference 
between the reciprocity relations discussed in this 
paper and the usual ones derived from the analogy of 
thermal loading with distributed surface and body 
forces or its equivalent variational form which uses the 
isothermal free energy. The new viewpoint presented 
here leads to influence coefficients and influence func- 
tions which are truly of a hybrid thermomechanical char- 
acter-i.e., they belong to both thermodynamics and 
mechanics. By their use it becomes possible to predict 
the stresses of one point due to any application of tem- 
perature at the boundary applied either directly to the 
solid or through a surface heat-transfer layer. Ad- 
vantages of the method are many. The procedure 
makes use entirely of variational methods and by- 
passes the evaluation of the temperature$eld itself. The 
process is error-smoothing, eliminates the evaluation of 
eventual local temperature singularities, and requires 
only one calculation for all possible cases of applied 
temperatures at the boundary. The procedure may 
also be used to calculate thermal stresses in visco- 
elastic systems. 

In Section (2) we review our previous results on the 
variational formulation of thermoelasticity. The re- 
sulting reciprocity relations for stationary temper- 
atures are discussed in Section (3), along with some 
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variational procedures for the evaluation of the thermo- 
mechanical influence coefficients. Section (4) dis- 
cusses the use of the reciprocity relations in thermal 
stress analysis for stationary temperatures, and Sec- 
tion (5) extends the same methods for transient thermal 
stresses in elastic and viscoelastic structures. For the 
purpose of illustration of the concepts and procedure, 
we have treated a simple example in Section (6). 

(2) VARIATIONAL FORMULATION OF THERMOELASTICITY 

In previous workZm5 we have described the state of a 
thermoelastic system by two vector fields u and S of 
components ui and Si, respectively. The vector u is 
the geometrical displacement of the medium. The 
vector S, which we have called the entropy displace- 
ment or entropy flow, is defined so that its time deriv- 
ative is 

(bS/bt) = (l/T,) (bEz/bt) (2.1) 

where dH/bt is the rate of heat flow. The symbol T, 
denotes a constant reference temperature which repre- 
sents the uniform temperature acquired by the system 
when it is in a state of equilibrium in the presence of a 
large heat reservoir at the same temperature T,. The 
terminology “entropy displacement” for S is of course 
only justified if the local temperatures 0 + T, are such 
that 0 << T,. The theory, being linear, is valid when 
this inequality is not fulfilled, but there is no need of 
changing the terminology. The thermoelastic proper- 
ties of the system are then completely defined2-5 by a 
thermoelastic potential 

v= 
sss 

[W -I- (l/2) (T,/c) (Prjeij + div S)2]d7 
r 

(2.2) 

and a dissipation function 

D = (1,‘2)Tr 
sss 

X,(dS,/dt) (bSj/&)dT + 

(1,2);; ss, (l/K) (&s,/at)u4 (2.3) 

The integrals are extended to the volume r and the 
boundary surface A. The symbols are 

efj = 

c i-f = 

J$” = 
K = 
Lb1 = 

s, = 
C = 

(l/2) [@u&Q + (8ujlbxj)] strain com- 
ponents 

isothermal elastic moduli 

( l/2) CPfeijeP,t, isothermal strain energy 
coefficient of surface heat transfer 
[kill-’ = thermal resistivity matrix-i.e., 

inverse of the thermal conductivity (K,) 
normal component of S at the boundary 
specific heat per unit volume at zero strain 

The &‘s are coefficients which appear in the equations 
of state for the stress uPQ, 

UMJ = Cp/eij - /3,&l (2.4) 

where 0 is the local excess temperature above the 
equilibrium value T,. The field S, the strain eU, and 

the excess temperature 0 are related by the equation 

div S = -(CO/T,) - Pijeij (2.5) 

We now disturb the equilibrium of the system by 
applying forces F per unit area at the boundary and 
external temperatures Oa. These temperatures may be 
applied at the boundary outside the surface heat-transfer 
layer and not directly to the solid. They may also of 
course be applied directly to the solid, which amounts 
to putting K = ~0. 
We have shown that the system responds as if general- 
ized thermomechanical forces Qi were applied to it, and 
that these forces are defined by a method of virtual 
work. This virtual work is 

Q&i = JS, ( F4u + O,&S,,)dA (2.6) 

where S, is the normal component of S at the boundary 
chosen positive inward. The thermoelastic system is 
represented by the generalized coordinates g2, i.e., we 
have put 

U = lliqi, s = s&7, (2.7) 

where Ui and Si are vector fields of fixed configuration. 
The thermoelastic potential and the dissipation func- 
tion then become 

V = (1/2)aijqiqj, D = (GW,,P~~ (2.8) 

Applying variational methods, we have derived the 
following differential equations: 

@V/&I,) + @Dl~~,) = Qt (2.9) 

or ai,gj + bijp, = Qt 

These equations are a particular case of the more gen- 
eral treatment of linear thermodynamics which we have 
introduced in references 1 and 2 and displayed in more 
detail in reference 5. The quadratic forms V and D 
are positive definite because of their physical nature. 

(3) RECIPROCITY RELATIONS FOR THE THERMOELASTIC 
ADMITTANCE 

It is of interest to consider the system as a “black 
box,” forces being applied to a ‘small number of “ob- 
served” coordinates qr. The other coordinates which 
may be very large or even infinite in number are un- 
observed and the conjugate forces applied to them 
are zero. We may solve the system (2.9) for the 
observed coordinates in terms of the corresponding 
forces. We have shown that the solution is 

Pi = Au*Qj (3.1) 

where Ai)* = Ali* is a symmetric matrix representing 
the thermoelastic admittance of the system. In oper- 
ational form this admittance is 

AU* = 5 L’“‘/(P + A,) 1 + Ci, (3.2) 

This was given a rigorous proof in reference 1. The 
symbol p refers to the time derivative p = d/dt which 
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in case of harmonic functions of time with angular fre- 
quency (J becomes p = iw. Relations (3.1) may of 
course also be considered as relations between Laplace 
transforms of pi and Q,. Consider now two points P 
and M at the boundary of a thermoelastic system. A 
temperature 0~ applied externally at P over a unit area 
produces at M a displacement UM in a certain direction. t 
We may assimilate the subscripts j and i in expressions 
(3.1) and (3.2) with the points P and A& and the quan- 
tities Qj and qt with Bp and Us. We shall assume that 
the temperatures are varying with time at an infinitely 
slow rate, so that at every moment the temperatures 
are the same as in a steady state. This assumption 
being equivalent to that of zero frequency we may put 
fi = 0 in expression (3.2). Hence, we may write 

UM = A MPeP (3.3) 

with an “influence coefficient” 

A MP = 2 (c,jc”‘/b) + ci, (3.4) 

We note that, if Cu(‘j f 0, the corresponding X, cannot 
be zero, since a finite temperature must produce a 
finite displacement. Conversely, a force FM applied 
at M in the direction ?dM at an infinitely slow rate will 
produce per unit area at P an inflow of entropy Sp, 
which may be written 

SP = APMFM (3.5) 

As a consequence of the symmetry of the admittance 
matrix (3.2), we may write 

AMP = APM (3.6) 

This reciprocity relation is the extension to mixed ther- 
momechanical variables of the analogous Maxwell’s 
relations between forces and displacements at different 
locations of an elastic system. The temperature BP 
plays the role of Ba, and we have already pointed out 
that this indicates the temperature either outside the 
surface transfzr layer or at the solid boundary itself. 

For practical purposes an interesting feature of the 
coefficient APM is the possibility of establishing its 
value by a relatively simple procedure, as follows. 
Since the force is applied gradually and very slowly the 
deformation may be considered isothermal (0 = 0). 
However, a flow of entropy is produced because each 
element of volume due to its deformation exudes a cer- 
tain amount of heat. This can be seen from Eq. (2.5), 
which for isothermal deformations, i.e., 0 = 0, becomes 

div S = -Puetl (3.7) 

In this equation et5 is the strain produced by the applica- 
tion of the force FM. The force FM and the vector S 
may be assumed to vary linearly with time at a very 
slow rate. The time derivative of S is proportional to 
the rate of heat flow and, according to the general prin- 
ciples developed earlier,6 must satisfy a principle of 
minimum dissipation-i.e., its spatial distribution must 

t Note that UM has the dimension of a displacement per unit 
area hence of (length)-‘. 

minimize the dissipation function as given by Eq. 
(2.3). Since we are dealing with a stationary state, 
S may be assumed to vary linearly with time and we 
may replace bS/bt by S in the dissipation function D. 
The problem is then to minimize 

D’ = (l/2) JJJ XijSJjdr + 
7 

(W4 JJ (l/K) WYdA (3.8) 
A 

under the constraint (3.7). To do this we may either 
minimize absolutely 

D’ + X 
sss 

(div S + P+@r (3.9) 
I 

with the Lagrangian multiplier X, or, preferably, intro- 
duce any field S* which satisfies Eq. (3.7), then put 

s = s+ + s* (3.10) 

where Sf is an unknown field with conservative flow- 
i.e., 

div S+ = 0 (3.11) 

We then find the field Sf which minimizes D’ abso- 
lutely. Identical procedures have been discussed by 
this writer in more detail in connection with heat flow 
analysis problems.4 It may be convenient to express 
the right-hand side of Eq. (3.7) in terms of the stresses 
due to FAl. This will be the case in particular if such 
stresses are statically determined directly from FM. 
Consider a material under zero stress upV = 0. Rela- 
tion (2.4) becomes 

CfiVi“eij = ppye (3.12) 

With thermal dilation coefficient 01,~ we also have 

Eij = cX@ (3.13) 
. . 

hence, cfiuvffi3. = BP” (3.14) 

If now e,, is the strain due to the force FM for isothermal 
deformation (0 = 0), the corresponding stress is 

ull = CT; e,, (3.15) 

Multiplying Eq. (3.14) by efiV and taking Eq. (3.15) 
into account we derive 

U~~(YU = &e,, (3.16) 

We may therefore write Eq. (3.7) as 

div S = - UrjQij (3.17) 

In the particular case of an isotropic medium, the stress- 
strain relations are 

ufj = 2/*erj + (he - Be)&, (3.18) 

where e = e,, + eyr, -I- eZZ is the dilation, and EL, X, the 
Lamb constants. The coefficients PC are reduced to 

Pi1 = J,P (3.19) 

and /l may be expressed in terms of the linear coefficient 
a1 of thermal dilation as 
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FIG. 1. Thermal stress at M due to temperature BP applied at P. 

P = %(2/J + 3X) 

Relation (3.7) becomes 

(3.20) 

div S = -pe (3.21) 

where e is the dilation produced by the force PM. This 
equation may also be written in terms of the stress in- 
variant u = u,, + uYy + uZZ due to FM by applying 
Eq. (3.17). Wefind 

div S = --CY~U (3.22) 

This expression will be convenient in problems where 
the stress field due to FM is statically determined. 

The expression for D’ also simplifies to 

D’ = (l/2) sss (l/K)S% + 
r 

(l/2) ss, (l/K)S,‘dA (3.23) 

where k is the thermal conductivity. 
Eq. (3.17) may be considered as generalizing the 

method of the associated flow field of reference 4 to 
thermoelasticity by associating an entropy flow with a 
given stress configuration. 

(4) APPLICATION TO THERMAL STRESS ANALYSIS FOR 
STATIONARY TEMPERATURES 

Application of the reciprocity relations to thermal 
stress analysis may be made as follows: Consider a 
structure as shown in Fig. 1 and suppose we wanted to 
determine the stress at a plane cross section M due to 
the application of a temperature Op per unit area at 
point P of the boundary. As mentioned above, this 
temperature may be applied directly to the solid bound- 
ary or through a surface heat-transfer layer. The 
stress at M is represented by a normal force F,, a tan- 
gential force Ft, and a moment 311. We cut the struc- 
ture along the plane M and apply such forces very 
slowly-i.e., isothermally at the cut. The linear and 
angular displacements at the cut associated with the 
forces F,, Ft, and LJlX are, respectively, un, ut, and a. 
They may be written 

un = C,mFn + CntFt + C,,m 
ut = Cd, + CttFt + Ct,m (4.1) 
ff = C,,Fn + C,tFt + Cam 3 

The matrix of coefficients is, of course, symmetric, and 
relations (4.1) may be conveniently expressed by apply- 
ing Castigliano’s principle-i.e., 

%z = bU/dF,, ut = blJ/aFt, a! = BU/dm (4.2) 

where U(F,, Ft, 3n) is a quadratic form representing the 
isothermal strain energy. Up to now we have followed 
the well-known classical procedure. We now suppose 
that we have evaluated for each of the forces F,, Ft, 
and 311, the entropy flow, and, in particular, the normal 
inward flow of entropy per unit area at point P. For 
each force component this entropy inflow at P may be 
written 

S#) = ApM@)Fw 
Sp(l) = ApM(QFt 

1 
(4.3) 

Sp(OL) = ApMca)m 

In evaluating the flow field S we must assume that it 
remains continuous across the gap at m. The calcula- 
tion is conveniently carried out by a variational pro- 
cedure as outlined in the previous section. We are 
now in a position to apply the reciprocity relations 
(3.6). This means that we may evaluate immediately 
the displacements produced at the gap by a temper- 
ature Bp applied at point P per unit area. We write 

%I = A Mp(n)ep, ut = AMp(Qp, 
a! = A~p(“)Bp (4.4) 

The influence coefficients in these relations are already 
determined by Eqs. (4.3) since from the reciprocity 
relations (3.6) we find 

A Mp(n) = ApMW, AMp(1) = ApMct), 
A up = Ap,w(O1) (4.5) 

Thermal stresses due to the temperature Op correspond 
to forces F,, Ft, 311 which, at the gap, produce displace- 
ments which are equal and opposite in sign to those 
Eqs. (4.4) produced by Op. Hence the thermal stresses 
at M are given by the equations 

Ap#)ep = - (bU/bF,J 
A pM@)ep = - (b U/dFt) \ 

AP‘da)eP = - (alJ/am)( , 
(4.6) 

The reader will note the advantages of this procedure 
over the classical method. They are as follows: 

(a) The method does not require the knowledge of 
the temperature field in the body and by-passes com- 
pIetely the necessity of calculating this temperature 
distribution. 

(b) The thermomechanical influence coefficients 
A pm@), Apdc), APM($ appearing in Eqs. (4.6) are 
determined for all points P of the boundary by a single 
calculation. The calculation does not have to be re- 
peated for every new distribution of boundary tem- 
perature. 

(c) The thermomechanical influence coefficients are 
determined by a variational method which amounts 
to minimizing the dissipation function. This function 
includes the effect of any surface heat-transfer layer 
with a transfer coefficient which may be dependent 
on the location. 

(d) The method avoids the evaluation of compli- 
cated temperature fields which may arise due to local 
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effects near the points of application of the boundary 
temperatures, and provides a “smoothing out” of these 
effects. 

Needless to say, the method is applicable to very 
complex structures and is not at all restricted to the 
particular configuration of Fig. 1 which is used here to 
explain the method. As shown by this writer some 
years ago,l* a the connectivity of a body introduces 
essential differences in the thermoelastic properties. 
In problems of two-dimensional stress, for example, 
we have shown that an homogeneous isotropic body 
without holes-i.e., simply connected-exhibits no 
thermal stresses under arbitrary stationary temper- 
atures at the boundary. If there are holes, a cut such 
as exhibited in Fig. 1 will render the body simply 
connected and thermal stresses will disappear. They 
will then be due entirely to the forces required to close 
the gap at the cut. Application of these theorems to 
the photoelastic determination of thermal stresses was 
discussed in reference 9. 

The reciprocity relations are equivalent to a general- 
ization of Castigliano’s principle for thermomechanical 
phenomena, if we introduce the concept of associated 
field as developed in reference 4. The thermoelastic 
potential may be written 

I/ = (l/2) (u,‘F, + %‘Ft + CJnn + sP&> (4.7) 

where 

%Z ’ = bl_J/dF, + Aad9p 

Ut ’ = blJ/bFt + A~p(‘)fb 

= bU,‘Bm + A~p%p 

;p =A 
(4.3) 

md”)Fn + Apd’)Ft + 
A~M(% + App%p 

The quantity Sp or total entropy inflow at P is the sum 
of expression (4.3) and an additional term A&p which 
is the inflow due to tip itself after elimination of the ig- 
norable coordinates. This elimination may be ac- 
complished by introducing associated flow fields as 
developed in reference 4. The quantities un’, ut’, and 01’ 
are the total displacements at M obtained by adding 
Eqs. (4.2) and (4.4). Because of reciprocity and the 
properties of quadratic forms we may write 

%L ’ = bV/bF,, ut’ = dV/dFt, 

d = bv/bm, sp = bv/bep (4.6) 

This is a generalized form of Castigliano’s principle. 
Putting 

%I I- - Ut’ = (Y ‘=O (4.10) 

is equivalent to Eqs. (4.6) and determines the thermal 
stresses. Eqs. (4.10) also state that the thermoelastic 
potential is a minimum when considered as a function of 
a self-equilibrating stress field. 

(5) EXTENSION TO TRANSIENT STRESSES AND TO 
VISCOELASTICITY 

Until now we have only considered the application of 
reciprocity relations to the case of stationary temper- 

atures. The next question is to extend the procedure 
to the analysis of thermal stresses in an elastic system 
for the case of transient temperatures. Since the ad- 
mittance matrix AZj* is symmetric, it is clear that a 
similar reciprocity property as Eq. (3.6) exists for 
transients. Considering again point P and M, and a 
temperature e,(t) function of the time t applied at P, 
we may write, for the displacement at M, the opera- 
tional relation 

U&f(t) = AMp*~P(t> (5.1) 

In this expression AMP* is an operator of the type (3.2). 

This operator corresponds of course to an indicial 
cross-admittance function AMP(t). This admittance 
function is obtained as the displacement UM at M cor- 
responding to the sudden application of a unit constant 
temperature at P. We put 

eP(t) = l(O (5.2) 

where l(t) is the Heaviside step function 

1(t) = 
1 

; 
t<o J:, 
t>o (5.3) 

The indicial admittance is 

AMP(~) = AMP* l(t) (5.4) > 

Conversely, for the entropy inflow at P due to a force 
F&t) at M, we may also write the operational relation 

SPO) = APM*FMO) (5.5) 

The corresponding indicial admittance A p&t) equal to 
the entropy inflow at P due to the sudden application 
of a unit force FM at M is 

APA&) = APM* 10) (5.6) 

The symmetry of the admittance matrix (3.2) leads to 

A MP * = ApM* (5.7) 

and, hence, to AMP(~) = APM@) (5.8) 

This is a reciprocity relation for the indicial thermo- 
mechanical admittance functions. 

Application of these results to thermal stress anal- 
ysis requires the evaluation of the indicial admittance 
APM(t). This requires the evaluation of the transient 
entropy flow field due to the sudden application of a 
unit force at M. Calculation of this field may be 
achieved fairly simply by an approximate method. 
The general thermoelastic theory2, 5 establishes a rela- 
tion between the temperature 8 and the deformation, 
which is 

(b/k) k(be/+) I = 

The deformation e(, is due to the suddenly applied unit 
force at M. Since we are dealing with a thermoelastic 
system, if we wish to be exact the deformation eU must 
be computed along with the coupled temperature field 
and will be a function of time. Actually, however, the 
coupling between the deformation and the temperature 
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is very small, and it is justified to assume that the de- 
formations elf are the same as if they were isothermal. 
At this point, we make use of a scalar concept already 
introduced in reference 3, which ,we called a tlow po- 
tential. In this case, we define it as 

+ = (l/T,) l l9 dt (5.10) 

Eq. (5.9) may then be written 

(%QQ) [~&%Vd~~) I = 4W/W + Pe (5.11) 

Because of Eq. (3.16), we may also write Plleu = aOuij 
where o,~ is the stress due to FM. 

The scalar + plays the role of a temperature field 
with distributed heat sinks Pueu = ffciat5 per unit 
volume. The entropy displacement is then given by 

Si = -ktj(Wl~xj) (5.12) 

Actually it is not necessary to evaluate the scalar #, 
and the field Si may be computed directly by vari- 
ational methods as developed in considerable detail in 
references 3 and 4 in connection with purely thermal 
problems. The problem here is the same as the evalu- 
ation of the heat flow, represented by S when a sudden 
distribution of heat sinks Pue,, is applied throughout 
the body. This can be done by considering the prob- 
lem as one of thermal relaxation, by splitting S into 
two parts, 

s = St $ s, (5.13) 

where So is the steady-state flow corresponding to the 
sources, while St is a transient field without sources 
determined by the initial condition St = -SO and 
vanishing for t = ~0 . The steady-state field So has 
already been considered above in connection with sta- 
tionary problems and, as is shown, may also be evalu- 
ated by variational methods, 

We now go back to the more specific configuration of 
Fig. 1. By the method just outlined we may evaluate 
the three admittance functions A ,~p(*)(t), A up, 
A Mpcn)(t), which are associated with the normal tan- 
gential and angular displacement at the cut M. A 
time varying temperature 19p(t) applied at P per unit 
area produces at M displacements given by 

u,(t) = AJ4P(a)(t)h40) + j 
S t A&g) (t - T) (d@P/dT)d7 
0 

u‘(t) = AMP(*)(t) e,(o) + 

c fA $fp’*‘(t - 7) (d&/dT)dT t 
(5.14) 

Jo 

a(t) = AiwP(t; e,(o) + 

S AMpca) (t - r) (d&,‘dr)dr 
0 I 

If, again, we neglect the temperature changes produced 
by the forces F,, Ft, 3X applied at M, the forces neces- 
sary to close the gap are the same as in Section (4) for 
isothermal deformation. Using the same isothermal 
strain energy U we write 

AMP(t + s,’ AM.ip"Yt - T) x 
\ 

(db,‘dr)dr = - (bU/bF,) 

A.uP)(t)ep(O) + 1; An;r~(~) (t - T) x 
’ (5.15) 

(dBp/‘dr)dr = - (3 U/dFt) 

AMPCa)(t)&(0) + S “AMP@)@ - T) x 

(a&/dT)dr = -@U/&X) J 

These three equations yield the thermal stress at M as a 
function of time. 

The reciprocity relations and the above methods are 
readily extended to what might be called linear thermo- 
viscoelasticity-i.e., the problem of thermal stresses in a 
viscoelastic material such that the operational moduli 
are independent of the temperature. In such a case the 
stress-strain relations are formally identical with Eqs. 
(2.4) where the coefficients C,,,“, flu, are replaced by the 
operators Cp,,*ij, pij*. The operators Cfiy*ij and Pu* are 
related to the coefficient of thermal dilation by equa- 
tions similar to (3.14); i.e., 

(5.16) 

The requirement that the operators be temperature- 
independent strongly restricts the applicability of 
thermoviscoelasticity since most viscoelastic materials 
show deformation rates which are very sensitive to tem- 
perature changes. We shall therefore only briefly 
indicate how the method may be extended to this case. 

The validity of the reciprocity relations (5.8) for the 
thermomechanical admittance operator in viscoelastic 
media may be immediately derived from either the 
correspondence rule or the general thermodynamic 
principles as formulated in earlier publications. The 
admittance functions are again computed by solving 
Eq. (5.11) for 4 or S. The sinks in that equation due 
to the application of the force FM are fiij*eaj = CX~U~~. 
We see that if uij is statically determined they are con- 
stant. The admittance functions thus calculated are 
related to the stresses at M by equations formally 
identical with (5.15) except for the fact that the co- 
efficients on the right-hand side are operators. The 
reader familiar with operational or Laplace transform 
methods will have no difficulty in evaluating these 
stresses by standard procedures. 

Castigliano’s principle may be extended in oper- 
ational form to the transient thermoelastic case by 
writing an expression identical in form with (4.7) ex- 
cept that the coefficients are replaced by the corre- 
sponding operators. The same generalization holds for 
thermoviscoelasticity or any other more complex field 
of application of irreversible thermodynamics. It also 
corresponds to a generalization of methods of comple- 
mentary energy to thermoelasticity and thermovisco- 
elasticity. 

(6) EXAMPLE 

We shall consider the problem of stationary therma 
stresses in a thin circular cylinder of radius a and thick- 
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ness h (see Fig. 2). The deformation is restrained along 
the axis, and the problem is one of two-dimensional 
strain. The two-dimensional stress-strain relations are 

UZZ = 2pe,, + he - pe 

ffw = 2peue,, + Xe - pe 

t 

(6.1) 

CZY = 2tieZy 

with the dilation e = e,, + elly and Lame constants X 
and p. The stress u,, in a direction parallel with the 
axis is 

BZZ = Xe - /30 (6.2) 

Following the procedure outlined above, we cut the 
cylinder at M (Fig. 2). Forces and moments applied 
at M produce a bending moment 3Xp at point P. 

Xp = Cm + F,a(l - cos (p) + Fta sin cp (6.3) 

The forces are expressed per unit length along the axis. 
The strain energy due to these forces is 

U = (1/2)[(1 - 9)/E] (12/h3)a ~z~Fm~z&‘ 

I 
(6.4) 

U = (1/2)R[23n2+ 3aZFn2 + a2Ft3 + 4aXIF,] 

with 

A = [(l - 9)/E] (12/h3)?ra 
E = Young’s modulus 
V = Poisson’s ratio 

Castigliano’s principle expressed by Eqs. (4.2) yields 
the linear and angular displacements at M. 

% = 3a2RF, + 2aRCX 

ut = Ra2Ft (6.5) 

a = 2aRF, + 2R3n 1 

We must now calculate the displacements at M due to 
temperatures at the cylindrical boundary by applying 
the thermomechanical reciprocity relations. The forces 
at M produce a dilation e and a corresponding entropy 
flow S which we assume to be perpendicular to the 
circumference. The region around point P is repre- 
sented in Fig. 3. The flow S across the thickness must 
satisfy 

bS/dy = -/3e (6.6) 

where the dilation e is linearly distributed and given byt 

= -Dy 

!iI = [(l + v) (1 - 2v),‘E] (12/h3)3np 1 
(6.7) 

Integrating Eq. (6.6), 

s = (1/2)PDy2 + c (6.3) 

where C is a constant of integration to be determined 
by a principle of minimum dissipation-i.e., by mini- 
mizing expression (3.23). If there is no heat-transfer 
surface layer (K = m) this results in the equation 

(GC) J++ szdy = 0 (6.9) 

t We shall neglect here that part of the deformation which is 
due to other forces than the bending moment 3np. 

FIG. 2. Stresses in a thin circular cylinder. 

Y 

FIG. 3. Section across the thickness at P. 

from which we determine C. We find 

S = (l/Z)@0 [y” - (b2/12)] (6.10) 

The inward component SV of S at the inside boundary 
(y = -h/2) is 

Sp = (1/12)/?Dh2 
Sp = Ip(1 + v) (1 - 2v)/Eh]‘Snp > 

(6.11) 

It is easily shown that 

Y = (P/E) (1 + v> (1 - 2~) (6.12) 

represents the coefficient of thermal dilation for two- 
dimensional strain; hence, we may write 

SP = r(mPlh) (6.13) 

For each force component at M we derive from Eq. (6.3) 

Sp@) = (ra/h) (1 - cos (p> F, 

SP(~) = (ra/h) F, sin cp 

t 

(6.14) 
sp(a) = (r/h)cnr. 

These equations correspond to relations (4.3). The 
thermomechanical influence coefficients are 

AMP@) = (ra/h) (1 - cos ‘p) 
A Mp(t) = (ralh) sin cp 
A Mpca) = r/h 1 

(6.15) 

We shall apply relations (4.6) to the case of an axbi- 
trary distribution of temperatures 0p along the inside 
circumference. On the left-hand side we must there- 
fore integrate the temperatures over all points P. 

The right-hand side is given by relations (6.5). We 
find 

- S ‘* A~p(n)epad~ = 3a2RFn + 2aR%t 
0 

S 
2s 

- AmpWpadq = Ra2Ft (6.16) 

0 -S 
2* 

A Mp(a)Bpadq = 2aRF, + 2R3n 
0 I 

If the temperature is uniform, i.e., 0p = &,, we find 
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Ft = F, = 0 and 

3n = -(r&/h) [&‘(l - ~“)]p(h.~/‘12) (6.17) 

The thermal stress is a pure moment. For 0~ = 
&sincp,wefindF,=3X=Oand’ 

F, = -(r&,/ah) [E/(1 - y2)] (h3/12) (6.18) 

For Bp proportional to sin ncp or cos ncp where (n = 
integer) n > 1 the thermal stress vanishes. These re- 
sults are in agreement with our general theorem of 
reference 8 on two-dimensional thermal stresses. 

If, instead of applying the temperature ep directly 
to the solid boundary, we apply it through a layer of 
heat-transfer coefficient K we must minimize the ex- 
pression 

D’ = (l/2@ s_:;;;; S2 dy + (1,'K)Sp2 (6.19) 

with 

k = heat conductivity of the solid 
s = (1/2)/3Dy2 + c 

1 

(6.20) 
sp = (1/8)/3DP + c 

The factor l/2 does not appear in the second term of 
Eq. (6.19) because it is the sum of two terms corre- 
sponding to the inner and outer boundaries. Minimiz- 
ing D’ determines C, and we find 

Sp = /3Dh2/12[1 + (2k/Kh)] (6.21) 

Comparing with (6.11), we see that all calculations may 
be repeated, provided we multiply all thermomechanical 
coefficients AMP@), etc., by l/ [ 1 + (2k/Kh) 1. 

The example presented here has been chosen for its 
simplicity and as an illustration of the methods. It is 
not intended to show the particular advantages attached 
to the procedure This should come out in the treat- 
ment of more complex problems. 
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