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1 Abstract 

A SYSTEMATIC theory has been developed for the stability of viscoelastic 

media under prestress. Use is made of linear thermodynamics and of 

i general equations for the deformation of a prestressed medium estab- 

f Iished by the author. The theory is applied to the analysis of sinusoidal 

1 folding of stratified viscoelastic media in compression with continuous 

I 

i 

and discontinuous inhomogeneity. The influence of gravity is included. 

Some applications and preliminary model test data are presented. 

’ The phenomenon of buckling in compression of an elastic inhomog- 

eneous medium under initial stress is well known, It is illustrated by 

t 

the instability of a longitudinally compressed elastic plate embedded 

in a medium of lower rigidity. Under a critical load buckling appears 

suddenly in the form of a sinusoidal folding of a certain wave length. 

Such sudden buckling will, of course, not occur in general if the solids 

involved are viscoelastic. 

j The interest in studying the stability problem of viscoelastic media 

lies partly in some technological applications connected with the use 

of polymers or with the thermomechanics of metallic structures. Our 

\ 

main interest, however, was directed to geodynamics in an attempt 

to furnish the beginnings of a quantitative approach to problems of 

1 

deformation of the earth’s crust. A systematic program to this effect 

was initiated about ten years ago and embodies several distinct areas 

I of investigation. One such investigation was the development of general 

stress-strain relations derived from the thermodynamics of irreversible 

processes [l]. We, also had to establish a theoretical approach for the 

treatment of stability problems in viscoelastic media [2]. This was ap- 

plied to the gradua1 clarification of the qualitative as well as quantitative 

nature of the phenomena. Along with the theoretical work a model test- 

ing program has also been initiated as an intermediate check toward 

its application to full-scale geophysical configurations. 
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The static stability of a purely elastic plate under axial compression 

lying on a heavy fluid was analyzed many years ago by SMOLUCHOWSKI [3] 

in the context of geophysics. A similar analysis was also carried out by 

GOLDSTEIN [4]. Some instability cases of an incompressible inhomog- 

eneous viscous fluid in a gravity field were analyzed by CHANDRASEKHAR [5] 

and by HIDE [6]. 

The stability of an elastic plate embedded in an infinitely extended 

elastic medium was analyzed by GOUGH, ELAM and De BRUYNE [7], 

BIJLAARD [8], [9], and Van der NEUT [lo]. 

The general relation between stress ozj and strain eij in a linear 

viscoelastic medium for small deformations in the vicinity of an equi- 

librium state was found to be 

with an operator 

(1) 

where p = d/dt. 

This relation was derived from the thermodynamics of irreversible 

processes [l]. The operators 2; JW constitute 6x 6 matrix, symmetric 

with respect to the main diagonal with twenty-one distinct elements. 

The nature of the expression [2] was discussed in detail in references [l] 

and [ll]. If we are dealing with a medium which is in equilibrium under 

an initial stress, L!$ we have shown [12] that the relations between the 

incremental stresses and strains must be of 

oIj = (Z,*,P”+&+,,, 

where 

BP?=6 s. t, CLv 11 

depends on the initial stress. This is generally 

B~“Y $ B$ 

the type 

(3) 

(4) 

lot a symmetric tensor, i.e. 

(5) 

except if the initial state is a hydrostatic stress. 

Bf. is in consequence of Onsager’s relations. 

The presence of the term 

In most practical cases it 

will be justified to neglect it and write the incremental stress-strain 

relations in the form (1). For an isotopic medium they become 

a,, = 2Q*e,,+f.?,,R*e (6) 

with the dilatation 

e = 6,,e,,. (7) 
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The case of an incompressible fluid with Newtonian viscosity is found 

by putting 

R’=w, e = 0, R*e = CS, Q* = rip, 

where “17 is the coefficient of viscosity. Relations (6) become 

v-9 

olj- P,jO = Zqpe,, . t4 

In stability problems we are looking for solutions such that all quan- 

tities are proportional to an increasing exponential ePt. In this case all 

operators become algebraic quantities where p is the coefficient in the 

exponent. 

For the case of a layered viscoelastic medium and a compression paral- 

lel with the layer the simplest problem of stability is that of a layer 

embedded in an infinite medium or lying on the surface of a half-space. 

A longitudinal compression acts in the 

layer. This problem has been treated 

quite simply by analogy with the corre- 

sponding elastic problem [13]. The 

stress-strain relations are formulated P 

operationally in the same form as in 

the elastic case but the elastic moduli 

are replaced by operators in conformity 

with a general ((correspondence rule H. 

This correspondence rule leads to an 
FIG. 1. Layer embedded in an 

infinite medium 
immediate solution by using the known 

equations for the elastic case. For instance, consider the case of a layer of 

thickness h embedded in an infinite medium (Fig. 1). A compression 

P acts in the layer. We first neglect the compression P, which may exist 

in the surrounding medium, and write the equation for the deflection 

w of an elastic plate under an axial compression P and embedded in 

an infinite elastic medium. We assume a sinusoidal deflection, i.e. that 

w is proportional to cos lx where x lies in the direction of the compression. 

This yields a relation between the buckling wavelength and load P for 

the elastic case. We now introduce the correspondence rule and replace 

the Lame constant 1, and ,U by their corresponding operators R* and Q*. 

The relation obtained is [13]. 

where the operator 

B’(p) ‘= 4Q*@*+R*) ~. 
ZQ’+R* 

(10) 

(11) 
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determines the viscoelastic properties of the layer and an identical ex- 

pression B:(p) with a subscript refers to the properties of the surround- 

ing medium. 

The viscoelastic case differs from the elastic case by the appearance 

of gradual folding. Relation (10) shows there is a wavelength for which 

the folding amplitude has a maximum rate of growth, i.e. for which p 

is maximum. We call it the dominant wavelength L,. The general case 

has been discussed in reference [13] and simple expressions established 

for the dominant wavelength. In particular, if the layer and the surround- 

ing medium are incompressible and purely viscous the .dominant wave- 

length is 

where q is the viscosity coefficient of the layer and q1 that of the sur- 

rounding medium. This wavelength is independent of the compression P. 
For an elastic layer of Young’s modulus E and Poisson’s ratio Y in a 

viscous medium the dominant wavelength is 

1/ 

_..__- 

Ld = nh (~_;“)p * 

In this case the dominant wavelength depends 

pendent of the viscosity. The latter affects only 

(13) 

on the load but is inde- 

the rate of growth of the 

folds. We also discussed other cases such as the viscous layer in an elastic 

medium and the case of two Maxwell materials. It is found that the 

ratio of relaxation times of the two materials is an important parameter. 

In equation (10) we have assumed that there is perfect slip at the in- 

terface between the layer and the surrounding medium. We have also 

investigated [12] the effect of adherence at the interface and found that 

its influence on the dominant wavelength is small. 

In addition to the dominant wavelength another important feature 

is the amplitude of folding. For the instability to be significant the rate 

of growth of the folding must be sufficiently high compared to the over-all 

compression rate. The theory shows that in the case of purely viseous 

solids this requires the viscosity of the layer to be at least of the order 

of sixty times that of the surrounding medium [12], [16]. 

The next phase involved is the development of a rigorous theory 

which treated the layer as a two-dimensional continuum instead of using 

the approximate plate theory. Furthermore, the influence of the initial 

stress in the surrounding medium cannot rigorously be neglected. The 

rigorous treatment was accomplished by applying equations developed 

earlier by this writer in a series of pre-war publications for an elastic 
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continuum under initial stress [14], [15]. The equations are immediately 

applicable to viscoelastic media [2]. Results indicate the limits of appli- 

cability of the previous approximate results. As a by-product of this 

investigation we also solved the problem of stability of a viscoclastic 

half-space under a compression parallel with the surface. The surface 

is found to be unstable. This is offered as an explication for the wrinkles 

which appear at the surface of a compressed solid in the plastic range. 

This exact theory of folding instability was carried out in reference [16]. 

Perfect slip has been assumed at the interface. The equilibrium equa- 

tions for the incremental stress field in a continuum under a state of 

uniform initial compression P parallel with the x direction are 
I . 

/ where rc) is the local rotation of the continuum and ot, is the incremental 

f 
stress of relations (6). The field must satisfy these ‘equilibrium equations 

and suitable boundary conditions. We have first applied the theory to 

\ a viscoelastic homogeneous half-space with a uniform compression P 

; parallel with the surface. The surface is also loaded with a sinusoidally 

/ distributed load of magnitude q,, cos lx per unit area. The x axis is located 

at the surface and is parallel with the compression load P. The surface 

deflection is also sinusoidal, b,, = V cos Ix. We derive the relation be- 

i twecn load and deflection 

This is an operational relation where B* is defined by (11). The influence 

of the compression P is contained in the operator @*. The factor lIdi* 

1 plays the role of an amplification factor; it is unity in the absence of 

/ compression and larger than unity if the compression is present. For 

/ an incompressible medium we may write 

where 

(17) 

The surface is unstable for @* = 0. In that case a deflection may occur 

in the absence of surface load (qO = 0). Rationalizing the equation @* = 0 

yields a cubic in C. It has a positive real root, 5, = l/1.192. The two other 
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roots are complex and are spurious because they do not correspond 
to a solution which remains finite at infinite depth. This bears some 
anology with the theory of Rayleigh waves. For an incompressible pure- 
ly viscous medium of viscosity 17 we may write Q* = qp. In that case 
the root [r corresponds to exponentially increasing surface corrugations 
proportional to the factor eDIt, where 

p, = 1.192:. 

Note that all wavelengths increase at the same rate so that initial surface 
wrinkles are simply magnified at an exponential rate. There is no domi- 
nant wavelength. The amplification however is small and considerable 
compression is necessary for the wrinkles to become apparent. 

Having solved the problem of the half-space we may consider that 
of the layer of thickness h (Fig. 1). The latter is now under a compres- 
sion P while the surrounding medium is under a compression PI. The 
exact solution for the stability problem of this system leads to the rela- 
tion 

” @’ = Ltanhy - (1+T)2ktanhky 
9°C r 

with 

k= l-5 
1+5- ’ 

y ‘$lh. (21) 

The operators QT and ~3: refer to the embedding medium, the latter 
containing PI. It can be shown that the effect of the compression P, in 
the embedding medium is usually negligible and we may put @j: = 1. 
If in addition the materials are purely viscous we may write 

Qi = 71 
Q 17 

(22) 

and (20) becomes a relation between y, 5 and vi/r. This is plotted in 
Fig. 2 for three values of the viscosity ratio q/vi. The parameter y is 
a non-dimensional quantity proportional to the inverse wavelength of 
the folding. Minima of 5 correspond to the dominant wavelength. Values 
of C derived from the approximate equation (10) are shown by the dotted 
lines. The approximate theory seems therefore satisfactory for practical 
purposes. 

From the viewpoint of geodynamics the influence of gravity on the 
stability is of paramount interest. This was investigated for the compres- 
sed layer at the surface of a half-space and for the layer embedded be- : 
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tween top and bottom media of different densities and viscoelastic pro- 

perties [17]. The effect of gravity is embodied in a parameter which 

involves the ratio of the horizontal compression to the gravity force. 

ilZ0 
I 

- Ctexoct) / , 

----~=+f+$~(approx.) 
/I 

1' 

1' 

0 a1 a2 
Y 

a3 a4 cl5 

FIG. 2. Comparison of exact and approximate theories 

For a layer of thickness k under a horizontal compression P and lying 

on top of a half-space of mass density er equation (10) is replaced by 

$Q’h31*-Ph12+2Q:I+e,g = 0. (23) 

The two media are assumed incompressible with Q* referring to the 

layer and Qt to the medium, 

. 

‘I’he influence of gravity is contained in the term ?,g where g is the 

acceleration of gravity. 

We assume again two purely viscous media of viscosities “I;, and rll. 

In Figure 3 we have plotted the variable 1,h = 2qh/L, containing the 

dominant wavelength L, as a function of rl/q and pIgh/P. The latter 

parameter measures the effect of gravity. 

The case of a layer embedded between two media of different dens- 

ities was also investigated [17]. For the case where the top material 

is denser than the bottom one the phenomenon is complicated by the 

fact that a spontaneous instability arises due to gravity alone in the ab- 

sence of horizontal compression, 
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We have also treated the case’ of the inhomogeneous half-space. The 

material is incompressible and viscoelastic, of mass density Q. The free 

surface is horizontal and the weight per unit volume is eg. The stress- 

@ t 
strain relations are written 

aij-&,a = 2Q*eij (24) 
where Q* is an operator of the 

type (2). 

The case where Q* is a general 

viscoelasticity operator may be 

treated but we shall assume for 

simplicity that we are dealing 

with a purely viscous solid whose 

coefficient of viscosity 7 decreases 

exponentially with the depth y 

rj = rjOePg. (25) 
0 a1 0.2 a3 

FIG. 3. Effect of gravity and viscosity ratio Then 

on the dominant wavelength Q* = qope-ru. (26) 

Originally the material is in equilibrium under gravity with a hydrostatic 

pressure cgy proportional to the depth. We then squeeze the half-space 

horizontally at a uniform rate. This superimposes a horizontal compres- 

sive stress P whose value is P, at the surface and also decreases expo- 

nentially with depth 

This state of stress is found 

velop sinusoidal folds with 

non-dimensional parameter 

P = PO ecry. (27) 

to be unstable and the surface tends to de- 

a dominant wavelength depending on the 

G=J!K . 
POY 

(281 

The relationship between the dominant wavelength and G is found by 

proceeding as in the previous problems. The dominant wavelength 

is determined by the relation 

where 6 is a function of G which has been determined numerically. 

When plotting this relationship it is found that it may be approximated by 

6 = 2,2G6’1”. ’ (30) 
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When G = 0 i.e. without the effect of gravity the dominant wavelength 
tends to an infinite value. The results are also applicable to an incompress- 
ible solid whose proporties are defined by an operator of the type 

Some of the most interesting applications of the present theory are in 
the field of geophysics and geology. It leads for the first time to a quan- 
titative analysis of folding of stratified sedimentary rock. Elastic con- 
stants of rock do not vary greatjy in order of magnitude from one type 
of material to another. The elastic mod& are in the range of 1011 to l2 
dynes/cm2. On the other hand viscosity properties for slow deformations 
cover a range of from 10 I4 to 1O22 poise (c.g.s.) for the viscosity coef- 
ficients. The range of values is even wider if we take the temperae- 
ture into account. A layer of viscous rock embedded in a medium of 
viscosity a thousand times smaller would develop under compression 
a folding whose wavelength is given by expression (12) and is independent 
of the compression. The wavelength in this case will be 34 times the 
thickness of the layer. If the layer is elastic the wavelength depends on 
the load according to expression (13). Preliminary model tests1 have been 
carried out for this case and the folding is shown in Fig. 4. A careful 
quantitative evaluation has not yet been made but it was found that the 
wavelength is proportional to the thickness and inversely proportional 
to the square of the compressive load as predicted by equation (13). 
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