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Abstract. The Strum-Liouville equation is expressed in Hamiltonian form. A 
simple generating function is derived which defines a large class of canonical transforma- 
tions and reduces the Sturm-Liouville equation to the solution of a first order equation 
with a single unknown. The method is developed with particular reference to the wave 
equation. The procedure unifies many apparently diverse treatments and leads to new 
insights and procedures. Some new transformations are obtained, useful in the turning 
point region and for the improvement of accuracy in the region of validity of W.K.B. 
solutions. In addition a new power series expansion near the turning point is obtained. 

1. Standard canonical form of the Sturm-Liouville equation. Let cl, p be conjugate 
variables and f, g arbitrary functions of the independent coordinate x. The Hamiltonian: 

defines the canonical equations 

dq 1, z=f 

dp -= 
dz --sq 

which are equivalent to the second order equation 

$ f2 +scr=o, ( ) 

(1.1) 

(1.2) 

(I -3) 

i.e., the general Sturm-Liouville equation, having a vast number of physical applica- 
tions. A very large fraction of the integrable equations of mathematical physics are of 
this type. Thus, in separable coordinate systems, the solution of the partial differential 
equations of Laplace, of heat flow, of mechanical electro-magnetic and quantum- 
mechanical waves reduces to some form of Eq. (1.3). However, the exact behavior of 
the solutions of this equation is known only for a relatively few simple cases. In problems 
of practical interest it occurs frequently that the functional forms f and g are such that 
no solutions of Eq. (1.3) in terms of known functions is possible. One is thus often re- 
duced to devising approximations and/or numerical schemes of integration. 

Hamilton’s equations (1.2) are a system of first-order equations entirely equivalent 
to the Sturm-Liouville equation (1.3). From a purely numerical standpoint one might 
expect that more advantageous formulations are possible and, since we are dealing with 

*Received August 17, 1959. 
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a set of canonical equations, it seems only natural to apply the theory of canonical 
transformations which provides a natural and flexible means of exploring equivalent 
systems of first order equations. In the following sections we will describe one group of 
transformations, which should not only have certain numerical advantages, but also 
provide new insights and results of a general nature. 

2. Canonical transformation of the standard form. Clearly, considerable advantages 
can accrue from finding an equivalent set of first order equations, one of which is un- 
coupled, the other being soluble by quadrature. These requirements may be satisfied 
if one defines equivalent canonical equations in the new variables corresponding to the 
following class of generating functions: 

where 9 is an arbitrary function. The corresponding transformation is: 

aF 

p = -cl = 2qa 
Q2$=q2.$ 

and 

p”=4@f 
a* * 
dP 

The new Hamiltonian : 

becomes, after substituting (2.4), (2.5) : 

H = &K(P, 2) 

with 

K(P, 2) = ; 

The canonical equations for Q, P are 

a* 
-4a2 

Ii 

- 

x+-.& -t-g* 

_fzF 
- 

dp aP 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(24 

dp -K -= 

dz ’ (2.9) 

(2.10) 
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The last is integrable by quadrature: 

3. Selection of transformations. Assume that 

4(P, g) = &W(P) 

then 

One may write, without loss of generality: 

S(P) 
*=R(p)* 

(2.11) 

(3.1) 

(3.2) 

(3 *3) 

This facilitates the selection of the Q, P that are most desirable for a given problem or 
class of problems, since now 

q= 

P= 

with 

A= 

In this case: 

&‘/2R(p) +1/2 A-‘;” 

2&“%(P) &J’/” A-““, 

(3 *4) 

(3 -5) 

dS dR 
Rdp-Sdp. 

I 

(3 -6) 

(3.7) 

Equations (3.4), (3.5) enable one to select explicitly the forms R(P), S(P) in an appro- 
priate fashion, since R, S are arbitrary. This approach gives a free rein to physical 
intuition. Generally speaking, in the selection of transformations one may adopt one 
of two attitudes. 

On one hand, one can look for special properties that would be advantageous for a 
specific problem. Thus, if one is in a position to anticipate good formal approximations 
to q, p the functions R, S, can be chosen so as to produce the corresponding forms in 
Eqs. (3.4), (3.5). This will result in almost linear or almost constant solutions to Eqs. 
(2.9), (2.10) and thus greatly facilitate numerical integration. But this approach is 
fruitful in a relatively small number of cases and will not be discussed here. Besides the 
various perturbation schemes, such as that of Miller and Good [l] are well suited to 
this kind of situation. 

On the other hand, one may wish for properties suitable for integration in many 
cases, so as to provide a generally useful method; this is essentially the point of view 
adopted in the following sections, and which we will illustrate in the context of the wave 
equation. 
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Note also that the choice of transformations need not be based upon Eqs. (3.4), 
(3.5), but can stem from formal considerations concerning the desired behavior or form 
of individual terms in K(P, x), Eq. (3.2). This approach is less intuitive than the one we 
have followed. We shall have occasion to remark further upon some of these transforma- 
tions. 

4. The wave equation: a polar type of transformation. If in Eq. (1.3) we take 

f = 1, 

g = p” = h(z) - k2, 

where k is a parameter, we have the time-independent wave equation 

d2q 
3 + P”a = 0. 

(4.1) 

(4.2) 

This equation is typical of equations with oscillatory solutions and thus provides parti- 
cular motivation for the use of transformations of the class discussed in the preceding 
section. For example, one may look for functions R(P), S(P), satisfying the following 
criteria : 

(1) The unknowns P, Q are t? be reasonably monotonic while representing at the 
same time functions q, p that may be highly oscillatory. 

(2) Neither of these functions, nor any of the coefficients of their defining equations 
shall be singular in the region of interest. 

Criterion (1) is readily fulfilled by taking for R, S forms such that their dependence 
upon P is of the same general type as the expected dependence of q on x. This can be 
achieved approximately, in a broad and general fashion, by taking for R, S trigonometric, 
exponential or Bessel functions of P. 

Criteria (2) require only that R, S, p be functions without singularities and that 
A, cp have no zeros. 

A simple and obvious series of choices meet these requirements. First of all, let 

(a = const = 2-“2 . (4.3) 

Note that this corresponds to dropping the last term in K(P, z), Eq. (3.2), thus greatly 
simplifying the formal problem. 

Next, take 

R = sin P, 
(4.4) 

s = -cosP, 

this gives 

q = (ZQ)“” sin P, 

p = -(2Q)“2 cos P. 
(4.5) 

And by virture of Eqs. (2.9), (3.7), P obeys the equation 

dP 
z + co2 P + /3” sin” P = 0 (4.6) 
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and 

Q = Q0 exp 
ll 

1’ (0” - 1) sin 2~ dz]. (4.7) 
10 

QP, and the coefficients of the differential equation (4.6) are well behaved everywhere, 
including the region of the turning point p” = 0. Boundary conditions at a discontinuity 
imply simply continuity of P. This formulation has therefore definite merits of simplicity 
in appearance and in analytical behavior, as well as generality. In this sense, it has 
obvious advantages over other, better known, equivalent systems of first order equations 
sometimes used in practice, such as the Ricatti equations for the reflection coefficient or 
for the impedance: the former has oscillatory solutions and a coefficient that is singular 
at turning points, and the latter has solutions that are both oscillatory and singular. 

The transformation (4.5) is, of course, a particular case of the more general group for 
which cp is not constant. Because of their aspect, it seems natural to call them polar- 
type transformations. The corresponding generating function 

F = -qp2 cpcotanP (4 3) 

is the generalization to time-dependent systems of the usual function for oscillating 
systems found in many textbooks. Obviously, different choices of cp may result in trans- 
formations that would be better adapted to specific cases. But, of the transformations 
satisfying the second criterion of analyticity, Eqs. (4.5) give one of the more general 
types since, because of its relatively non-committal form, it has a wide range of appli- 
cation. 

5. A polar transformation for slowly variable parameters: Relation to the W. K. B. 
approximation. It may sometimes be expedient to ignore criteria (2) of the preceding 
section and to permit the appearance of singular coefficients, providing that the singu- 
larities appear outside of the range of intended applications of the resulting equations. 
The following purely physical reasoning leads to a useful transformation of that type. 

One may interpret Eq. (4.2) as the equation for a pendulum of variable length, of 
period 27r/p. The average energy per cycle is 

22 E=/3q. (5.1) 

If /3 varies very slowly one has, by Ehrenfest’s theorem for slowly varying constraints, 
the adiabatic invariant 

7.8 = const. (5.2) 

And, since /3 varies slowly, for each cycle: 

-2 1 
q =-Xconst. 

P 
(5.3) 

The constant term arises from the time average over a cycle of an oscillating, almost 
- periodic function, i.e., q is of the form 

4! = P--““f(Z), 
where f(z) is an almost periodic function of period 
choose cp proportional to 0 in Eqs. (3.4), (3.5) e.g., 

(P = *a. 

(5.4) 

27r/p. It is therefore only natural to 

(5.5) 
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Using script capitals for our new canonical variables Q 6 to distinguish them from the 
Q, P of Eqs. (4.5), we have 

(5.6) 

p = - (2Q/3)“2 cos 6, 

corresponding to the generating function 

F = -$q2p cotan 6. (5.7) 

This can also be obtained by imposing formal requirements on K(P, z) in Eq. (3.2). 
Thus, with f = 1 and Eq. (5.5) one has 

(5.3) 

Choosing the - sign in front of the bracket leads to Eq. (5.7) if one imposes the condition 
that the term in brackets be equal to - 1. The equations for 6, Q are 

d6 Id -- 
dz 2 jI& (L% 0) sin 26 + j3 = 0, 

[S 
I 

Q = Q,, exp - cos 26 d Log p . zo 1 
(5.9) 

(5.10) 

An instructive change of independent variable is 

(5.11) 

giving 

d6 Id -- 
ds 2 & (Log PI sin 26 - 1 = 0. (5.12) 

In regions of very slowly varying fi 

f Log p < 1 (5.13) 

an approximate solution of Eq. (5.12) is 

i.e 

@(a) =:S+p0, (5.14) 

6(s) becomes a straight line of slope unity. Condition (5.13) can be interpreted 
ph;sically : it implies that the change in parameters is so small that the backscattering 
or continuous process of partial reflection of a wave train can be neglected [2]. This 
backscatter and multiple scatter is measured by 

It will be small if either dp/ds is small or if /3 is large, (small wave length). Elsewhere 6 
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FIG. 1. Comparison of exact and approximate solutions of Eq. (5.12). 

will generally be a monotonic wave, gently oscillating 
as shown in Fig. 1. 

and 

Q E Q. = con& 

about the straight line (5.14), 

(5.15) 

q = A/T”” sin (s + S,), (5.16) 

where A is a constant. This is the first-order W.K.B. approximation. 
We thus have a new interpretation of the W.K.B. formulae: the phase term is the 

limiting form for slowly variable parameters of our canonical 6 variable, whereas the 
constant of integration A is the limit of (2Q)“’ under the same conditions. 

In the vicinity of a turning point /3 = 0 the criterion (5.13) is no longer fulfilled: 
the variation of parameters per unit z wave length becomes very fast and the reflected 
components become large (since one is in the region of glancing incidence and total 
reflection). Indeed, the coefficient: 

$LogB = ;g-$ (5.17) 

is divergent. As could have been foreseen: the representation (5.6) is not felicitous for 
rapidly varying parameters since we had deliberately designed it for slowly varying 0. 

Here, the transformation of Sec. 4 is much more appropriate. It is connected to our 
6 variable thus: 

P = tan-’ 
[ 1 itan@ . 

The behavior of 6 and P far from a turning point is similar only for B = 1. Otherwise P 
consists of a sequence of steps crossing back and forth through the 6 curve (Fig. 2). 

FIG. 2. General behavior of variables P and 6. 
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6. A new turning-point expansion. An expansion of P, Eq. (4.6), in power series 
of p” is easily achieved, leading to a general result valid on both sides of the turning 
point 0” = 0, for any functional dependence of /3” on x. 

For example, we may write 

tan P = a, + a# + a8 + - - - , 03.1) 

where a, is an integration constant. Substitution in Eq. (4.6) yields, writing dh/dz = h’: 

1 
CZ*= -,, 

h 

a4 = -&. (ai + a,), (6.2) 

a6 = -$. (2a,a, + a;&). 

As pointed out below tan P is the impedance. This gives a physical interpretation to 
the expansion (6.1). It is also easily verified that tan P satisfies a Ricatti equation. 
Applying Eqs. (4.5) and (4.7) and neglecting terms of the order of /3” and higher gives: 

1 II exp a, $ + E(@~) 1 . (6.3) 

To extend this to terms of the order of a”,@” and higher, take 

4P4) = -a a4,p4 - a, s ’ /?” dz. (6 4 

Additional terms are easily secured. These expansions are convergent in the vicinity of 
p = 0, but become divergent in the region P > tan-’ l/p. We have not made a rigorous 
study of the radius of convergence of the series (6.1). 

For a small region near a simple turning point (h’ # 0) we can approximate 8” by 
a linear function of 2 - z. , x0 being the turning-point coordinate. Equation (6.3) then 
gives the wave function as a constant plus a term linear in (x - 2,). This same result is 
obtained by taking Langer’s approximation [3], which is of the type: 

y = (2 - x0)“2W1,3 ((z - zoY”l + CJ-I,, ((2 - 2oY) I, (6.5) 

expanding it in powers of (z - zo) and keeping the resulting constant and linear term. 
Our results (6.1)-(6.3) are more general since they are the correct expansions for any 
functional dependence of /3 upon z, whereas Langer’s formulae are based upon the approxi- 
mation that 0” is linear in a small region surrounding the turning point. 

7. General remarks. The discussion of Sets. 4, 5, 6 would not be complete without 
some brief remarks concerning the physical meaning and previous derivations and uses 
of the P and 6 variables in the context of the wave equation. 

The meaning of P is obvious from the defining equations (4.5) : 

l={=tanP 
Cl’ 

(7.1) 
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is an impedance. The use of P is therefore equivalent to replacing impedances { by 
tan-’ { thus eliminating the singularities present in impedance solutions. 

As for 8, a simple physical interpretation in the case of total reflection can be obtained 
as follows. Consider 

the substitution 

the-well-known Ricatti equation for the reflection coefficient (R [14] 

CM Id -- 
dz 

2 z Log /3(1 - a”> + a$@ = 0 (7.2) 

shows that cp obeys Eq. (5.9). In other words, when cp is real (total reflection), it is iden- 
tical to 6, which is thus the half-change in phase of a plane, totally reflected wave. 

The transformation (7.3) has been used by a number of authors, notably Eckersley [4], 
Hartree [5], Bremmer [6], Brekhovskih [7] and others for approximate descriptions of 
wave propagation in stratified media. Walker and Wax [8] suggested the use of Eqs. 
(7.3) and (5.9) for the numerical integration of transmission line problems. Tolstoy [9] 
has used exact recursive relations for 6 in layered media when Log /3 is a sum of step 
functions, relations that are very similar to those used by Biot [lo] in studying the 
torsional oscillations of loaded rods. 

A transformation which is not canonical but very 

q = psin e, 

q’ = pp cos e, 

similar to (5.6) 

(7.4) 

was first introduced by Prtifer [II], and used again later by Barrett [12] in investigating 
asymptotic properties of Sturm-Liouville operations. Atkinson [13] pointed out its 
possible applications to numerical problems. Its usefulness in that sense would be about 
equivalent to (5.6). 

8. Conclusions. We have presented a class of canonical transformations which 
reduces the Sturm-Liouville equation to two first order equations having a number of 
interesting properties: an equation in P which is independent of Q, and an equation in 
Q which is soluble by quadrature. The general form of these transformations is quite 
flexible and involves arbitrary functions of P, z. In particular it is easy to generate trans- 
formations of the dependent variable into any desired functional forms, e.g., forms 
having properties considered suitable for a given problem or class of problems. This 
leads to new insights and forms useful for general numerical integration schemes. 

We have contented ourselves here with illustrating the potential of this approach 
by simple examples in the context of the wave-equation. In the process we have been 
led to several interesting results: first, a new transformation (Sec. 4) suitable for numerical 
integration for all values of the parameters, valid on both sides of a turning point. A 
second result is a transformation mostly useful for slowly varying parameters; when this 
variation is slow enough it leads to the W.K.B. results, thus giving a new interpretation 
of these formulae in terms of canonical variables. Thirdly, a power series expansion in 
terms of the wave number p leads to a novel and general formula for the wave function 
near, and to both sides of, a turning point, valid for any functional dependance of the 
coordinate. 
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