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ABSTRACT 

Surface folding due to instability is analyzed for continuously inhomogeneous half- 
space of viscoelastic properties. The medium is under the combined action of a 
horizontal compression and gravity. The material is of uniform density. Its visco- 
elastic properties vary exponentially with depth so that it degenerates into a fluid at 
large depth. It is assumed that the deformations verify the thermodynamic theory of 
irreversible processes. Folding wavelengths are evaluated. The general correspond- 
ence principle as formulated earlier by the author shows the results to be immediately 
applicable to either viscoelastic or purely elastic media. A numerical application 
to the geophysical scale indicates that a continuous viscosity gradient resulting from 
the temperature variation with depth cannot account for orogenesis by the mechanism 
of instability in compression. 

1. INTRODUCTION 

In previous work (1, 2,3)2 we have examined the stability of in- 
homogeneous viscoelastic media under initial stress. All these problems 
dealt with a discontinuous system in which one homogeneous layer was 
embedded in another homogeneous medium or lying on top of the latter. 
The influence of gravity was also examined (4). Part of the initial 
stress in addition to the hydrostatic pressure is a compressive stress 
which produces an instability. This instability manifests itself by the 
growth of folds in the layer. The surface instability of a homogeneous 
half-space was also treated (3) as a particular case of a more general 
problem. 

The present analysis deals with a half-space whose inhomogeneity 
is continuously distributed. The hydrostatic pressure due to the weight 
of the material is superposed on a horizontal compression. 

The material is viscoelastic and incompressible with properties 
decaying exponentially with depth so that the medium becomes a fluid 
at large depth. The physical properties assumed are quite general but 
subject to the requirements of the thermodynamics of irreversible proc- 
esses (6). The analysis covers the particular limiting cases of the in- 
homogeneous purely viscous solid and the inhomogeneous purely elastic 
medium for which the instability degenerates into a buckling. Section 2 
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presents the analytical formulation of the problem in which we have 
used equations for the deformation of a continuum under initial stress 
developed much earlier (7). Section 3 deals with the analytical solution 
and Section 4 with the numerical discussion. A numerical application 
to geophysics is also discussed indicating that large scale folding in the 
earth cannot be explained by the present mechanism on the basis of a 
continuous and isotropic viscosity gradient which itself is the result of 
the temperature increase with depth. 

The results obtained here are equally applicable to either visco- 
elastic or purely elastic media. This is a consequence of the general 
correspondence principle as formulated and discussed by this writer in 
earlier work (6, 8, 10). The plot in Fig. 2, for example, applies immedi- 
ately to the case of a purely elastic half-space whose rigidity modulus 
decreases exponentially with depth, and the buckling stress is given 
by Eq. 41. 

Results of the experimental verification of the theory of folding of 
layered viscoelastic media by the use of models will be presented in later 
publications. A preliminary report on these tests has already been 
given (5). The task data show good agreement with the theory. 

The author is indebted to A. Winzer for assistance in the analytical 
work and to A. S. Ginzbarg for the numerical solutions on the digital 
computer. 

FIG. 1. Inhomogeneous viscoelastic half-space. The initial stress is the hydrostatic 
pressure pgy and a horizontal compression P function of depth. 

2. FORMULATION OF THE PROBLEM 

Consider an inhomogeneous viscoelastic half-space. We shall 
assume that it is incompressible. This assumption is not essential and 
the methods used hereafter are applicable to compressible media. How- 
ever, the assumption simplifies the algebra quite appreciably. 
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The x-axis lies along the surface of the half-space and the y-axis is 
directed downward (Fig. 1). Let this medium be in a state of initial 
stress which is the result of the gravity forces and a horizontal com- 
pression P(y) function of the depth y. The state of initial stress is 
then represented by the components 

S11 = - P(y) - Pgy 

Szz = - P&y 

SlZ = 0 

(1) 

where p is the mass density of the medium chosen to be constant and g 
is the acceleration of gravity. For P = 0 the initial stress reduces to a 
hydrostatic pressure, Sll = Szz = - pgy. 

In the following, we have used the strain components 

av 
e,, = - ax 

ezy = ‘; euu = -- ay 
; !?+$ ) 

and the rotation 

(2) 

In these expressions, u and v denote the displacement components of the 
medium taken as zero in the state of initial stress. We now apply the 
general equations derived in previous work for the deformation of a 
prestressed medium (7). Equations for the prestressed viscoelastic 
medium were derived in (8) from a correspondence principle. For the 
particular state of prestress defined in Eqs. 1, the equations to be 
satisfied by the stress field are 

;$+a$+pg~_p$+ (t$+i+zv =O ‘N) 
ah2 aSz2 
dx + dy - P g - pgezz = 0. 

The components sll, sz2 and s12 represent the incremental stress field 
with respect to axes rotated locally through an angle w. 

The physical properties of the material are represented by the stress- 
strain’ relations. With certain limitations which are discussed else- 
where (2, 5) and are not important in the present problem, the stress- 
strain relations for the incremented stresses are the same as for an 



I93 M. A. BIOT [J. F. I. 

incompressible material in the absence of pre-stress. They are written 

Sll - s = 2Q*e,, 

szz - s = 2Q*e,, (5) 

slz = 2Q*ezzl. 

The left-hand side represents the stress deviator, that is, we put 

a<s11 + SZZ) = s. (6) 

The operator Q* was derived (6) f rom the thermodynamics of irreversible 
processes and shown to be 

Q* = s,“*+* Q@W + Q + Q'P 

with p = $. In the present problem the material is assumed inhomo- 

geneous with properties function of the depth y. This will be expressed 
by making the quantities Q (r),‘Q and Q’ functions of y in the operator Q*. 

The boundary condition results from the absence of forces on the 
free surface (y = 0). Using expressions for the boundary forces es- 
tablished in the earlier publications (3, 7) the boundary conditions at 
y = 0 are expressed as 

szz = 0 e,, = 0. (8) 

The derivation of these boundary conditions follows very closely that 
in (3) and (4). 

The problem will be further particularized by assuming viscoelastic 
properties represented by the operator 

with 
Q* = Qo*e-au 

Qo* = s,” p+r Q(rMr + Q + Q'P. (10) 

This last operator is independent of y, and the inhomogeneity is repre- 
sented only by the exponential factor in Q*. This corresponds to visco- 
elastic properties which are nonhomogeneous but such that the relaxa- 
tion spectrum is independent of the location. We used the term 
“homogeneous spectrum” to describe this type of viscoelasticity and 
have shown that it is associated with special properties as regards the 
stress distribution (8,9). 

(9) 

In a material represented by the operator (Eq. 9) the pre-stress 
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must also follow a similar law (Fig. 1). We write 

P = PgC~. (11) 

Mathematically the problem reduces to solving Eqs. 4 after substituting 
the values of Eqs. 5 for the stresses. These are two equations for the 
three unknowns u, v, and S. A third equation is furnished by the con- 
dition of incompressibility. 

au av 
z+-&=o. (12) 

The boundary conditions at y = 0 are given by Eqs. 8 and a further 
condition is that the solution must vanish at y = 00. 

3. ANALYTICAL SOLUTION 

Following a procedure already used (4), it is possible to simplify the 
problem by eliminating gravity from the differential equations, provided 
the boundary conditions are appropriately modified. This is done by 
replacing the stress si by sii - pvg6ii.3 This substitution does not 
affect the stress-strain relations of Eqs. 5. On the other hand, if we 
take into account the condition of incompressibility (Eq. 12), Eqs. 4 
become 

ah1 ah2 ’ ax+ ---P$+E Ez,=O ay 
ah2 aSz2 ~+~-Pg=o; 

The boundary conditions (Eqs. 8) are replaced by 

s22 = pgv 

e,, = 0. 

This is a particular application of a quite general procedure 
the hydrostatic stress is eliminated from the problem while 
ancy” term is added at the boundary. 

The condition of incompressibility is satisfied by putting 

(13) 

(14) 

by which 
a “buoy- 

(15) 

a &ii is the Kronecker symbol, that is, aI1 = szz = 1 and al2 = 0. 
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By substitution of the stresses (Eqs. 5) into Eqs. 13 and using expres- 
sions (15) for the displacements u and V, we arrive at two equations for 
the two unknowns C$ and s. We further particularize the solution by 
looking for deformations which are sinusoidal along x. We therefore 
Put 

4 = q(y) sinZx 

s = Pof(y)C5y cos Ix. 
(16) 

The unknown functions cp and f must satisfy the ordinary differential 
equations 

11+i- -_ 
2 r 

(9” - ‘pf12 - a q” -a@) -1f = 0 

11-r 
2 7 (4” - (p”)Z + f acp’l + f’ - af = 0. 

(17) 

The primes represent derivatives with respect to y and we have put 

PO 
c=zQo*. (18) 

Solutions of Eqs. 17 are 

(19) 

Substitution of these expressions into Eqs. 17 leads to the characteristic 
equation for 0, 

CP (PZ - 62) - (P + S”>]@ - 1) + k262(82 - 02) + s = 0 (20) 

,where 

k2J-t 

1+!Y 

6 = Z/a. 

There are two roots, fll and fi2, for P which have negative real parts. 
These two roots are used in the exponents of the solution expressed by 
Eqs. 19. This insures that the solution vanishes for y = 00 (that is, 
at infinite depth). Equation 20 is a fourth degree equation in fi. How- 
ever, it is easily solved by noticing that it may be written as a second 
degree equation in fi(p - 1) ; for example, we may write 

{ = a4 - ~“CWP - 1) - 11 + i-m - 01’ 
64 - 62 - [p(p - l)]” * (21) 
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Solving this quadratic equation for /3(@ - 1) and again a second 
quadratic equation for p, we find 

r- 

;I) = $[I - J1 + i-$ (8 f h-2 - (1 + T)p)]. 
d (22) 

In the limiting case for 6 + 00, the roots reduce to 

PI = - 6 = - l/a 

P2 = - k6 = - kl/a. 
(23) 

This case corresponds either to a = 0, that is, to the homogeneous half- 
space already examined (3) or to I -+ ~0, that is, to a vanishing wave- 
length. 

The four constants A, B, C, D in Eqs. 19 are not arbitrary. The 
relations among them are found by substitution in the differential 
equations. Th ere are, therefore, only two arbitrary constants. 

These two remaining constants are now eliminated by taking into 
account the boundary condition (Eq. 14) at the free surface (y = 0). 
This leads to the following characteristic equation : 

r = P1V22 

2S2C62 - P1P2 - GM% + P,)] 

- A4 .+ 62(P~ + P2) (PI + ,82 - 2G) - ‘. 
(24) 

The parameter 

c=Pg 
I 

Pa (25) 

represents the influence of gravity in non-dimensional form. 

4.NUMERICAL RESULTS 

The characteristic equation (24) may be considered as a relation 
between { and 6 where G plays the role of a parameter. For a given 
value of G, this relationship represents the instability of the system as a 
function of the wavelength. This can easily be seen if we go back to 
the significance of the operator $ as discussed in our earlier treatment 
of similar problems. A certain value of < corresponds to a certain 
positive value of p for which a time-dependent solution exists and is 
proportional to the increasing exponential epl. The value of p con- 
tained in r is a measure of the instability. 

An important property may be stated here which is dependent on 
the nature of the operator Qo* itself. We have derived its form (Eq. 10) 
from the thermodynamics of irreversible processes. As pointed out in 
(6) and later papers, a consequence of the thermodynamics is the posi- 
tive sign of all the terms in Eq. 10. Hence Qo* is a monotonically in- 
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creasing function of p. Therefore, considering the relationship between 
{ and 6, a minimum of k corresponds to a maximum of p. For this value 
of 6 the rate of growth of the deformation is a maximum. Wavelengths 
corresponding to this case will tend to appear more strongly than others. 
Following the terminology introduced in the earlier work we shall call 
this wavelength the dominant wavelength. 

In solving the characteristic equation (24), we must distinguish cases 
for which the roots p1 and & are real or complex. From Eq. 22 it can 
be seen that real roots occur in the region’ 

a>;+1 (26) 

and complex roots in the region defined by changing the direction of the 
inequality. For the case of complex roots, calculations are conveniently 
carried out by putting 

R = [I + 2062 + 462(1 + 462) (S)]“^ 

..,; = $[1+$(1 +&)l’i’ o 

i31 +/32 = 1 - Rcos; 

,642 = ; [ 1 + R2 - 2R cos ;I. 
LJ 

(27) 

The complex roots themselves are 

/31 = +(l - R cos $0 
p2 = 4 (1 - R cos $6’ 

+ iR sin $0) 
- iR sin $0). (28) 

The characteristic equation (Eq. 24) was solved on an automatic com- 
puter for five values of the parameter G 

1 1 1 1 
G = 0, fiy 25’ 60’ 25o. (29) 

Plots of { versus 6 are shown in Fig. 2. 
The diagrams are plotted in the range 6 < 1. In this range the 

roots fll and p2 are complex. The minimum value of { and the corre- 
sponding values of 6 and &, p2 are given in Table I. 

The value I& of 6 which corresponds to rrni, yields the dominant wave- 
length, 
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Ld = 2. (30) 

The value of & for G = l/1000 was evaluated by interpolation. In 
the absence of gravity (G = 0), the dominant wavelength goes to in- 
finity (& = 0). It is found that ad is represented approximately by the 
formula :4 

?id = 2 2G6’10 . . (31) 

5 
0.5 

0.4 

0.1 

0 0.2 0.4 0.6 0.8 I.0 8 

FIG. 2. The stability variable r as a function of the dimensiodless 
wave-number 6 and the gravity parameter G. 

TABLE I. 

G SFmin ad Pl, 82 

l/10 0.356 0.585 -0.29 f 0.36; 
l/25 0.206 0.326 -0.13 f 0.35; 
l/60 0.107 0.196 -0.06 f 0.17; 
l/250 0.029 0.074 -0.010 f 0.072i 
l/1000 *** . . . 0.035 

0 0 0 . . . 

This result was reported earlier (5). 
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The value of c goes to infinity below a certain value of 6 which depends 
on G. The physical significance of this corresponds to the existence of a 
cut-off wavelength above which no instability exists. The value of 6 
for this vertical asymptote is determined by the condition that the 
denominator in Eq. 24 vanishes. For vanishingly small 6, the location 
of the asymptote is given by 

6 = 6 (32) 

The limiting case of a vanishing wavelength (I -+ w) is found by 
putting 6 = 00 in Eq. 24. This equation becomes 

{3 + 2l” - 2 = 0. (33) 

The real positive root of this equation is 

{ = 0.839. (34) 

Hence the curves in Fig. 2 all tend toward the same horizontal asymptote 
for 6 + 00, that is, for vanishing wavelength. In this limiting case the 
influence of gravity disappears and the value of { (Eq. 34) is the same 
as that obtained previously (3) for the case of an homogeneous half- 
space without gravity. 

An interesting feature results from the complex nature of the roots 01, 
P2. This means that the displacements of the semi-infinite medium 
exhibit a damped-oscillatory character as a function of the depth y. 
This can be seen from Eqs. 19, which are linear combinations of func- 
tions of the type 

exp Cay Re PJ scat [ay Im p,]. (35) 

The real and imaginary parts Re fil and Im p1 of p1 are shown in Table I. 
For example, for G = l/250 the distribution with depth becomes 

exp [ - 0.01 ay] Fo: CO.072 ay]. (36) 

Over one wavelength the amplitude decays by a factor 0.418. The 
values of Table I indicate that the decay decreases with decreasing 
values of G. In solving the problem no restriction has been put on the 
nature of the operator Qo* except that it satisfies thermodynamic 
principles. This insures the existence of one positive root p correspond- 
ing to any value of { derived from the stability diagram (Fig. 2). In 
particular, the theory is applicable to a purely viscous medium. In this 
case the operator is 

Qo” = VOP. (37) 
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The viscosity 7 of this medium decreases exponentially with. depth 
according to the equation 

q = qoe-a”. (38) 

The theory also applies to a purely elastic material. In this case 

Qo” = PO. (39) 

The medium is an inhomogeneous elastic half-space whose rigidity 
modulus /1 varies with depth according to the equation 

P = Poe-au. 

The minimum value {min yields the buckling load PO by 

(40) 

PO = 2POTrnin. (41) 

The dominant wavelength does not depend on the particular nature of 
the viscoelastic material. For instance, its value for the viscous solid 
is the same as the buckling wavelength for the elastic case. The differ- 
ence lies in the fact that folding always occurs in the purely viscous case 
in contrast with the elastic case where a minimum compression (Eq. 41) 
is required for buckling to appear. 

In applications it is of interest to consider the magnitude, of the 
folding. As pointed out above, the amplification of waves after a time 
t is ept. If we assume a viscous medium, the time required for it to 
shorten by 2.5 per cent at the surface is 

t =E! 1 
PO 

(42) 

and the amplification of any initial wave at that time is e@l. If we want 
this amplification to be equal to 100 then we must have 

ptl = log, 100 = 4.60. (43) 

Substituting for p its expression in terms of { by eqs. 18 and 37, we 
derive 

Hence this is the value of r required for the amplification to be 100 
during a compressive deformation of 25 per cent. We see from Table I 
that for the dominant wavelength this requires that the value of G be 
about 

G = &,. 
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Smaller values of G will generate higher amplifications. In application 
to geophysics we may put PO equal to a value of the order of the crushing 
strength of rock at the surface, for example, PO = 10g dynes/cm2. 
With p = 2.5 and G = l/60 we derive 

1 
- G 6.5 meters. 
a 

(46) 

This is the depth in which the viscosity decreases by a factor l/e. 
The dominant wavelength for this case is found from Table I and 

Eq. 30. Its value is Ld = 2100 meters. The viscosity gradient re- 
quired for such significant folding to happen and which is characterized 
by the value (46) of l/a is much higher than that which results from 
increases of temperature with depth in the earth. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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