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Thermodynamics and Heat-Flow Analysis 

by Lagrangian Methods 

M. A. BIOT 

Summary 

New procedures for the analysis of heat flow are summarized and further applications are 
presented. The methods may be considered as a special case of a more general formulation of the 
thermodynamics of irreversible processes. This formulation is based on the introduction of a 
new thermodynamic potential, the concept of flow field as a state variable, and the use of La- 
grangian techniques and generalized coordinates. A brief account is given of the basic principles 
and of the more recently developed method of “associated flow.” Application to a one-dimen- 
sional problem leads to a simplified scheme for the calculation of transient temperatures in a wall 

by combining the Lagrangian methods with the boundary-layer techniques along the lines de- 
veloped in the writer’s earlier work. Another application deals with the calculation of transient 
temperature in a wing structure under aerodynamic heating. The concept of “effective” flange 
width is introduced. It represents the region of the flange which is influenced by the presence of 

a web. 

1. Introduction 

V ARIATIONAL AND LAGRANGIAN METHODS in the analysis of steady and transient 
heat flow were the object of earlier publications3-5 They may be considered 

. as a particular application of more general principles of the thermodynamics of 
irreversible processes. 1-3j g Our purpose here is to give a brief outline of the theory 
and methods which were developed in more detail in previous publications.4’5 
Also, we have added some new examples of application of the theory. One such 
example is the derivation in section 2 of an equation for the penetration depth under 
variable temperature at a boundary by using the boundary-layer techniques as in- 
troduced by the writer in heat-transfer problems.4 Another example treated in 
section 4 is an application of the method of associated fields to calculate the 
temperature in a wing structure under conditions of aerodynamic heating. The 
method is applied to a steady-state and a transient problem. The treatment of this 
problem by the method of associated fields leads naturally to the concept of an 
“effective” flange width. This effective width is a characteristic length representing 
the region of the flange which is influenced by the web. 

Section 2 is a simplified outline of the general theory.4 Section 3 
summarizes further developments of the method which introduces the concept of 
associated field5 

2. Formulation of Heat Flow by Lagrangian Coordinates 

WESHALLBRIEFLYRECALL themainresults. The method is applicable to prob- 
lems with temperature-dependent parameters and anisotropic properties. However, 
in order to simplify the presentation we shall consider the medium to be isotropic 
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with temperature-independent properties. We denate by k the thermal con- 
ductivity and by c the heat capacity per unit volume. The thermal field may be 
defined as a vector “flow field,” 

H = i Htq, (2.1) 

where HI are fixed configurations depending only on the location and pz are general- 
ized coordinates to be determined as functions of time. 

More general representations of the flow field are possible and discussed later. 
[See Eq. (2.14)]. 

The temperature 13 is related to H by the equation* 

ce = -div H (2.2) 
This is also written 

0 = 5 Olqi (2.3) 
with 

cB~ = -div Hi (2.4) 

The scalar fields ei are now fixed-temperature distributions. 
Two invariants are defined which are analogous to certain functions in La- 

grangian mechanics with similar terminology, i.e., a thermal potential. 

(2.5) 

and a dissipation function. 

(2.6) 

The integral over T is a volume integral and the integral over S is a surface 
integral over the boundary of r. The quantity K is the surface heat transfer 
coefficient and H, designates the component of H normal to the boundary and 
positive inward. 

Again for simplicity, we assume K to be dependent only on the location. How- 
ever, this assumption is not necessary and it may be time and temperature depend- 
ent. The thermal potential given in Eq. (2.5) is a particular case of a new thermo- 
dynamic potential introduced by this writer in earlier work.le3 It is different 
from the classical potentials and constitutes a generalization of the concept of free 
energy to systems with nonuniform temperatures. The dissipation function ex- 
pressed in Eq. (2.6) is derived from the entropy production function introduced 
by Onsager and expressed by Meixner’ in terms of temperature gradients. For 
our purpose, it was reformulated in Eq. (3.4) by means of the time derivatives of 
the flow vector H (the latter being treated as a “state variable”) and a term was 
added to include the heat transfer properties of the boundary. Finally, a general- 
ized thermal force Q( was defined by means of a principle of virtual work. Though 
the equation 

*This relation expresses conservation of energy not merely as a physica. condition to be satisfied by the solu- 

lion of the problem but as .a constraint to be satisfied by any variation of H. 
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The temperature Ba is that applied to the boundary outside the surface heat transfer 
film. The virtual change 6q, of the generalized coordinate is associated with a 
virtual normal inflow SH, of heat through the boundary. The product &US?,, may 
be interpreted as the “virtual work” of the temperature ea on the heat inflow, 6H,. 

Eq. (2.7) expresses a particular form of the concept of thermodynamic virtual 
work defining a generalized thermodynamic force, introduced in earlier publica- 
tions.‘, 2 The virtual work Eq. (2.7) leads to an expression for the thermal force, 

Qi = s 8, =, dS 
s 

dq 
z 

For the particular set of coordinates defined by Eq. (2.1) this becomes 

(2.8) 

(2.9) 

where Hi, is the normal component of the vector Hi at the boundary, with a posi- 
tive direction inward. We have shown that the n coordinates q1 describing the 
flow field are functions of time and satisfy the n differential equations 

(bVbp3 + (dDl&z) = Qi (2.10) 

The time derivative of qi is 

4% = dq,/dt (2.11) 

For coordinates defined by Eqs. (2.1) and (2.3), the thermal potential and the 
dissipation function are the quadratic forms. 

v = (l/2) 2 %!7tPr (2.12) 
. . 

D = (l/2) 2 bi&jj 

The differential Eqs. (2.10) become the linear system 

(2.13) 

The existence of normal coordinates, thermal relaxation modes and thermal im- 
pedances follows immediately from these equations.495 

It is not necessary that the generalized coordinate system be defined as a sum 
of fixed configurations. We may write the undetermined flow field as 

H = H(x, Y, 2, 41 . . . qn, 4 (2.14) 

where the parameters q1 . . . qn play the role of generalized coordinates to be deter- 
mined by the same differential Eq. (2.10). 
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Application of these equations to one-dimensional problems is straightforward. 
Consider for instance the problem of a semi-infinite solid with constant parameters 
k and c. The boundary at y = 0 is heated to a variable temperature 0,(t) (Fig. 1). 

Fig. 1. Penetration of heat in one-dimensional flow. 

We assume the temperature distribution to be parabolic and represented by 

8 = Bo]l - (Yld12 Y<!? 
e=o Y> P 

(2.15) 

This approximation was introduced earlier and shown to be satisfactory.4 The 

flow field H is obtained by integrating Eq. (2.15) along the depth coordinate y, i.e., 

S 
9-y 

H= cedy (2.16) 
0 

Knowing H we may calculate V, D and Q 
We find 

v = (1/10)ce& 

D = (1/2)(c2/k)~[(13/315)p2802 + (l/21)@,@, + (1/63)&,2q2] 

Q = (1/3)cfV 

The differential equation for the unknown “penetration depth” p is 

@V/&I) + @D&) = Q 

I.e., 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

i + (i5/i3)(&/eo)2 = (147/13)(k/c)* (2.21) 

with z = p2. This is a linear first-order equation the solution of which is given by 
the elementary integral ( 

147 k 1 t “=13GF(t) o S F(t)dt (2.22) 

*This equation was also derived by D. J. Johns of Crsnfield College of Aeronautics (private communication)_ 
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with 

P-(t) = [e,(t)]‘““” 

It is interesting to examine the case where the temperature follows a power law, 

e,(t) = fftn n>O (2.23) 

We find 

2 = (147/13)(K/c)t/[(l5/13)n + l] (2.24) 

This result shows that the penetration depth 4 = -& is independent of cy and 

depends on the exponent n only through a constant factor l/2/(15/13)% + 1. 
The exponent does not affect the square root time dependence of the penetration. 
This property is of importance in practical applications since an approximate 
knowledge of the temperature time history leads to a good approximation of the 
penetration depth. The latter may then be introduced in the equation as a known 
function of time. The case where 00 = const. corresponds to n = 0 and yields the 
value (Ref. 4) 

2 = (147/13)(k/c)t 

or 

CJ = 3.36- (2.25) 

The parabolic approximation given’in Eq. (2.15) for the temperature distribu- 
tion as a function of depth will generally be valid if the temperature increases or 
decreases monotonically. If this is not the case, we may split up the time interval 
into segments for which 00 varies monotonically, then apply Eq. (2.21) to each 
segment using the principle of superposition. Use can also be made of the power 
law solution Eq. (2.24) by dividing the time history of the temperature into seg- 
ments each of which may be approximated by a power law or an additive combina- 
tion of such terms including the constant value. In effecting this superposition 
we must, of course, avoid any procedure leading to differences of large quantities. 
The problem of heating of a slab of thickness 1 was also given as an example,4 for 
a sudden constant temperature applied to one face, while the other face is insu- 
lated. 

3. Two- and Three-Dimensional Problems-Method of “Associated 
Fields” 

THE CHOICE of the flow field H as the unknown thermal field presents no in- 
convenience in one-dimensional problems because an assumed temperature dis- 
tribution leads directly to the corresponding flow field by a simple quadrature. In 
two or three dimensions, this is not the case since Eq. (2.2) does not determine H 
uniquely for a given temperature field 8. Of course, from a purely theoretical 
viewpoint, we may start by postulating an unknown vector field H as a two- or 
three-dimensional field. However, this increases the number of unknowns to be 
determined. Furthermore, suitable approximations for the vector field H are not 
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as easy to guess as for the temperature field. An improvement is 
suitable temperature field 

e = 2 l9gi 

and to split the flow field into two parts 

H=o+F 

One par1 is chosen to satisfy Eq. (2.2), i.e., 

div o = - ~0~ = -ch etq, 

while the other is divergence-free, 

div F = 0 

The vector field 0 may be represented as 

where @( are fixed fields satisfying the relation 

div Or = -c& 

METHODS 

to choose a 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

However, this really displaces the problem since we still have to choose an approxi- 
mation for the field F which is sufficiently general to represent the correct heat 
flow. The difficulty may be eliminated by proceeding as follows. Let us put the 
field F equal to, 

F = c F,fr (3.7) 

with suitably chosen fixed configuration fields F+ We have called f$ the ignorable 
coordinates by analogy with similar problems in mechanics. These ignorable 
coordinates appear in the dissipation function but not in the thermal potential. 
The thermal potential V is a function of the p( coordinates 

v = %I) (3.8) 

while the dissipation function depends on both gj andjj. 

D = D(a, f) (3.9) 

The differential equations for the thermal field are 

[(V%S) J’(q)1 + [@/&?@(4$) I = Qi (3.10) 

@l&P(a>f> = Qr 

These equations involve coupling terms between the coordinates Q~ and fj. 
These coupling terms occur only through the dissipation function. Until now 
the flow configurations @( are still arbitrary since the condition in Eq. (3.6) does 
not determine them uniquely. The problem now is to choose these flow fields in 
such a way that the coupling terms between Q~ and fj vanish in Eqs. (3.10). We 
have shown496 that this can be done provided we define Or by the relation 
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temperature may be immediately derived for asy distribution of boundary temperatures. 
In particular, let us represent the temperature field by 

O(P) = S o(P’)G(P, P’)dT(P’) 
7 

(3.18) 

where 6(P, P’) is the space Dirac function. This gives the temperature at P by an 
integration’ over all points P’ of the volume 7. This representation may be con- 
sidered as a particular case of the summation Eq. (3.1) where O(P’)dT(P’) plays 
the role of a generalized coordinate qr while 6(P, P’) represents the fixed field con- 
figuration Or. The field associated with the fixed field 6(P, P’) is given by the same 
Eq. (3.12) where the right-hand side is now a concentrated heat sink cS(P, P’) 
with total inflow equal to c and located at point P. The associated flow field is 
the steady heat flow due to this concentrated sink. We may denote it by O(P, P’). 
We note that all temperatures are uncoupled coordinates since the thermal potential 
is the sum of all the local thermal potentials. Furthermore, if we consider a steady- 
state, all time derivatives vanish. Therefore, there is also no coupling through the 
dissipation function. Hence, the temperature at any given point and its value at 
all the other locations are uncoupled. It follows that the temperature at any point 
may be determined immediately and independently from the rest of the field by 
evaluating the virtual work of the externally applied temperature on the normal 
component 60 @,(P, P’) of the virtual flow at the boundary. This particular method 
of solving the steady-state problem turns out to be identical with the classical 
method of Green’s function. When applied to’the unsteady’ state the method leads 
to a generalization of the Green’s function solution. This point has been dis- 
cussed in more detail elsewhere.6 It was also pointed out that the concept of 
associated flow field is closely related to certain reciprocity properties in analogy 
similar properties connected with Green’s function. In conclusion, the main fea- 
tures of the method of associated flow field may be summarized as follows. 

1. It decouples the ignorable coordinates and the temperature field thereby 
decreasing considerably the number of unknowns in two- and three-dimensional 
problems. 

2. It introduces in the coordinates features which already contain basic prop- 
erties of the physical system. The coordinates themselves, therefore, represent 
already a partial solution of the problem. This amounts t? a two-step process of 
solution, one being the determination of the associated flow, followed by the integra- 
tion of the differential equations for the coordinates. This two-step solution fur- 
ther reduces the number of coordinates required. 

3. The associated flow field embodies in the coordinate system certain basic 
reciprocity properties of thermal systems and takes advantage of them in the formu- 
lation of steady-state and transient problems. 

4. The procedure leads to the classical Green’s function method as a particu- 
lar case but is much more general than the latter. It also contributes new ex- 
pression for Green’s function itself. 

5. Temperatures in one part of a thermal system may be determined inde- 
pendently from those in another region. Furthermore the temperature is ob- 
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tained immediately for any distribution of externally applied temperature without 
having to repeat the calculation for each case. 

-9 -7 I-% 
Fig. 2. Distribution of temperature and associated tlow in wing structure for the stationary 

antisymmetric cow. 

The method of associated flow fields is not restricted to the particular choice 
of coordinates represented by a superposition of temperature fields according to the 
expression in Eq. (3.1). We could also have represented the temperature field in 
the more general form. 

e = B(Pl, qz * * * qn, x, y, s, 0 (3.19) 

where the parameters qi play the role of generalized coordinates. The method is 
also applicable to cases where the surface heat-transfer coefficient depends on the 
time. In this case, the associated flow field contains the time as a parameter. 
With certain limitations, the method also extends the nonlinear case of tempera- 
ture-dependent parameters. These various extensions were treated previously in 
some detail.5 

Finally, the method is really part of an even more general theory which 
covers thermoelasticity and contains thermal flow as a particular case. A dis- 
cussion of reciprocity relations8 for thermoelasticity has been given previously. 
These relations are related to the aforementioned reciprocity properties for the 
more restricted domain of purely thermal phenomena. 

For a general outline of the thermodynamics, the reader is also referred to a 
recent publication.g 
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4. Examples of Associated Fields-Concept of “Effective” Flange Width 

WE SHALL PRESENT two examples of the use of associated fields in the heat-flow 
analysis of flight structures. Consider a portion of a wing structure whose cross 
section is represented in Fig. 2. This example was originally treated by Pohle and 
Oliver-lo and later was also used as an example.4 The boundary-layer heat-transfer 
coefficient is denoted by K. The material of the structure is characterized by a 
constant thermal conductivity k and a heat capacity c per unit volume. 

We shall first evaluate the steady-state temperature in the web due to given 
adiabatic temperatures of the fluid along the flange. Because of the symmetry 
of the structure, the web temperature may be separated into a symmetric and 
antisymmetric temperature distribution about the midpoint ilf of the web. If 
the adiabatic temperatures on the top and bottom flanges are antisymmetric only, 
the antisymmetric web temperature will be produced. It is this case which we 
shall now compute by applying the method of associated fields. The temperature 
along the web has a linear distribution 

0 = &(y/I) (4.1) 

where 8i is the unknown coordinate. It represents the temperature at the point 
A. In order to calculate the associated flow field, we must distribute sinks along 
the web of intensity c0 per unit volume. This will produce a flow as yet unknown 
and characterized by a vector HI at point A and a vector H, at point M. Because 
of symmetry, we consider, the flow through a ,web of thickness ni which is half the 
actual thickness. There is also a flow H, in the flange and a corresponding flow 
Hb through the boundary layer. We assume that the flow through the boundary 
layer is distributed uniformly over a half width b, of the flange. The flow H, 
through the flange is then linearly distributed. The length b, plays the role of an 
“efective width” and is determined by a principle of minimum dissipation. This 
is done by expressing the dissipation D’ given by expression Eq. (3.14) applied to 
the flange and boundary layer. For a given value of H,, this dissipation is a 
function of b, only. The condition that it be a minimum yields the value of b,. 
We find 

b, = 1/(3ak/K> (4.2) 

where a is the flange thickness. It is found that under this minimum condition, 
the dissipation in the flange and boundary layer are equal. On the one hand, 
the dissipation in the flange and boundary layer now depends only on HI. On the 
other hand, the flow in the web is completely determined by HI since the distribu- 
tion of sinks is given. Minimizing the total dissipation in flange web and boundary 
layer determines IfI, hence, the associate field. The value Hb of this associated 
field at the boundary is completely determined by only one unknown, i.e., 0,. 
We find 

I& = (al/b,)l/[2(alb,/aZ) + 3llcO1 (4.3) 

The thermal potential for the half web is 
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V = 1 cal s 1 

0 

e2dy = f ca,1e12 (4.4) 

We assume that the adiabatic temperature of the boundary layer on the top flange 
is f& and -00 on the bottom. The temperature distribution is antisymmetric with 
respect to point M at the midweb. The temperature is zero, at that point and the 
calculation may be restricted to the upper half of the physical system. The thermo- 
dynamic virtual work of the temperature OO on the upper flange is 

Q&O, = b,eosHo 

From Eq. (4.3) 

6% = (al/b,>Zc/[(2a,b,/aZ) + 3lW 

hence, the thermal force is 
. 

Q = ah/ [(%alb,/aZ) + 3100 

Since we are dealing with a steady state, the equation to apply here is 

(4.5) 

(4.6) 

(4.7) 

m/de1 = Q 

Substituting the values for V and Q, this equation yields the temperature 01 

(4.3) 

e1 = &J/ [(2alb,/3aZ) + 1 I (4.9) 

The assumption that Hb is distributed uniformly over the effective width b, 
b, is, of course, an approximation which is satisfactory only if the applied tempera- 
ture b. does not vary appreciably along the flange. A more accurate picture is ob- 
tained if the distribution of Hb along the flange is determined by applying the prin- 
ciple of minimum dissipation to the distribution itself. This leads to a differential 
equation for Hb. The result is an exponential distribution expressed by 

Hb = fi(aiH&) exp (--x(d%‘b,)) (4.10) 

(x = distance from the web.) We then proceed exactly as in the foregoing. By 
using the exact distribution of Ha, it is possible to evaluate immediately the tem- 
perature explicitly in terms of any arbitrary distribution of external temperature 
along the flange, and calculations do not have to be repeated for different distribu- 
tions of external temperatures. 

The method of associated flow fields may also be used to evaluate the transient 
temperatures. As an example, we choose the same geometry as aforementioned. 
We shall consider the symmetric case where a uniform external temperature BO is 
applied equally to the top and bottom flange. The temperatures are now sym- 
metric with respect to the point M at the midweb. In calculating this case, we 
may assume that we are dealing with a finite.section of the structure with a flange 
width equal to the effective width b, as shown in Fig. 3. The temperature field in 
the web is assumed to have a parabolic distribution determined by the temperature 
03 at the midweb M and by the temperature 01 at the joint A. In the flange, the 
temperature distribution is assumed to vary linearly from O1 to 02 (Fig. 3). The 
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\ A/ ‘? 

M -- -- 
\ e3 

I I 

Fig. 3. Effective portion of wing structure and assumed temperatures for the transient sym- 

metric case. 

temperature 62 is assumed to be the same as in an infinite flange without the web. 
This temperature is then determined by the differential equation 

ace2 + KBz = p&,(t) (4.11) 

If the external temperature is 

e”(t) = { ;” 
t<o 
t> 0 

(4.12) 

the solution is 

82 = 190(1 - e-t’r) (4.13 

with 

7 = at/K 

The temperature field is completely determined by the two unknowns 01 and 
es. They may be considered as the two generalized coordinates. We calculate 
the flow field associated with this temperature field and apply the general theory. 
This leads to two simultaneous equations. 

AleI + A13e3 + 7(BnS1 + B13e3) = fr 
AI36 + A33e3 + r(Ur + B33&) = f2 

(4.14) 

The coefficients Aij and Bij are numerical nondimensional quantities deter- 
mined by the geometry and the physical parameters. On the right-hand side 
are given functions of time. 

fi = cd0 + c12e2 + rcl;2V2 
f, = czoeo + cc22e2 

(4.15) 
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The coefficients are again nondimensional quantities depending on the geometry 
and physical parameters. 

We have solved these equations numerically for the example treated by Pohle 
and Oliver. lo We have also discussed the same example4 previously. The external 
temperature 00 is assumed to be a sudden increase to a constant value as given by 
Eq. (4.12). The temperature 01 plotted as a function of time cannot be distin- 
guished from the exact value as calculated by Pohle and Oliver.l” 

This is not the case, however, for the temperature & which shows a departure 
from the correct value during the transit time4 from A to M. The values, in fact, 
come out negative during this phase. This is due to our assumption of a parabolic 
distribution extending all the way across the web, an assumption which is, of 
course, not valid during the penetration phase. However, this does not affect 
the correctness of the joint temperature at A. There is a mathematical reason 
for this which we shall not discuss here since it would carry the discussion further 
than intended. We shall be contented to indicate the result and note that the im- 
portant temperature to determine in these problems is the temperature 01 at the 
joint. Once this temperature is known, it becomes quite easy to evaluate the time 
history in the web. A variety of methods can be employed. We can either use 
the procedure which was introduced in the earlier work.4 This procedure consists 
in taking the temperature 01 as the imposed wall temperature of a one-dimensional 
problem and applying Duhomel’s integral. Another approach which can be used 
for the penetration phase is to apply the differential Eq. (2.21) derived for the pene- 
tration depth where the wall temperature is a given function of time. 

The procedures which we have discussed on a simple example may be applied 
to complex three-dimensional structures. The concept of effective flange width 
makes it possible to treat parts of the structure as separate entities. 
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Discussion 

A. R. Collar: I know Prof. Biot’s expertise in the field of matrix analysis, 
and I suspect that the fact that he has not used matrices in the presentation of his 
subject may mean that matrix algebra is not well suited to it; although sets of 
linear equations (and such quantities as ignorable coordinates) can often be con- 
veniently expressed in terms of matrices. Would he please comment? 

M. A. Biot: Matrix algebra is indeed in many cases, though not always, a 
most appropriate tool for handling thermodynamic problems by Lagrangian 
methods. I welcome this opportunity to bring out some salient points on the 
subject which were not mentioned in earlier work because of limitation of time 
and space. It is clear that the representation of a continuum in terms of discrete 
generalized coordinates by use of variational methods leads in many instances to a 
matrix formulation. Most of the standard procedures of matrix algebra are ap- 
plicable. As I have pointed out4 earlier, iteration methods for example and ortho- 
gonality conditions may be used. However, the elimination of the ignorable 
coordinates in heat-flow problems by matrix algebra does not seem convenient 
because there is theoretically an infinite multiplicity of such coordinates. This is in 
contrast with vibration problems of an elastic free body where only six ignorable 
degrees to freedom must be eliminated. For this reason, we have preferred to 
introduce the concept of “associated field” which provides a way to satisfy auto- 
matically an infinite number of orthogonality conditions. In addition, the concept 
itself is applicable to a much larger class of problems. I would also like to mention 
that there are areas of overlap between the Lagrangian approach and the powerful 
methods developed by Kron in his network analysis. The principle of virtual work 
for thermodynamic systems as formulated in one of my earlier papers2 is closely 
related to Kron’s matrix method of interconnection of networks. The principle 
is a generalization of the old Lagrangian technique for the elimination of forces 
of constraints. 

A. R. Collar : Since the subject-matter of his paper appears a most useful 
concept, and the literature is spread through a variety of journals, is Prof. Biot 
proposing a book on the subject. ? If he is, I can promise a sale of at least one cop\r 
in the United Kingdom. 

M. A. Biot: The collection of this material in book form has of course been 
considered. Unfortunately, there is always a considerable gap between time 
schedules and realization. In the meantime, a special effort was made to present 
the heat-flow problem as self contained in Refs. 4 and 5 while Ref. 9 offers a con- 
densation of the more general thermodynamics in monograph form. 
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