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Abstract: This paper presents an introduction to 
the theory of folding of stratified viscoelastic media 
under compression and discusses its significance in 
the context of tectonics and orogenesis. Simplified 
derivations are given for results obtained earlier 
by the writer as particular cases of more elaborate 
theories. The writer emphasizes the mechanism 
involved in folding. The paper begins with a 
discussion of the buckling of an elastic rod that is 
under axial compression and is restrained laterally 
hy viscous dashpots. The analysis then proceeds to 
the analogous problem for an elastic and a viscous 
plate surrounded by a viscous medium. Results 
of some of the more complex problems previously 
analyzed by the writer are also applied and dis- 
cussed. Experimental verification of the theory by 
model tests is presented in a companion paper 
(Biot. OdC, and Roever, 1961). 

A new feature of the present approach is the 
emphasis on rate phenomena and time histories 
in tectonic folding. In purely static problems of 
elastic buckling, a sharply defined wavelength is 
associated with the instability. By contrast, for 
viscoelastic media, the present theory leads to the 
concept of dominant wavelength and band width 
selectivity in analogy with the theory of electric 
wave filters. This is well illustrated by the gradual 
appearance of near-regular folds when a purely 
viscous layer surrounded by a viscous medium of 
lower viscosity is subjected to a compression in a 
direction tangent to the layer. 

The theory is applied to specific examples of 
geological interest. These include the case of a 
single layer or a superposition of layers. Previous 
theoretical work by the writer is applied to the 
discussion of folding, under the simultaneous 

action of gravity forces and a horizontal compres- 
sion, for a single layer or a superposition of layers 
lying at the surface of a deep substratum of lower 
viscosity. The case of a continuously inhomogene- 
ous medium under similar forces is also included. 

Using accepted values of rock viscosity and 
elastic moduli, the writer finds that the time re- 
quired for significant folding to take place agrees 
very well with the geological time scale. Folding 
may occur under tectonic stresses that are small 
in comparison with the crushing strength of the 
rock. The time history of folding depends, of 
course, on initial irregularities of the layers, hut 
after sufficient time the folding becomes fairly 
insensitive to the magnitude and the distribution 
of the initial disturbances. The writer concludes 
that the viscous mechanism tends to predominate 
in tectonic folding. As a theoretical consequence, 
the wavelength of the folds will, in general, not be 
sensitive to t’he magnitude of the tectonic stresses 
unless gravity forces become important. The cal- 
culated wavelengths are in good agreement with 
the range of observed values. The point at which 
plastic or brittle failure occurs is found to depend 
primarily not on the magnitude of the strain but 
on deformation rates. The theory can be applied to 
materials with nonlinear stress-strain characteristics, 
and the procedure to accomplish this is briefly 
discussed. Certain nonlinear features resulting 
from the geometry of deformation are shown 
to have a bearing on the regularity of the folds. 

’ Work carried out under the sponsorship of the Ex- 
ploration and Production Research Division (Houston, 
Texas), where the author is a consultant for the Shell 
Development Company 
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1. INTRODUCTION AND 
ACKNOWLEDGMENTS 

A quantitative approach to the mechanics 
of folding of stratified sedimentary rock and, 
on a larger scale, of the earth’s crust has 
attracted the attention of many investigators. 
Past attempts in this direction have been based 
primarily on the buckling theory of elastic 
media. These studies were restricted to static 
stability, and time was not considered. 

This paper presents some simple geological 
implications based on a new approach. The 
theory has been verified by model tests, and 
the results are presented in a companion paper 
(Biot, Ode, and Roever, 1961). In contrast 
with past theories, this theory considers the 
deformation of viscoelastic media that exhibit 
either elastic, viscous, or heredity properties. 
Moreover, the writer has developed exact 
quantitative theories. The problem of calcu- 
lating folding under a compressive stress ex- 
tends far beyond the concepts of purely static 
instability, and rate processes and time histories 
play a dominant role. 

The writer calls attention to the particular 
type of folding mechanism considered in the 

‘present theory. He deals only with the spon- 
taneous folding caused by instability under a 
compressive load acting in a direction parallel 
with the layer and does not discuss other types 
of folding. 

The purpose here is not to present specific 

ferent viscosities and densities . . . . 
.2. Multiple superposed layers lying at the sur- 

face of a medium subject to gravity . . 
.3. Inhomogeneous viscous solid with a viscosity 

decreasing exponentially with the depth 
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geological applications but rather to discuss 
certain aspects of the theory that are significant 
in the context of geology. 

Smoluchowski (1909a; 1909b; 1910) carried 
out the-first detailed investigation based on 
elastic theory. He analyzed the buckling of an 
elastic plate lying on top of a heavy fluid and 
subject to a horizontal compression. He found 
that when a certain critical compression is 
reached, the plate buckles in sinusoidal waves. 
The load and the wavelength depend on the 
elasticity of the plate and the gravity buoyancy 
of the underlying fluid. Smoluchowski dis- 
cusses many geological implications of this 
theory. Subsequently Goldstein (1926) pub- 
lished the same mathematical analysis. Later 
investigators-Kienow (1942) and Gunn (1937) 
among others-have developed applications of 
the theory to geology. In an extensive memoir 
on the mechanics of deformation in the earth’s 
crust, Goguel (1943) devoted two chapters to 
the problem of folding. He based his analysis on 
concepts of energy dissipation. The results 
obtained by Goguel’s method are most inter- 
esting but, on the whole, are qualitative. The 
theory of buckling of an elastic plate embedded 
in a medium that is elastic has been established 
by a number of authors in connection with 
technological problems such as the design of 
sandwich panels. Analytical work on this 
problem has been done by Bijlaard (1939; 
1947), Van der Neut (1943), and Gough, Elam, 
and DeBruyne (1940). The last-named in- 
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eluded an experimental verification by model 
tests. From the viewpoint of geology, this 
purely elastic theory is of somewhat remote 
interest: the contrast between elastic rigidities 
of rock is not sufficient to permit explanation 
of folding of an embedded layer on a purely 
elastic basis. 

The writer has investigated viscoelastic 
properties during the last 10 years: the results 
have been published in a series of theoretical 
papers. He developed a general theory of the 
folding of a compressed plate embedded in an 
indefinite medium, both viscoelastic, in a 
paper published in 1957. The writer used 
simplified equations for the bending of a 
viscoelastic plate in analogy with the same 
elastic equations for the purely elastic plate. 
The results were supported by comparison 
with the treatment of this problem by an 
exact theory for the stability of a viscoelastic 
continuum (Biot, 1959a). The writer (1959b) 
then investigated the problem of interfacial 
adherence between the layer and the surround- 
ing medium and showed that the influence of 
this adherence in the case of a single layer is not 
significant and can be neglected. The influence 
of gravity on folding is important in certain 
situations with density contrasts and for a 
layer situated at the surface and was taken 
into account in another paper (Biot, 1959c). 
Finally, the writer (1960) investigated the 
stability for a medium limited by a horizontal 
surface whose rigidity and viscoelastic proper- 
ties vary continuously in such a way that the 
medium tends to become a perfect fluid at 
large depth. The medium was subjected 
simultaneously to the action of a horizontal 
compression and to gravity. The writer found 
that gravity is important in the mechanics of 
folding of the surface. The writer (1958b) 
presented a short account of this first phase 
of his program at a recent colloquium. 

The more elaborate and exact form of the 
theory results from two earlier developments. 
The first is based on a series of publications in 
which the writer (1934; 1938; 1939a; 1939b) 
developed a systematic theory of stability of 
a continuum under initial stress. An important 
feature of this theory is its applicability to 
either elastic or nonelastic media (Biot, 1956). 
The central idea which permits the extension 
of the theory to viscoelastic media is repre- 
sented by the introduction of a correspondence 
principle (Biot, 1954; 1956). This provides a 
standard procedure for generalizing to visco- 
elasticity the solution of an elasticity problem. 

The other development deals with the appli- 
cation of a new thermodynamics of irreversible 
processes to the mechanical properties of 
viscoelastic media. In particular, the writer 
(1954) has developed some very general ex- 
pressions for the relationships between stress 
and strain in materials that exhibit heredity 
properties and obey complicated creep laws. 
The writer (1958a) has given a general account 
of the thermodynamic theories in a recent 
lecture. 

The writer has found that for materials that 
exhibit complex viscoelastic properties, con- 
sideration of the thermodynamics is important 
in stability problems. 

Chandrasekhar (1955) and Hide 11955) have \ I 

treated the problem of stability in a gravity 
field of an inhomogeneous, incompressible 
viscous fluid. Their theories are based on the 
classical equations of fluid mechanics and are 
restricted to the imcompressible viscous medi- 
um; no initial stresses other than the hydro- 
static gravity stress are considered. 

The writer herein presents a simplified 
rederivation of some of the significant results 
of the theory, along with a discussion of their 
implication in geodynamics. To simplify the 
mathematical analysis, the writer has con- 
sidered only the two cases of an elastic or a 
viscous layer in a viscous medium. Thermody- 
namic considerations do not enter in these 
simpler cases. The emphasis has been put on a 
clear understanding of the mechanics of fold- 
ing. The reader interested in the more ad- 
vanced treatment is referred to the papers 
mentioned previously. 

To clarify the mechanics of dynamic folding, 
the writer first analyzes, in Section 2, the 
problem of buckling under axial compression 
of a slender elastic rod restrained laterally by 
viscous dashpots. This leads to a better under- 
standing of the folding of an axially compressed 
elastic layer submerged in a viscous medium. 
This problem is treated in Section 3. In Section 
4, the writer analyzes the folding of a viscous 
layer under compression in a viscous medium. 

In all these cases, there is, of course, no 
sudden buckling, as would occur, for instance, 
in an elastic plate with elastic lateral restraint. 
The folding depends on the imperfections 
present in the plate, i.e., on its departure from 
a perfect plane. The deformation will grow as 
a function of time. The important result, how- 
ever, is that the rate of growth of the de- 
flection is very sensitive to the wavelength of 
the folds, i.e., their distance from crest to 



1598 M. A. BIOT-THEORY OF FOLDING OF STRATIFIED VISCOELASTIC MEDIA 

crest. The theory shows that there is a wave- 
length that grows at the fastest rate; this is 
referred to as the dominant wavelength. After 
sufficient time, this dominant wavelength ap- 
pears in the form of more or less regular 
sinusoidal waves. In other words, the mechanics 
of folding is similar to the function of a filter 
amplifier when certain wavelengths present in 
a noise signal are amplified selectively. 

The writer analyzes the regularity of the 
folding based on the concept of selectivity and 
band width of the amplification in Section 5. 

In applying these concepts to geology, one 
must bear in mind that viscosity properties of 
rock vary widely. The coefficient of viscosity 
may, for instance, be of the order of 101’ poises 
and go up to 10z2 poises. This is in contrast 
with the elastic rigidity, which ranges only 
from about 10n to 1012 dynes/cm2. From the 
standpoint of rate processes and viscoelasticity, 
the earth’s crust is therefore highly hetero- 
geneous. In relation to higher-viscosity rock, 
the solids of lower viscosity will even tend to 
behave as liquids. This points to enormous 
differences between the behavior of stratified 
structures when considered, on the one hand, 
as elastic materials susceptible only to static 
instability and, on the other hand, as visco- 
elastic materials with strain-rate effects. The 
writer gives a quantitative analysis of the 
folding of rock strata in Section 6. Because of 
the exponential time dependence of folding, 
the time required for significant amplitudes to 
be produced is not sensitive to the magnitude 
of the initial irregularities. Also, folding will 
occur within lengths of time that agree well 
with the known geological time scale. More- 
over, such folding may take place within 
relatively short periods on the geological scale, 
even for compressive stresses that are very 
small in comparison with the yield point of the 
rock. Another interesting conclusion is that, 
in the mechanism of folding, the viscous 
properties of the rock will tend to overshadow 
the effect of elasticity. Stress will affect the 
rate of folding, but the wavelength will remain 
about the same, of the order of about 20 to 
50 times the thickness. Of particular interest 
is the result that failure of the rock with the 
appearance of cracks or plastic yielding does 
not depend primarily on the magnitude of bending 
of the layer but on deformation rates. At low 
stress, large deformations will be possible 
without the occurrence of failure. 

The writer reaches similar conclusions in 
Section 7, where he has analyzed the folding of 

multiple superposed layers. This is intended as . 
a prellmlnary evaluation based on certain 
simplifying assumptions regarding interfacial 
slip. The writer will present a more elaborate 
theory for this case at a later date. 

The writer considers the influence of gravity 
for the case of a layer lying at the surface or 
embedded in materials of different densities 
on top and bottom in Section 8. He also con- 
siders the case of multiple layers lying at the 
surface. He concludes that larger-scale folding 
is not incompatible with the viscous mechanism 
of the present theory if we assume that we are 
dealing with a system of multiple layers with 
interfacial slip. However, final conclusions re- 
garding the bearing of the present theories on 
orogenesis will have to wait for further appli- 
cations based on a more realistic model. 

Finally, the writer analyzes the folding of a 
medium whose viscosity decreases continuously 
with depth in exponential fashion. This pro- 
vides a continuous transition from a solid at 
the surface to a fluid at a certain depth. The 
medium is also under the influence of gravity. 
The thought here was to determine how this 
case differs from the discontinuous case, where 
a layer lies on top of a less viscous material. 
Also, this model embodies one characteristic 
feature for the earth’s crust as a whole, since the 
effect of pressure and temperature tend to 
produce a gradual decrease of viscosity with 
depth. The discussion of this case is based on a 
more elaborate theory (Biot, 1960). The writer 
found that large-scale folding is not compatible 
with this model. 

In the present paper, the writer emphasizes 
the linear aspects of the theory. However, the 
theory can easily be extended to apply to 
nonlinear materials in two ways. First, in the 
incipient phase of folding, the stress in the 
layer may be high enough to be in the range 
where the relationship between creep rate and 
stress is nonlinear. In this case, the theory will 
apply for incipient folding, provided that a 
viscosity coefficient that represents the linear 
dependence between stress increments and 
small creep-rate increments is used. This 
“efictive viscoGty coe#cient” will be stress- 
dependent. The next phase will be character- 
ized by the local appearance of plasticity, 
fracture, and high creep rates. The occurrence 
of this phase will generally be associated with 
large deformations, unless the initial compres- 
sion itself is very high. The point at which 
these effects become significant can be evalu- 
ated by calculating the stresses on the basis 
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of the linear theory. When localized yielding 
or fracture occurs, one can extend the calcula- 
tion to this phase by applying the present linear 
theory, taking into account the local in- 
homogeneities, and by using the concept of 
“effective viscosity.” In addition to the 
“physical” nonlinearities just mentioned, 
which originate in the physical nature of the 
materials, other nonlinear features are involved. 
They might be called geometrical, since they 
arise when deflections are “large.” The result, 
for instance, is to shorten the distance between 
crests of the folds over the value given by the 
linear theory. Such corrections are easily 
introduced by elementary considerations. These 

compression given by the well-known Euler 
formula 

f7 = 1r2 E’ 
a2 ’ (2.1) 

where E is Young’s modulus of the elastic 
material, I the moment of inertia of the rod’s 
cross section, and a = AB, its length. 

The deflection between points A and B is a 
half wave, and, within the limitations of a 
linear theory, equilibrium is maintained for an 
arbitrary amplitude of the deflection, i.e., the 
equilibrium is neutral. Another way of stating 
this is by saying that under the axial compres- 
sion (2.1), the rod deflects laterally by a finite 

Figure 1. Instability of a thin rod under an axial compression 
F. The rod will buckle in many waves, provided it is re- 
strained at the nodes A, B, C, and D. 

points are discussed briefly at the end of Section 
6. Other features arising from nonlinearity 
are of geometric origin and are due to the 
amplitude limitation of the folds. As explained 
at the end of section 5 this limitation tends to 
increase the regularity of the folds. Further 
development of the theory along this line is 
in progress and will be presented later. 

The writer owes recognition to Prof. F. 
Kaisin, Sr., who was his teacher of geology at 
the University of Louvain during the years 
1927-1929, for the motivating ideas that 
instigated the development of the present 
theory. 

He is also indebted to M. King Hubbert for 
many stimulating discussions in connection 
with the geological aspects of the theory, and 
to J. Handin for information on the rheological 
properties of rock. 

2. BUCKLING OF AN ELASTIC 
ROD WITH VISCOUS 
LATERAL RESTRAINT 

To illustrate the qualitative aspect of the 
various problems treated hereafter, the writer 
discusses first a simple problem of instability. 
Let a thin rod be pinned at both ends A and B 
and be subjected to a total axial compressive 
load, F. Such a rod buckles under an axial 

amount under an infinitesimal lateral load. 
Instead of a rod of length a, let us consider 

a rod of infinite length that is subject to the 
same compressive load, F. Let the rod be 
pinned at equidistant points A, B, C, D, etc. 
(Fig. l), the distance between the points being 
equal to a. Each section can then be assimilated 
to the pinned rod of length a, which we have 
just considered, and each of these sections will 
buckle in a half sine wave. This rod of indefinite 
length will then exhibit a sinusoidal deflection 
of wavelength 

L, = 2a . (2.2) 
We shall refer to this length as the Euler wave- 
length associated with the compressive load F. 
Note that the rod exerts no lateral force on the 
pins at points A, B, C, D, etc. The restraint 
is therefore introduced only to indicate how an 
experiment could actually be performed show- 
ing such a sinusoidal deflection. Without the 
pins, of course, the system would be unstable, 
and the rod would immediately collapse with 
the appearance of larger buckling wavelengths. 

Let us now maintain a fixed compressive 
load, F, but vary the distance between pins, 
i.e., vary the wavelength, L. For wavelengths 
smaller than the Euler wavelength, L,, the 
deflection cannot be maintained and will 
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suddenly disappear. For wavelengths larger 
than L,, the deflection will increase and the 
rod will collapse, unless we introduce a lateral 
load to prevent this. To evaluate the magnitude 
of the lateral force required to do this, we shall 
use the familiar equations for the deflection 
of a beam in the theory of structures. We shall 
assume that the rod can deflect only in the 
plane of the figure. The x co-ordinate lies 
along the axis of the undeformed rod, and w 
denotes the deflection perpendicular to this 
direction. The bending moment, M, is propor- 

Combining equations (2.3), (2.4), (2.5), and 
(2.7), we derive 

(2.8) 

The sinusoidal deflection of the rod is repre- 
sented by 

w = tul) cos lx, (2.9) 
where the wavelength of the deformation is 

‘q 
Figure 2. Balance of forces in a rod that buckles under an 

axial compression F and is laterally restrained by viscous 
dashpots 

tional to the curvature, d2w/dx2, of the rod. 
This relationship is 

EI$=-M. 
The sign conforms to the directions indicated 
in Figure 2 for positive bending moments. 
The bending moment is made up of two parts, 

M = Ml + Ms. (2.4) 
The term hrii is the bending moment due to 
the axial load Fl; 

Ml = Fw . (2.5) 
The term Ms is the bending moment due to 
the lateral restraining forces. These forces are 
assumed to act perpendicularly to the rod axis. 
The magnitude of this force per unit length 
is designated by 4, and the sign is chosen 
positive when q is acting in the positive 
direction of the deflection w. The following 
relationships can be written: 

dS -= 
dx 

(2.6) 

where S represents the shearing force on the 
rod cross section due to q, and 

@M2 ~=- 
dx2 4. 

(2.10) 

The trausversal load necessary to maintain 
this deflection is also distributed sinusoidally, 
2X., 

q = qlJ cos Ix . (2.11) 

Relation (2.8) can therefore be written 

- q = F12w - E114w . (2.12) 

The quantity -q represents the force with 
which the rod is pushing against the lateral 
constraint. It is represented by two terms. The 
first, FPw, is a driving force generated by the 
compression, F, and the curvature of the rod. 
The second term, Ell”w, represents the re- 
straint against deformation due to the bending 
rigidity. There is a wavelength for which these 
two terms are equal, i.e., for which q = 0. 
The value of I for which this occurs corresponds 
to the Euler wavelength 

This corresponds to equation (2.1), if we put 
2a = L,. For wavelengths larger than this 
value, the rod pushes against the lateral con- 
straint, and it can be seen that there is a 
certain wavelength for which the magnitude 
of this push will be a maximum. 
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Finally, we shall specify the nature of the 
lateral constraint. We shall assume that it is 
made up of a continuous distribution of viscous 

8 dashpots, such that the restraining force is 
proportional to the time derivative of the 
deflection, namely, 

. 
. -q,*d” 

dt ’ 

Substituting in equation (2.12) yields 

b 2 = 10 (FZ2 - E114) . (2.15) 
I 

This is a differential equation for w, and its 
general solution is 

to = CePt , (2.16) 

with 

p = t (FZ’ - EIZ4). (2.17) 

For wavelengths smaller than L,, the value 
ofp is negative, and the deflection will die out. 
Any sinusoidal deflection of wavelength larger 
than L, is unstable, since p is then positive. Its 
amplitude increases exponentially. 

The value of I for which p is a maximum is 

(2.18) 

This corresponds to the wavelength for 
which the rate of increase of the amplitude is 
maximum. We shall call this the dominant 
wavelength, Ld. Its value is 

II 
- 

Ld = 2n $! = dZL,. (2.19) 

The dominant wavelength is d/z times the 
Euler wavelength, is a function of the com- 
pressive load, and is independent of the 
viscosity of the lateral constraint. 

The physical significance of this dominant 
wavelength lies in the fact that the initial 
deviations of the rod axis from a perfect 
straight line can be expanded in a Fourier 
series. Each component is characterized by its 
own wavelength, and its amplitude will in- 
crease exponentially at a certain rate. The 
dominant wavelength will possess a much 

1 larger rate of deformation than others and is 
therefore the one most likely to be observed 
in practice. A certain amount of scatter of the 
observed wavelengths around the value Ld 
must be expected, owing to the randomness of 
the initial irregularities. The writer calls 

attention to the physical significance of the 
Euler wavelength, L,, which acts as a cutoff 
wavelength. For all wavelengths smaller than 
L,, the value of p (equation 2.17) is negative. 
The Euler wavelength depends on the load, 
and if the load is suddenly decreased, all wave- 
lengths which had appeared and are now smaller 
than the new value of L, will gradually disap- 
pear. 

In deriving these equations, we have neg- 
lected all inertia forces. This is justified, since 
we have in mind applications to viscous solids 
in which iates of deformation are very small. 

3. BUCKLING OF AN ELASTIC 
PLATE IN A VISCOUS MEDIUM 

We consider now an elastic plate of thickness 
h embedded in an infinite viscous continuum. 
The geometry is illustrated in Figure 3. 
We choose the x axis parallel to the plate and 
the y axis perpendicular to it. The plate is 
infinitely extended. A uniform compression, 
P, per unit area is acting in the plate in the 
x direction. We are interested in the buckling 
of this plate and in the appearance of a sinus- 
oidal deflection along x. The deformation is 
one of two-dimensional strain in the ~,y plane. 
In analyzing such a deformation, we may 
imagine that the plate is represented by a 
strip of unit thickness in the direction perpen- 
dicular to x,y. We can then treat the problem 
of buckling of this strip in a manner entirely 
analogous to that of the rod analyzed hereto- 
fore. There are, however, two essential differ- 
ences. 

The first difference arises ‘from the fact that 

we are dealing with two-dimensional strain. 
The stress-strain relationships in the x,y plane 
are 

uxZ = 2PeZZ + X (eZ2 + eyy) 
uyzl = 2 Pea, + X (eza + eu2/) ’ (3’1) 

where X and p are Lame coefficients. In the 
bending deformation of the plate, we can put 

u - 0. YY - (3.2) 

We derive 

csZ = Be,, , (3.3) 

with 

B = 4~ (P + A) = E 

2P + x I- (3.4) 

In this expression, E is Young’s modulus and Y 
is Poisson’s ratio for the plate. We see that for 
two-dimensional strain, Young’s modulus must 
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be replaced by B. On the other hand, the 
moment of inertia, Z, of the cross section is, in 
this case, 

I=$ 
Equation (2.3) is therefore replaced by 

(3.5) 

~Bh3~=44. (3.6) 

The total compressive load which plays the 
role of F is 

F = Ph. (3.7) 

tributed sinusoidally. Its positive direction is 
chosen the same as that of q’. If the material 
is an incompressible viscous solid of viscosity 
71, the relationship between load and de- 
flection is 

q’ = 27lil$. (3.11) 

The plate acts upon two such half-spaces, one 
on each side; therefore, we can write 

- q = 2q’ (3.12) 
or 

(3.13) 

Y 

Figure 3. Elastic plate of effective rigidity _7Z/(1+v2) @, Young’s modulus; Y, 
Poisson’s ratio) or viscous layer of viscosity 7 embedded in a viscous medium 
of viscosity 71 

Equation (2.8) must, therefore, be replaced by 

4= ‘G+ ;Bh3$. (3.8) 

This is the load, q, per unit area required to 
maintain a deflection, w, of the plate under the 
axial compression, P. For a sinusoidal deflection 
(equation 2.9), we write 

- q = Ph12w - B ; 14w . (3.9) 

The second difference from the problem in the 
previous section is that, the lateral constraint 
is due to a viscous continuum instead of to 
local dampers. The load per unit area required 
to deflect a semi-infinite viscoelastic medium 
has been evaluated in previous work (Biot, 
1957; 1959a; 1959b). The result is expressed 
as follows. 

The normal load, q’, per unit area acting 
at the surface is assumed to be distributed 
sinusoidally (Fig. 4). We write 

q’ = 4’0 cos Ix . (3.10) 

Comparing this with equation (2.14), we note 
an essential difference in the fact that the 
viscous-resistance factor 4& of an equivalent 
dashpot contains the quantity 1. Hence, the 
viscous resistance of the medium per unit area 
is inversely proportional to the wavelength. 
This is essentially due to a similarity law for 
the half-space. In that respect, it is entirely 
analogous to the case of an elastic half-space. 
In the latter case, if the same specific load is 
distributed over similar areas of different 
dimensions, the deflection is proportional to 
the linear dimension of the area. 

Combining equations (3.9) and (3.13), we 
derive 

4r]r 2 = Phlw - + Bh313w. (3.14) 

The solution of this differential equation is 
again given by the general formula (2.16). The 
exponential rate of deformation is measured by 

p = & (Phi - ; Bh313) . (3.15) 

The deflection, w, of the surface is also dis- The rate is zero for the value of I that cancels 
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the right-hand side, i.e., for the Euler wave- 
length, 

L, = 7rh (3.16) 

The value of p is a maximum for 1 = Zd, where 

&h = 2 
P 

B’ 
(3.17) 

This yields the dominant wavelength 
.- 

Ld = ?rh J ” = Th I E 
P li’(l - Y2) P, (3.18) 

at a uniform constant rate in a direction 
parallel with the plate. We are concerned here 
with the stability of this state of uniform 
deformation of the plate and the medium. In 
particular, we shall investigate the possibility 
of sinusoidal folding of the plate when a small 
perturbation is introduced in the system. Such 
a perturbation is, for instance, a deviation of 
the plate from a perfectly flat surface. By 
Fourier expansion of such deviation, this 
amounts to examining how a perturbation 
constituted by a single sinusoidal wave in the 
deflection of the plate will grow in amplitude 
as a function of time. In analyzing this problem, 
we shall neglect the compressive stress, Pi, in 

t 

q’= q; cos Ix 

Figure 4. Deflection of the viscous embedding 
medium at the surface of contact with the layer 
and the restraining force, q’, of the medium 

In this case of a plate restrained by a viscous 

continuum, the ratio of &IL, is 1/j, as 

compared to d/2 for the rod restrained by 
dashpots. This is due to the dependence of the 
viscous resistance on the wavelength in ex- 
pression (3.13). 

As mentioned in the previous section, the 
Euler wavelength, L,, acts as a cutoff wave- 
length. Its value depends on the compressive 
load, and any wavelength component smaller 
than L, present in the deformation at any 
particular instant will tend to disappear. 

4. FOLDING INSTABILITY OF A 
COMPRESSED VISCOUS PLATE 
IN A VISCOUS MEDIUM 

We shall now consider the case in which the 
elastic plate of the previous problem is replaced 
by a layer of incompressible, purely viscous 
solid of viscosity coefficient q. The plate of 
thickness h (Fig. 3) is subject to a longitudinal 
compression, P, per unit area. It is embedded 
in an incompressible, purely viscous, indefinite 
medium of considerably lower viscosity, 71. 
We can visualize an experiment in which the 
plate and the medium are squeezed together 

the surrounding medium. The writer (1959a) 
has shown that this assumption is justified in 
a much more elaborate analysis of the problem. 

To analyze the deformation in this problem, 
we must consider the stress-strain relationships 
for an incompressible viscous medium in two- 
dimensional strain. The stress and strain in the 
plane are related by the equations 

where 

1 
0 = 2 (uzz + fJ yy ). (4.2) 

The x axis is shown parallel with the plate. 
If free expansion is allowed in the y direction, 
i.e., normal to the plate, we can put u2/11 = 0. 
Then 

uzr = 4q %, (4.3) 

Hence, a uniform rate of strain, deZz/&, will 
produce a constant compressive stress in the 
plate: 

P=_-4$$. (4.4) 
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The same rate of strain in the surrounding 
medium produces a compressive stress 

PI = - 4171%. (4.5) 

This is the initial steady state of the system 
upon which we shall now superpose a sinusoidal 
bending deformation of the plate. 

The bending of a viscous plate can be treated 
in a manner entirely analogous to that of an 
elastic plate. The appearance of bending intro- 
duces a bending moment, M, in the viscous 
plate proportional to the rate of change of its 
curvature. The following relationship is easily 
derived : 

f vh3 
d3W 

mt=-M. (4.6) 

This equation is formally the same as rela- 
tionship (3.6), provided that we introduce the 
formal identity 

B=4& 

Proceeding exactly as in the case of an elastic 
plate, we establish the analogue of expression 
(3.8) for the transversal load, q, acting on the 
plate: 

a2w 1 d5w 
q = Ph dX2 + - qh3 - 

3 dtdx4 . (4.8) 

For a sinusoidal deformation, this becomes 

- q = Phl”w - f qh314 2. (4.9) 

The load, - q, is the reaction of the viscous 
medium to deformation. Its expression is given 
by equation (3.13). Hence, we derive 

4~7~1 $f = Ph12w - ; qh314 $v . (4.10) 

This is a differential equation for the deflection 
w. As before, the solution for w is proportional 
to the exponential ept, and p is given by 

(4.11) 

This expression depends on the wavelength 
through the nondimensional variable Zh. For 
zero and infinite wavelength, i.e., for 1 = m 
and I = 0, the value of p is zero and the rate 
of deformation of any sinusoidal bending is 
zero. For an intermediate value of Z, the value 
of p goes through a maximum. The value of I 

at which this happens is given by I = L, where 

(4.12) 

The corresponding dominant wavelength is 

Ld = 2rh (4.13) 

The ratio of dominant wavelength to thickness, 
Ld/h, is shown in Table 3 as a function of the 
viscosity ratio, q/vi. 

The value of p = p, for the dominant wave- 
length is found by putting I = & in expression 
(4.11). We find 

*_=& “3, 
-ti- 

(4.14) 

This expression determines the rate of growth 
of the amplitude of folding at the dominant 
wavelength. 

We note the important fact that for a 
viscous plate in a viscous medium, the dominant 
wavelength is independent of the compressive load, 
P. This is in contrast with the case of the elastic 
plate. The load, of course, affects the rate of 
deformation, but, as shown by relation (4.1 l), 
all wavelengths are equally affected. 

The case of the viscous plate also differs 
from that of the elastic plate by the absence 
of a cutoff wavelength, i.e., all wavelengths are 
amplified. 

5. AMPLIFICATION AND 
SELECTIVITY OF FOLDING 

The writer must call attention to certain 
important features of folding, which are charac- 
terized by two aspects. One is the degree of 
amplification, i.e., the magnitude of the factor 
by which a certain wavelength amplitude 
initially present in the layer is multiplied 
after a given time. Another is the selectivity 
of the amplification. This can be characterized 
by the band width representing those wave- 
lengths that are selectively amplified. These 
concepts are entirely analogous to those en- 
countered in the theory of electronic wave 
filters. 

Let us first consider the case of an elastic 
layer in a viscous medium. The amplification 
factor, after an interval of time, is 

A = epl , (5.1) 

where p is a function of the wavelength given 
by equation (3.15). The maximum value, Ad, 
of this amplification occurs for the dominant 
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wavelength, i.e., for 1 = ld. We write 

Aa = epmt , (5.4 

where p, is the maximum value of p, i.e., 

*“+bhP=;; P. J B 
(5.3) 

71 

We can plot the amplification at any given 
time as a function of the wavelength or, more 
conveniently, as a function of the wave number, 

Figure 5. Amplification, A, of the 
folding as a function of the wave 
number 

1 (Fig. 5). There are two wave numbers, 11 and 
12, for which the amplification is one-half the 
maximum value, i.e., for which 

A=;Ad. (5.4) 

This is an equation for 11 and 1s which is equiva- 
lent to 

1_PJog2!%L 
Pm PfJ log Ad * (5.5) 

(log denotes the natural logarithm.) 
The selectivity is determined by the relative 

band width 

Al 1s - II 
-= 
ld 

-. 
ld 

(5.6) 

Equation (5.5) can be solved approximately by 
expanding the left-hand side in the vicinity 
of its minimum and retaining only the term 
that corresponds to the osculating parabola. 
We find 

Al _ = 2 

ld 

There are two immediate conclusions. The 

band width decreases as l/d; and depends 
only on the amplification, Ad, of the dominant 
wavelength. 

For decreasing values of Al/&, the se- 
lectivity increases, and the folding more closely 
approaches a pure sine wave. The significance 
of the band width is illustrated by the fact 
that two waves of wave numbers ld -/- l/2 
Al and ld - l/2 Al will, by superposition, 
produce amplitude beats. The interval be- 
tween the beats is denoted by D, and we can 
write 

Ld Al 
-=-* 
D & 

(5.8) 

Table 1 shows the band width for various 
amplifications. 

TABLE 1. BAND WIDTH (Al/Z,), FOR THE ELASTIC 
LAYER IN A VISCOUS MEDIUM AS A FUNC~ON OF THE 

AMPLIFICATION FACTOR Ad 

10 0.896 
’ 102 0.635 

103 0.516 
104 0.448 
lo” 0.400 

As can be seen, the selectivity varies slowly 
with the amplification. A certain regularity 
in the waves will begin to appear at amplifica- 
tions of 102. Theoretically, of course, the 
amplification may grow to infinity. Since the 
amplitude of the folding remains finite, this 
can be the case only when the folding is 
initiated in a layer in which initial imperfections 
are smaller and smaller. The closer we come 
to an initially perfectly flat layer, the smaller 
will be the band width, and the more regular 
will be the appearance of the folding. 

Let us now turn to the case of a viscous layer 
in a viscous medium. According to (4.14), the 
maximum value of p is 

pm = &J$ = $$ (5.9) 

We can represent the selectivity by a band 
width, as above. We write an equation identical 
to (5.5), except that p, is given by (5.9) and 
p by (4.11). Proceeding as above, and using 
the same type of approximate solution of 
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equation (5.5) to determine the band width, When the value for pm given in equation 
we find (5.9) is introduced, the time becomes 

I = y 6711 N 
[-] logAd. 

lJ rl 

(5.12) 
Al 

zip 

log2 - 1.66 
__=2 _= - 
la j&J dlog Ad . (5*10) 

This expression differs only by a constant 
factor for the similar formula (5.7) for the 
elastic layer. The band width for the viscous 
layer at various amplifications, as given by 
(5.10), is shown in Table 2. 

Comparing Table 2 with expression (5.7) 
and with Table 1 for the selectivity of the 
elastic layer, we note that the viscous layer has 

TABLE 2. BAND WIDTH (Al/l& PCJR THE VISCOUS 
LAYER IN THE VISCOUS MEDIUM AS A FUNCTION OF THE 

AMPLIFICATION FACTOR Ad 

Ad (AZ/Z,) v 

10 1.095 
102 0.775 
103 0.632 
104 0.548 
105 0.490 

a larger band width. For the elastic layer, 
Table 1 d’ t tl t b d ‘dth AZ/& = m ma es la a an wi 
0.635 is attained for an amplification of Ad = 
100. Table 2 shows that for the same band 
width to be obtained in the case of the viscous 
layer, we must reach an amplification about 10 
times larger. As a consequence, the elastic 
layer will tend to fold more regularly-a re- 
sult that has been confirmed by model tests. 

There is another interesting aspect by which 
the viscous layer differs from the elastic layer. 
For the elastic layer, by starting with layers 
that contain less and less initial distortion from 
the ideal plane surface, we can attain arbitrarily 
larger amplification factors, provided we wait 
long enough. This is not so for the viscous 
layer, since the compressive load, P, produces 
a shortening of the layer that at a constant 
rate. If a significant amplification requires too 
long a time, the shortening of the layer will 
become so large that the folding phenomenon 
will be completely masked. 

This can be brought out very clearly by a 
consideration of the time required for a given 
amplification to be obtained. This time is 
given by 

1 
t = - log Ad . 

Pm 
(5.11) 

The quantity q/P is a time that has the follow- 
ing physical interpretation. Under the load 
P, the uniform compressive strain rate is given 
by equation (4.4), and the total compressive 
strain after a time t is 

(5.13) 

When the compressive strain corresponds to a 
shortening of 25 per cent, the time elapsed is 

t1 = ? 

P' 
(5.14) 

With the reference time tr, expression (5.12) 
becomes 

t ‘5711 % 

[ 1 _= _ 

fl ? 
log Ad * (5.15) 

It is of interest to show the dependence of the 
amplification factor, Ad, on the viscosity ratio 
and the time ratio. This is shown in Table 3 
for three values of the time, i.e., t = tr/6, 
t = tr/3, and t = tl. 

These three values of t correspond to a 
shortening of the layer of 4.2, 8.8, and 25 per 
cent, respectively. 

One important feature is immediately ap- 
parent from Table 3. Beyond a certain amplifi- 
cation, the amplitude of folding will increase 
at an explosive rate. This happens when 
Ad s 1000, and we can adopt this value as a 
standard. The time required for explosive 
amplification to occur is then given by relating 
(5.15) after Ad = 1000 is substituted. We find 

t 
-=690 

I1 * 
(5.16) 

This time ratio for explosive amplification is a 
function only of the viscosity ratio. 

As indicated in the discussion of band width, 
good selectivity also begins to appear for 
amplifications of about 1000; hence, sharp 
definition of the wavelength is also to be 
expected at these amplifications. 

Another important feature brought out by 
Table 3 is the small amplification exhibited for 
viscosity ratios (v/vi) smaller than 100. 

Larger amplifications would, of course, ap- 
pear for times t larger than tl. However, this 
would imply a shortening of the layer larger 
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than 25 per cent. Such a large compressive 
strain would then overshadow the folding 
itself. We can conclude, therefore, that a 
clearcut folding with sharp definition requires 
that the viscosity of the layer be at least 100 
times that of the medium.2 

to an increase in selectivity. Here again we find 
an analogy in electronics. The phenomenon is 
not unlike the increase of selectivity obtained 
in the FM receivers by the use of amplitude 
limitation. 

Finally, at large viscosity ratios, the wave- 6. GEOLOGICAL ASPECTS OF 

length definition becomes very sharp. For THE FOLDING THEORY 

instance, for q/71 = 2000, the amplification 
at the instant t = t1/3 is of the order Ad = 107. 

We shall briefly discuss some of the previous 
results in the context of tectonics. 

TABLE 3. AMPLIFICATIONS OF THE AMPLITUDB OF FOLDING AT Tn.res t = t1/6, t = t1/3, AND t = tl, AS A 
FUNCTION OP THB VISCOSITY RATIO, q/71, AND CORRESPONDING RATIOS OF THE DOMINANT WAVELENGTH, 

La, TO THE LAYER THICKNESS, h 

1 Ld Ad 

11 -z t = t1/6 

12 7.9 1.30 
36 11.4 1.73 
72 14.4 2.39 

100 16.0 2.97 
144 18.1 4.01 
288 22.9 9.04 
500 27.4 24.0 

1,000 34.5 1.5 x 102 
2,000 43.5 3.0 x 103 

10,000 74.5 1.5 x 1010 

Ad 
t = Q/3 

1.70 
3.01 
5.74 
8.80 

16.0 
81.7 

5.7 x 102 
2.4 x lo4 
9.1 x 106 
2.2 x 1020 

Ad 
t = L1 

4.9 
27.1 

1.89 x 102 
6.8 x lo2 
4.1 x 103 

5.4 x 105 

1.9 x 108 
1.4 x 10’” 
7.5 x 1020 
1.1 x 1061 

Substituting this value of Ad in expression 
(5.10) for the band width, we find 

AJ = 0415 
I . . 

(5.17) 

Using this value in equation (5.8) indicates 
that regular folds will appear over a distance 
D equal to about 2 l/2 times the wavelength. 
Of course, such large amplification can be 
achieved only for a layer whose initial devia- 
tion from a perfect plane is of the order of 
lo-’ of the wavelength. 

The previous considerations on selectivity 
are applicable only within the range of validity 
of the linear theory. Attention should be called 
to a type of nonlinearity of geometric origin 
whose effect is to increase the regularity of the 
folds. This can be seen by considering a case 
of folding with uneven amplitude of the folds. 
Since the amplitude is limited by the geometry, 
the folds of greater amplitude will reach their 
limit first, while those of smaller amplitude will 
continue to grow. This will result in smoothing 
out of the uneven amplitudes and corresponds 

2 -4s pointed out in Section 6, this may not be the 

case for materials with strongly nonlinear properties. 

Let us first consider the case of a viscous 
layer embedded in a viscous medium. It is 
reasonable to assume that for very low stresses 
acting over long periods of time, the behavior 
of most rock is in the nature of a viscous 
medium.3 The analysis of Section 4, which 
neglects gravity, indicates that the existence 
of a very small compressive stress in the layer 
will immediately initiate folding. The wave- 
length of the folding will be characterized 
entirely by the ratio of the viscosity coefficients 
of the layer and of the medium and will be 
independent of the compressive load, P. 

Viscosity coefficients of rock range widely. * 
Accepted magnitudes of viscosity (Birch, 
Schairer, and Spicer, ,1942; Griggs, 1939) 
range from 10” to 10” poises.4 The figure 1017 

3As pointed out hereafter the validit’y of the theory 

is not dependent on such an assumption since nonlinear 

physical properties may be introduced. 

4The same orders of magnitude are derived from 

observations communicated to the writer by M. King 

Hubbert on deformation of pillars in salt mines and 

the sagging of marble slabs in old cemeteries under low 

stress and over long periods of time. Such deformatioos 

have also been observed by Kaisin (1927), who stressed 

the importance of these phenomena in tectonics. 



1608 M. A. BIOT-THEORY OF FOLDING OF STRATIFIED VISCOELASTIC MEDIA 

is the order of magnitude of the viscosity for 
halite. These values correspond to pressures 
and temperatures near the surface of the earth. 
Some materials have lower values of viscosity. 
Viscosities will also be lower at higher pressure 
and temperature. The earth is, therefore, a 
highly heterogeneous medium from the stand- 
point of its flow properties. This is in contrast 
with the elastic properties, since the elastic 
moduli of rock generally range from IO” to lOi 
dynes/cm2. It is clear, therefore, that folding 
in the earth must primarily reflect the large 
differences in viscous or viscoelastic properties. 

As an example, let us consider a layer of 
viscosity q = 10zi poises (dynes cm-2 set-‘) 
embedded in a medium of viscosity r]i = 1018 
poises. Let us assume also that the compressive 
load is P = IO8 dynes/cm2. This is about 1450 
psi, i.e., of the order of a fraction of the com- 
pressive strength of hard rock. The time re- 
quired for the layer to shorten by 25 per cent 
is 

ti = 5 = lOI xc = 317,000 years. (6.1) 

The dominant wavelength (See Table 3) is 

Ld = 34.5 h , (6.4 

where k is the layer thickness. The time, t, re- 
quired for explosive folding to begin is given 
by equation (5.16); we find 

t 
- = 0.218 . 
t1 

(6.3) 

Hence, 

t = 72,000 years . (6.4) 

At this time, the shortening of the layer is 
t/4tl, or 5 per cent. 

Let us keep the same ratio of the viscosities, 
q/q1 = 1000, and consider other values for the 
viscosities and the compressive load, P. Table 
4 shows the time required to reach explosive 
folding. 

The time is shown in years, the load in 
pounds per square inch, and the viscosity in 
poise (cgs) units. These results fit in very well 
with the geological time scale5. 

If the viscosity ratio is ~/VI = 100, a similar 
table could be constructed in which the viscosi- 
ties would be replaced by 

?j = 1022, 1021, 1020 cgs (6.5) 
171 = 1020, 10’9, 10’8 cgs . 

6Kulp (1959) has evaluated this time scale on the 
basis of radioactivity measurements. 

When the same values for the compressive load 
are used, the time intervals are simply multi- 
plied by the factor 4.65. The dominant wave- 
length in this case is 

Ld = 16h. (6.6) 

It can be seen that for periods of the order 
of lo5 or lo6 years, a relatively small load may 
produce explosive folding, even in hard rock. 

The wavelengths predicted are also within 
the range of observed values. 

TABLE 4. TIME IN YEARS REQUIRED FOR EXPLOSIVE 
FOLDING FOR A VISCOUS LAYER IN A VISCOUS MEDIUM 
FOR VARIoUs CoMPREssIVE LOADS, P, AND VIscosrrIEs 

P n 1022 1021 1020 CBS 

psi 
CI 

1/I 10’9 1018 101’ cgs 

14.5 
145.0 

years years 
7.2y’;07 7.2 x 106 720,000 
7.2 x 10’3 720,000 72,000 

1,450.o 720,000 72,000 7,200 
14,500.o 72,000 7,200 720 

Our next step is to introduce the influence 
of the elasticity of the layer. We shalt therefore 
examine the magnitude of the folding of a 
purely elastic layer in a viscous medium. The 
amplification factor, Ad, is related to the time 
by equations (5.2) and (5.3). They can be 
combined to read 

t = te log Ad , 

with a characteristic time 

(6.7) 

t=??!! ii- 
e 

P J F’ 

The modulus B of the layer is defined by 
expression (3.4) and is close to Young’s modulus 
of the material. The elastic moduli of rock are 
in the range 1O’l to 1012 dynes/cm2, the latter 
value being close to the modulus of quartz. 
For the purpose of comparison, we shall adopt 
the highest value, B = 1Or2 dynes/cm2. Since 

t is proportional to z/B7 the variations of B 
within the allowable range for rock do not 
affect the order of magnitude of te. The vis- 
cosity, 71, of the surrounding medium is as- 
sumed, as it was previously, to lie in the range 
~1 = 101’ to qr = 1020 poises. In analogy with 
our treatment of the viscous layer and also 
by examination of equations (5.2) and (5.3), it 
can be seen that explosive folding will start 
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for the same value, Ad = 1000, for the amplifi- 
cation factor. Hence, the time at which ex- 
plosive folding appears is given by 

t=690t =207E ii .e . 
P P’ (6.9) 

This time is shown in years in Table 5, with 
B = 1012 dynes/cm2, for different values of the 
viscosity, 71, of the surrounding medium and 
of the compression, P, in the layer. 

Comparison of these time intervals with 
those of Table 4 shows that much more time 

folding. The maximum stress will occur at the 
point of maximum amplitude, which is also 
the point of maximum curvature. Consider the 
folding of a viscous layer. The bending moment 
is given by equation (4.6). A sinusoidal de- 
flection at the dominant wavelength is 

w = wt cos l&z , (6.10) 
where 

wt = w&P”t (6.11) 

is the maximum amplitude at x = 0. The 
values of ld and p, are given by expressions 

TABLE 5. TIME 1~ YEARS REQUIRED FOR EXPLOSIVE FOLDING OF AN ELASTIC LAYER IN A VISCOUS MEDIUM 
FOR VARIOUS COMPRESSIVE LOADS, P, IN THE LAYER AND VISCOSITIES, 71, OP THE MEDIUM 

Elastic modulus of the layer is B = 1012 

P 
psi 

91 
cgs 1020 

14.5 6.5yzol” YfZXS 

6.5 x log 
prS 

6.5 x 10s 
years 

6.5 x lo7 
145.0 2.0 x 109 2.0 x 108 2.0 x 107 2.0 x 106 

1,450.o 6.5 x 107 6.5 x 10’3 650,000 65,000 
14,500.o 2.0 x 106 200,000 20,000 2,000 

is required for the layer to fold as an elastic: 
layer. This is particularly true for the smaller 
values of the compression, where the viscous 
phenomenon clearly predominates. At high 
values of the compression, of the order of 
14,000 psi, the elastic property begins to influ- 
ence the folding. We must remember, however, 
that such high loads are near the crushing 
strength, where plastic deformation and rup- 
ture will be introduced and will be superposed 
to the purely elastic deformation. Actually, 
of course, the rock will possess combined elastic 
and viscous properties, i.e., it will be viscoelastic. 
It will tend to deform as a viscous solid at low 
rates of deformation, and, as this rate increases, 
the elasticity property will gradually enter 
into play. Calculation of the rate of folding for 
the more complex case of a viscoelastic layer 
can be carried out by applying the more 
elaborate theory (Biot, 1957; 1959b). These 
considerations lead to the conclusion that the 
viscosity of the layer will, in general, tend to 
predominate over its elasticity. 

On the other hand, at high loads the visco- 
elastic properties will tend to be masked by 
rupture and plastic deformation, particularly 
in regions of maximum bending. In this con- 
nection, we should also evaluate the bending 
stresses in the layer during the process of 

(4.12) and (4.14). Using these values and 
substituting win equation (4.6) for the bending 
moment, we find 

M = ; hwtP , (6.12) 

By a well-known formula of plate theory, the 
maximum bending stress is 

6M 
am=-; 

h2 
(6.13) 

hence, 

(r m=2yP. (6.14) 

This stress is a traction on the stretched side 
of the layer and a compression on the other. 
The stress must be superposed, of course, to 
the original compression in the layer. On the 
compressed side, the stresses due to bending 
and the initial compression are added, and the 
total compression is 

UC = P 
2w 

c 1 hfl . (6.15) 

On the stretched side, the stresses are sub- 
tracted, and we obtain a tensile stress 

ut = P 
[ 1 2wt 1 

-- . 
h 

(6.16) 
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In the actual geological case, these stresses 
must also be superposed on the over-all hydro- 
static pressure prevailing at the depth of the 
layer. 

To illustrate the significance of this formula, 
let us consider the case of a layer of viscosity 
17 = 10zl poises embedded in a medium of 
viscosity 111 = 1018 poises. For a layer 2 feet 
thick, the dominant wavelength will be 70 

with a considerable increase in the creep rate 
equivalent to a decrease of the “effective” 
coefficient of viscosity as the stress increases. 
The stress at which this will occur depends not 
only on the nature of the rock but also on the 
hydrostatic pressure and temperature. In any 
case, a weakening of the layer is to be expected 
at points A and B of maximum amplitude. 
Further deformation will progress as though 

(b) 

P 

Figure 6. Folding of a layer 2 feet thick before and after yielding at the bends. (a) layer with a viscosity 
of 7 = 10zl poises in a medium of viscosity 71 = lo”* poises under a compressive stress P = 1450 psi. 
The amplitude is shown after 70,000 years. The assumed initial amplitude is one-tenth of an inch. (d) 
further deformation produces a sharpening of the folds due to yielding of the material at the bends. 

feet. Assume also a compressive load of 1450 
psi in the layer and an initial deviation of the 
layer from a plane surface of the order of 0.1 
inch over a distance of a wavelength, i.e., over 
a distance of 70 feet. From Table 4, we see 
that the time required for the layer to reach 
the state of explosive folding is of the order 
of 70,000 years. At that moment, the amplifi- 
cation factor is 1000, and the amplitude of the 
folds will be 100 inches. The folds will have 
the aspect shown in Figure 6a. 

Consider the stress at a point of maximum 
amplitude, as given by equation (6.16). Substi- 
tuting the values P = 1450 psi, h = 24 inches, 
and wt = 100 inches, we find 

ut = 10,600 psi . (6.17) 

At such stress, cracks are likely to appear, or 
some form of plastic deformation will occur, 

the layer were hinged at these points, produc- 
ing a sharpening of the bends, as indicated 
in Figure 66. 

At the lower stress shown in Table 4, e.g., 
145 psi, considerably more folding will have to 
occur before this type of failure will develop. 
On the other hand, at the higher stress, e.g., 
14,500 psi, plasticity and fracture will occur 
almost immediately. At such high stresses, a 
theory based on elastic or viscous deformation 
can still be applied as an approximation if we 
assume that plastic deformations for incre- 
mental stresses obey relationships that on the 
average, can be represented by an “incremental 
elastic modulus” or an “incremental coef- 
ficient of viscosity.” In technological problems, 
a theory of buckling that makes use of the 
so-called “tangent modulus” has been success- 
fully applied. Similarly, we could use the 
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theories for either the viscous or the elastic 
layer, as developed above, provided that we 
substitute the appropriate coefficient repre- 
senting average incremental properties. 

The weakening of the layer at the point of 
maximum curvature would then be represented 
by a decrease in the effective elastic modulus 
or the effective viscosity coefficient as the 
stress increases. The significance of an effective 
viscosity is illustrated by considering a material 
whose rate of compressive deformation, - t, 
is a certain function of the compressive stress, 
P. We can write this relationship as 

- t =f(P) ) (6.18) 

where f (P) represents an empirical function. 
In the vicinity of a stress, PO, a small variation, 
dP, of the stress will produce a corresponding 
variation, - &, of the strain rate. The effective 
viscosity coefficient, q, is then defined by 

1 dk df (PO) _=- 
;;;; = - dP dP ' 

(6.19) 

The right-hand side represents the slope of the 
function f (P) at the stress PO. In order to make 
the equation conform with the assumptions 
of the plate-bending theory, the strain, e, is 
taken as that of a plate whose deformation is 
free in the direction of the compression and 
in the direction normal to its plane but is re- 
strained in its plane in the direction normal to 
the stress. 

At this point, we must consider the signiii- 
cance of the characteristic time, tr, if the ma- 
terial is nonlinear. In this case, tr, as defined by 
equation (6.1), does not represent the time in 
which an over-all shortening of 25 per cent 
of the layer takes place, since T,I represents the 
viscosity for incremental stresses. Actually, the 
time required for a 25 per cent shortening will 
be longer than ti by a factor (dfldP) x (Z'/'. 
This means that appreciable folding may occur 
for effective viscosity ratios smaller than 100. 
Hence, when nonlinearity is introduced, signt$icant 

folding may still occur for dominant wavelengths 
which are smaller than about IS times the thick- 
ness. 

By contrast, other nonlinear effects that are 
introduced here will primarily depend on the 
geometry or kinematics of the deformation for 
large displacements. Such an effect will, for 
instance, be a shortening of the distance be- 
tween crests of the folding. This will appear if 
the slope of the folding becomes appreciable. 
We have taken this into account in Figure 6b. 

An additional shortening of the distance be- 
tween crests is a consequence of the shortening 
of the layer itself due to the constant action 
of the compressive stress. This shortening is 
proportional to I t/tl, as defined previously. 
We have neglected this effect in our discussion, 
and it should be introduced as a correction 
depending on the magnitude of t/tl. For non- 
linear materials, tl should be corrected accord- 
ing to our remark in the preceding paragraph. 

It is of considerable interest to note that the 
stress in a viscous layer depends not on the 
magnitude of the strain but on its rate. This 
means that considerable bending can occur 
under a low compressive stress, P, without the 
appearance of cracks or plastic yielding, 

Before concluding this section, we should 
also mention the magnitude of the dominant 
wavelength for the case of an elastic layer. 
Applying formula (3.18), assuming B = loll 
dynes/cm2 and P = 14,500 psi, we find 

Ld E 30h . (6.20) 

We have assumed a compressive stress near the 
crushing strength; hence, the wavelength due 
to elastic bending of the layer will, in general, 
be larger than that given in equation (6.20). 
On the other hand, the observed wavelengths 
are usually smaller and tend to be closer to the 
values predicted from the assumption of purely 
viscous bending. This further confirms the 
conclusion that the viscous mechanism of fold- 
ing tends to predominate. 

7. FOLDING OF MULTIPLE LAYERS 

We shall now consider the important case of 
a multiplicity of superposed layers that are 
separated by softer materials at their interfaces 
(Fig. 7a). To acquire an insight into the nature 
of this problem, let us first analyze the case of 
n superposed layers of equal thickness, h, and 
viscosity, 7, assuming that perfect lubrication 
exists between the layers. This stack of layers 
is embedded in a medium of viscosity 71 and 
is subject to a horizontal compression, P, per 
unit area. 

This case is readily analyzed by making use 
of the previous results for a single layer. All 
transversal forces acting on each layer must 
add up, so that if q is the transversal load with 
which the surrounding medium reacts on the 
whole stack, the load on each layer is q/n. 
Hence, the deflection, w, must satisfy the 
same equation (4.9) as for the single plate, ex- 
cept that q must now be replaced by q/n. This 
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is also equivalent to replacing 71 by qr/n in all of tr is the same as that given by equation (6.1). 
equations obtained above for the single viscous The dominant wavelength will be 150 feet. If 
layer in a viscous medium. The dominant we assume initial deviations of about one- 
wavelength (4.13) becomes quarter of an inch from the perfect plane over 

- a distance of one wavelength, the aspect of the 

La = 2ah 3 
J 

nrl . 
6771 

(7.1) folding after 15,000 years will resemble that 
shown in Figure 76. 

A stack of n = 10 layers will show a dominant The conclusions drawn for the single layer 

Figure 7. Folding of a composite layer. (u) layer made of the superposition of 10 individual layers with 
a total thickness of 20 feet. Viscosities and compressive stresses the same as in Figure 6. (6) Aspect of 
the folding after 15,500 years, assuming an initial deflection of one-quarter of an inch. 

wavelength equal to $5 = 2.16 times the 
wavelength for a single layer. 

All conclusions for a single layer are ap- 
plicable to multiple layers, provided we change 
the viscosity ratio accordingly. For instance, 
in the numerical example just considered, as- 
sume a layer of thickness h = 2 feet and 
viscosity 71 = 10zl. We superpose 10 such lay- 
ers, for a total thickness of 20 feet, and assume 
that they are embedded in. a medium of vis- 
cosity rll = lo’*. The single layer then be- 
haves as though it were embedded in a medium 
of viscosity 10 times smaller, i.e., it behaves as 
the single layer with a viscosity ratio v/qr = 
10,000. Using this ratio, we find that the length 
of time required for explosive folding, given 
by equation (5.16), is 15,500 years. The value 

regarding further development of the folding 
beyond the linear range are applicable. We can 
use equations (6.15) and (6.16) to calculate the 
bending stresses. These stresses depend only 
on the compressive load, P, and the maximum 
deflection, wt. After 15,000 years, this deflec- 
tion is about 11 feet. From equation (6.16), we 
derive the existence of a bending stress at that 
time of the order of 

ut = 14,000 psi . (7.2) 

At such a stress, cracks or plastic flow will be- 
gin to appear, along with a sharpening of the 
folds at the bend, as shown in Figure 8. 

Since the stress is given by equation (6.16), 
it should be kept in mind that the appearance 
of cracks is associated not only with the ampli- 
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tude of the deformation but also with the total 
compressive load, P, i.e., it will depend on the 
rate of deformation. If the load is much smaller 
than assumed here, the folding will take longer 
and cracks may not appear at all, or they may 
appear only at a much later stage when the 
folds are practically collapsed. 

Figure 8. Sharpening of bends due to 
local yielding in the later phase of fold- 
ing of the multiple-layered system of 
Figure 7 

We have assumed that the layers are of 
identical thickness and property, but “this is 
not required, as shown hereafter. Consider a 
number of layers of thickness hi and viscosity 
Q. The compression acting in each of these 
layers is Pi, and the total thickness of the stack 
is H. The total transverse load, 4, produced by 
the superposed layers is obtained by adding 
these loads for each layer. In other words, 
equation (4.10) for the single layer is replaced 

bY 

4q11d; = lZwZPihi - ;14 $ Zqihsi . (7.3) 

If we introduce the quantities 

n=-_ 
h ’ 

equation (7.3) reduces to 

4711 dw 
- 1 dt = Ph12w - ; qh314 $. 
n 

(7.5) 

This is the same as the equation of folding 

for a single layer that has a thickness h, a 
viscosity 7, is subject to a load P, and is sur- 
rounded by a medium of viscosity qr/n. The 
rate of compressive strain of this fictitious 
layer under the load P is also the same as the 
actual system. A heterogeneous layered system 
of this type can, therefore, be analyzed by the 
methods exemplified heretofore. Once the 
over-all deformation has been determined, the 
bending stresses must be individually evalu- 
ated for each particular layer. The stress can 
easily be evaluated by calculating the bending 
moment in each layer, as is done for the case 
of the single layer. 

It should be kept in mind that the present 
treatment of folding of multiple layers is ap- 
proximate. We have assumed that the layer 
thickness remains constant. This, of course, is 
not the case. Because the normal loads in the 
layer add up, there is a limit in the present 
theory to the number of layers that can be 
stacked. 

To complete this analysis, we shall also 
briefly mention the case of superposed elastic 
layers. By the same reasoning as before, ex- 
amination of equation (3.14) leads to the con- 
clusion that 72 superposed layers behave as a 
single one in a medium of viscosity 71/n. Since 
the dominant wavelength for the elastic layer 
is independent of the viscosity, it has the same 
value (equation 3.18) as for the single layer. 
The rate of deformation is increased, however, 
but this does not change the comparison of the 
elastic case with the viscous case, as illustrated 
by the time scales of Tables 4 and 5, because 
both cases are affected by the same factor. 

Although the assumption of perfect slip be- 
tween layers will not be justified in general, 
one should keep in mind that, in many cases, 
layers of rock of low viscosity will alternate 
with layers of much higher viscosity. The latter 
will play the role of the actual layers considered 
in the theory, whereas the low-viscosity rock 
will behave more or less as an interfacial lubri- 
cant. We should also keep in mind the possi- 
bility of interfacial lubrication by the mech- 
anism of hydraulic lifting in fluid-filled porous 
rock, as suggested by Hubbert and Rubey 
(1959) and Rubey and Hubbert (1959) for 
overthrust faulting. The present analysis of the 
folding of multiple layers is a simplified one 
intended as a preliminary attack on the prob- 
lem. A more elaborate treatment of the prob- 
lem, which does not assume perfect interfacial 
slip, has been in preparation and will be pre- 
sented at a later date. 

It should be noted that if friction occurs be- 
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tween layers, the value for the dominant wave- 
length lies between that of a single solid layer 
of thickness H = nh and that given by equa- 
tion (7.1). The adherence will tend to increase 
the dominant wavelength somewhat above the 
latter value. 

8. INFLUENCE OF GRAVITY 
ON FOLDING 

In the geological scale the influence of 
gravity is of course a dominant factor. Its im- 
portance will. vary, depending on the size of 
the folds, the density differences of the rock, 
and the proximity to the surface. We have 

Figure 9. Single layer of viscosity 1 on top of 
soft substratum of viscosity ~1 and density p1 
under a compressive stress P 

limited outselves to an analysis of the influence 
of gravity for two simple cases. 

In one case, the layer lies on top of an in- 
finitely deep medium. In the other, the layer 
lies between two infinite media of different 
densities. These two cases are closely related, 
and results from the first can be derived for 
the other. The problem has been analyzed in 
detail in a previous publication (Biot, 1959~). 
A brief account of the results and elaboration 
on some applications follows. 

Consider the case of a layer of viscosity 11 
lying on top of an infinitely deep medium of 
viscosity ~1 and density p1 (Fig. 9). 

Equation (4.10) for the deflection, w, of the 
layer is replaced by 

Phpw - ; qh314 5 = 2~1 $ + pgw . (8.1) 

If we compare this equation with equation 
(4.10), we notice that there is an additional 
term, plgw. This term introduces the effect of 
gravity and represents a “weight addition,” 
positive or negative, associated with the rise or 
fall of the surface as it folds. Another difference 
is the replacement of the factor 4 by half its 
value. The latter change is due to the fact that 
the infinite medium lies only on one side of 

the layer, so that the lateral restraint to folding 
is reduced by half. 

In the absence of gravity, the dominant 
wavelength for this case is given by 

Ld = 2?rh 

Comparing this with expression (4.13), we 
notice that the factor 6 is replaced by 3. This 
is again a consequence of the fact that the 
layer is restrained only on one side. The in- 
fluence of gravity can be derived from the 
diagrams in the earlier paper (Biot, 1959~). 
Let us assume a certain viscosity ratio, say, 
T/TJ~ = 500. The ratio of the dominant wave- 
length of the layer to its thickness (Ld/lt) is 
then a function only of the parameter P/plgh 
which embodies the influence of gravity. The 
value of Ld/h is shown in Figure 10 as a 
function of dP/plgh. The square root of the 
parameter is represented along the abscissa be- 
cause this yields a more convenient graph. 
Similar curves are also plotted for three other 
values of the viscosity ratio, T/Q. 

We see from these results that gravity makes 
the dominant wavelength dependent on the 
load. A particular case of interest is that of a 
layer lying on a substratum whose viscosity is 
very small relative to that of the medium, i.e., 
VI/~ = 0. The dominant wavelength for this 
case is 

Ld = nh x . 
mgh 

This equation is represented by the limiting 
straight line in Figure 10 (71 = 0). We also 
note that there is no theoretical lower limit 
for the compression, P. Folding will occur no 
matter how low the compression. This is in 
contrast with the case of a purely elastic layer 
lying on a heavy fluid, discussed by Smolu- 
chowski (1909a; 1909b; 1910) and Goldstein 
(1926), and shows the existence of a lower 
limit for P below which no instability appears.6 
However, although there is no theoretical 
lower limit for P in the case of a viscous layer, 
there is a practical one which brings into con- 
sideration the rate of folding. Below a certain 
value of P/plgh, the writer (1959~) has shown 
that the amplification of the folding becomes 

6 It is interesting to note that the buckling wavelength 
for the elastic plate is given by the same formula (8.3), 
where P is the buckling load. 
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insignificant. This region may be defined ap- value for P, say, 1450 psi, this limiting thick- 
proximately by ness would be reduced to 150 feet. As pointed 

ST9 

out hereafter, this conclusion must be modified 

(8.4) if we introduce the influence of surface erosion. 
Another interesting conclusion can be drawn 

and corresponds to the left side of the shaded if we consider the wavelength. If we assume 
line in Figure 10. This fact leads to an inter- again that the compressive load is of the order 

40 

t L* 30 

h 

20 

IO 

O_ 

Figure 10. Dominant wavelength, Ld, plotted as the ratio Ld/h for 
the surface layer of Figure 9, when the combined effect of compressive 
stress, P, gravity, g, and viscosity ratio, q,/v~, is taken into account 

esting conclusion. Suppose that we apply the 
highest possible load, i.e., let it be of the order 
of the crushing strength, P = 14,500 psi (P = 
log dynes/cm2). If the thickness of the layer 
tasih that the inequality (8.4) is satisfied, we 

h>P 
9Pl&! * 

63.5) 

For a density p1 = 2.5 of the underlying ma- 
terial, this becomes 

h y 1500 feet , (8.6) 

Hence, for a thickness larger than 1500 feet, 
no significant folding will occur. With a lower 

of 14,500 psi, the longest possible wavelength 
corresponds to a thickness of 1500 feet. As 
shown by Figure 10, the wavelength at this 
limiting point is fairly independent of the 
viscosity ratio and is of the order of about 10 
times the thickness, i.e., Ld = 15,000 feet. 
Wavelengths that are much larger than this 
will not occur in a single surface layer by the 
present mechanism of purely viscous folding. 

We should point out that the analysis neg- 
lects the important factor of surface erosion. 
The effect of erosion is to remove matter from 
the crests while the troughs are filled by de- 
posits. As indicated by Gunn (1937), the effect 
is approximately equivalent to a decrease in 
density. Hence, previous results can be used if 
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we replace pi by an effective density crpi, with 
(Y < 1. From Figure 10, we can see that this 
will generally increase the instability and the 
dominant wavelengths. Hence, if erosion is 
taken into account, wavelengths considerably 
larger than 15,000-20,000 feet are possible. 
Estimation of how large these can actually be 
in the earth on the basis of viscous folding re- 
quires the development of a more elaborate 
theory. 

Figure 11. Layer embedded between two 
media of different viscosities and densities 

The size of possible wavelengths is also in- 
creased if we consider the folding of multiple 
layers, as discussed hereafter. 

In a more qualitative way, the mechanism 

clear that in the absence of compression, a 
layer that is initially folded in a wavy surface 
will gradually be evened out and will approach 
a flat surface under its own weight. This last 
effect becomes predominant for the smaller 
values of the parameter P/p& and the mag- 
nitude of the folding becomes insignificant 
compared to the over-all viscous shortening of 
the layer under the compression, P, which oc- 
curs during the same time. 

The writer has discussed (1959c) the case of 
a layer sandwiched between two infinite media 
of different densities in detail. Let us denote 
by pi and 71 the density and viscosity of the 
bottom medium and by p2 and r]s the corre- 
sponding quantities for the top medium (Fig. 
11). We must distinguish two cases. In one, the 
bottom medium is heavier, i.e., 

Pl > P2 * 

In this case, the effect of gravity is stabilizing, 
and we can readily treat the problem by using 
the above results. We can repeat the same dis- 
cussion used for the layer lying on top of the 
infinite medium and simply replace 71 by vi + 
12 and PI by PI - PZ. 

When the top medium is the heavier, i.e., 

PZ > Pl 9 W) 

Figure 12. Multiple superposed layers lying at the surface of a medium 
subject to gravity 

of viscous folding in a gravity field can be ex- 
plained as follows. A decrease in compressive 
load, P, or an increase in thickness will produce 
the same effect. Both cases correspond to a 
relative increase of the influence of gravity. 
The results just discussed lead to the conclusion 
that for a decrease in load below a certain 
value, which depends on the layer thickness, 
the effect of gravity takes over completely. 
The mechanism involved here is one of balance 
between the forces due to the compressive 
load, which produce the folding tendency, and 
the stabilizing influence of the gravity force, 
whose action tends to flatten out the folds. It is 

the effect of gravity is destabilizing, and spon- 
taneous folding may occur without the com- 
pressive load. (For a discussion of this case, see 
Biot, 1959c.) 

Of interest also is the influence of gravity in 
the case of a multiplicity of superposed layers; 
this was considered previously in this paper 
without gravity. Assume that we have such a 
system of superposed layers lying on top of an 
infinite medium of density p1 and viscosity ~1 
(Fig. 12). 
Let us proceed as in the derivation of equa- 
tion (7.5). We shall use the same definitions for 
the factor n and the average quantities h, r], 
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and P expressed by equations (7.4). When all 
layers have the same thickness, It represents the 
thickness of each layer and n the number of 
layers. We apply the same reasoning as used in 
the derivation of equation (7.5), except that 
we now start from equation (8.1), which in- 
cludes the effect of gravity. For multiple 
layers, this equation becomes 

Comparison with equation (8.1) shows that the 
result is the same as that for the single layer of 
thickness h, except that the viscosity of the 

be concluded that the large-scale folding associ- 
ated with orogenesis is not incompatible with 
the mechanism of purely viscous folding of 
multiple layers. 

As a matter of general interest, the problem 
of folding of an inhomogeneous but continuous 
solid (Fig. 13) was also analyzed. In particular, 
we have considered a purely viscous and in- 
compressible solid that is infinitely deep and 
such that its viscosity coefficient decreases 
exponentially with depth, 

?j = T@e-‘U . (8.10) 

This means that as we go deeper, the solid ap- 

Figure 13. Inhomogeneous viscous solid with a viscosity decreasing exponentially 
with the depth y. The initial stress is the hydrostatic 
horizontal compression, P, function of depth. 

pressure, pgy, and a 

bottom medium and the gravity, g, are both 
divided by n. We can therefore repeat exactly 
the same analysis, using the diagram of Figure 
10 for the single layer. We can see that the 
effect of stacking layers is to increase the 

dominant wavelength proportionally to 4; 
for cases where viscosity predominates and 

proportionally to 4; for cases where gravity 
predominates. 

We must also replace g by g/n in the in- 
equality (8.4). Correspondingly, the higher 
limit for the wavelength of viscous folding be- 
comes of the order of 15,000 n feet. By the 
same reasoning used for the case of a single 
layer, we can see that the effect of erosion will 
increase. This will increase the higher limit 
even more. Regarding the assumption of per- 
fect slip between layers, we refer to our re- 
mark at the end of Section 7 on the action of 
layers of low-viscosity rock and the mechanism 
of hydraulic lifting in fluid-filled porous rock 
suggested by Hubbert and Rubey, (1959) and 
Rubey and Hubbert (1959). It can therefore 

proaches the liquid state in a continuous man- 
ner. Originally, the material is in equilibrium 
under gravity, with a hydrostatic pressure, 
pgy, proportional to the depth. W7e then as- 
sume that it is compressed horizontally at a 
uniform rate. This superimposes a horizontal 
compressive stress, P, which has a value of PO 
at the surface and which also decreases ex- 
ponentially with depth: 

P = Poe=. (8.11) 

Under these conditions, the surface is found to 
be unstable, and folding will develop. The 
dominant wavelength of these folds is a func- 
tion of a characteristic nondimensional para- 
meter 

c=Pg 
PsJr ' 

(8.12) 

(p is the mass density of the solid, and g is the 
acceleration of gravity.) The dominant wave- 
length can be expressed as 

(8.13) 
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The nondimensional quantity 6 is a function 
of G, which has been determined numerically. 
The dependence of G on 6 can be approximated 

bY 

6 = 2.2 G6 ‘lo . (8.14) 

We conclude from this result that the presence 
of gravity is required in order for folding to 
occur. This can be seen by putting g = 0. In 
this case, the dominant wavelength, Ld, be- 
comes infinite, and the folding disappears. This 
last conclusion depends, of course, on the as- 
sumption that the material is of infinite extent 
in the horizontal direction. If the surface ex- 
tends over a distance D and is restrained at the 
ends, the wavelength will be determined by 
equation (8.13) if L2d < D. For larger wave- 
lengths, or in the absence of gravity, the wave- 
length will be determined by the geometry of 
the constraint, and the surface will tend to 
bend in one-half wave of length D. The writer 
has discussed a numerical application of this 
result to examine the possibility of folding in 
the earth’s crust as a whole by a purely viscous 
mechanism, based on a viscosity coefficient de- 
creasing exponentially with depth (Biot, 1960). 
He assumes that this constitutes an approxima- 
tion for the viscosity of rock due to the in- 
crease of temperature and pressure with depth. 
For significant folding to occur, the viscosity 
must decrease by a factor smaller than l/e in 
a depth of about 200 feet and the wavelength 
must not exceed 6000 feet. Such a viscosity 
gradient is considerably steeper than occurs on 
the average in the earth. Hence this model is 
not adequate to explain large-scale folding. 

9. CONCLUDING REMARKS 

The purpose of this paper has been to present 
a simplified and intuitive treatment of the 
theory of folding of stratified viscoelastic media 
along with specific examples that are relevant 
in a geologic framework. The writer realizes 
that the geologic implications of the theory de- 
serve a more elaborate discussion than has been 
given here. However, such a task lies beyond 
his particular field of competence. 

In its present state the theory represents the 
first phase of a program. Its extension to ma- 
terials and configurations of a more complex 
nature has been under development and will 
be presented at a later date. 

It is difficult to assign specific values to the 
viscosity coefficients of rock except within one 
order of magnitude. Laboratory tests are re- 
stricted to time intervals that are extremely 

short in comparison with the geological time 
scale. On the other hand, a few observations 
have been reported of deformations occurring 
under natural conditions and known gravity 
forces over periods of the order of a century. 
Viscosities derived from such data agree in 
order of magnitude with the results from 
laboratory tests. The range of values, 1017-1022 
poises, considered herein is probably on the 
high side if we take into account the fact that 
the viscosity drops quite rapidly with increas- 
ing pressure and temperature. Hence, the time 
required for folding at appreciable depth may 
be even smaller on the average than the figures 
given herein. Another feature involved here 
lies in the nature of the “effective viscosity 
coefficient” that must be introduced in the 
present theory when applied to materials of 
nonlinear properties as, for instance, when de- 
formation rates increase faster than propor- 
tionally to the stress. As regards the viscosity 
contrast, values of 100 to 1000 for the ratio of 
the viscosity of the layer to that of the em- 
bedding medium may be reasonably assumed 
as ,a representative order of magnitude for ma- 
terials such as limestone or sandstone embedded 
in shale.. 

Within a lower stress range rocks are elastic 
for fast deformation and tend to behave ap- 
proximately like a viscous medium for slow 
deformations. Results of the theory indicate 
that the viscous behavior predominates in tec- 
tonic folding. This leads to large deformations 
without fracture, and the dependence of frac- 
ture on deformation rates. This paper gives the 
time histories and rate processes and evaluates 
them numerically. 

If one assumes that rocks behave as a purely 
viscous solid, significant folding may appear 
under relatively low tectonic stresses. How- 
ever, in such a case the influence of gravity be- 
comes important near the surface and may be 
sufficient to prevent folding. Even deep folds 
may be blocked by the presence of a stabilizing 
density gradient. 

The theory is developed in the context of 
linear phenomena but is applicable to materials 
with nonlinear stress-strain relations. The linear 
theory may be looked upon as describing in- 
cipient folding in a state of initial plastic stress. 
The rheological behavior in this case may be 
described by an “effective viscosity coeffi- 
cient”. In any case the incipient folding that 
is governed by the linear theory determines a 
wave length that is “frozen-in”. As the folding 
proceeds, high stresses are produced at the 
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crests. Cracks or accelerated creep are gen- 
erated at these points, thus introducing 
another nonlinear feature. Owing to weaken- 
ing at the bends, the bends tend to behave like 
hinges, and the folding then proceeds by a 
different mechanism that brings the crests 
closer together. The writer has also discussed 
another nonlinear feature of purely geometric 
origin by which folding tends to become more 
regular than predicted by the linear theory. 
This is due to the geometric limitation on fold- 
ing beyond a certain amplitude: the waves of 
small amplitudes continue to grow at an ex- 
ponential rate. In the light of the present re- 
marks it should be remembered that wave- 
length predictions from the linear theory apply 
only to incipient folding. Therefore, any ap- 
plication to field observations when the folds 
are sharp requires an evaluation of the in- 
cipient configuration through an “unfolding 
process”. 

The time required for significant folding to 
occur has been evaluated. This evaluation is 
based on a range of acceptable tectonic stresses 
and rock viscosities. The results are in excellent 
agreement with the geological time scale based 
on radioactivity data. 

The geometric patterns of the folding de- 

rived from the present theory show a striking 
similarity to observed geological structures. 
This seems partly a consequence of two funda- 
mental results of the theory. It was shown that 
for purely viscous deformations and when the 
influence of gravity is not important the 
dominant wave length is independent of the 
tectonic stress. This will, of course, remain ap 
proximately true for the case where viscous 
deformations play the important part. The 
other theoretical result involved here is the 
dependence of the dominant wave length on 
the cubic root of the viscosity ratio with the 
consequence that it is not sensitive to large 
variations in viscosity contrast. 

Large-scale folding is compatible with the 
present theory, and the writer has shown that 
distances of a few miles between crests are pos- 
sible by viscous deformation under the com- 
bined action of a horizontal compression and 
gravity. This conclusion, however, is not ap- 
plicable if the crust is assumed to be of isotropic 
properties with a viscosity decreasing con- 
tinuously with depth and a gradient corre- 
sponding to average properties in the earth. 
This is consistent with the usual assumption 
that stratification and discontinuities play an 
essential part in erogenic folding. 
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